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Abstract

We present here some applications of the Minimum Mes-
sage Length (MML) principle to spatially correlated data.
Discrete valued Markov Random Fields are used to model
spatial correlation. The models for spatial correlation used
here are a generalisation of the model used in (Wallace
1998) [14] for unsupervised classification of spatially cor-
related data (such as image segmentation). We discuss how
our work can be applied to that type of unsupervised clas-
sification. We now make the following three new contribu-
tions. First, the rectangular grid used in (Wallace 1998)
[14] is generalised to an arbitrary graph of arbitrary edge
distances. Secondly, we refine (Wallace 1998) [14] slightly
by including a discarded message length term important to
small data sets and to a simpler problem presented here. Fi-
nally, we show how the Minimum Message Length (MML)
principle can be used to test for the presence of spatial cor-
relation and how it can be used to choose between models
of varying complexity to infer details of the nature of the
spatial correlation.

1. Introduction and Minimum Message Length

1.1. Spatially Correlated Data

Often the elements of a data set have coordinates associ-
ated with them or perhaps some form of distance function
is defined over them. For such data important questions to
ask are, does the data exhibit spatial correlation, what is the
degree of spatial correlation and what is the nature of the
spatial correlation. To answer the first two questions one
needs to compare hypotheses which assume spatial corre-
lation with ones that do not. To answer the last, one needs
to compare hypotheses which model spatial correlation in
different ways. This task requires comparing models with

different degrees of complexity and different numbers of pa-
rameters. The inference method we use is Minimum Mes-
sage Length (MML).

1.2. Minimum Message Length

Minimum Message Length (MML) [15, 16] is a
Bayesian inference method with an information-theoretic
interpretation. By minimising the length of a two-part mes-
sage of Hypothesis (H) followed by Data given Hypoth-
esis (D|H), we seek a quantitative trade-off between the
desiderata of model simplicity and goodness of fit to the
data. This can be thought of as a quantitative version of
Ockham’s razor [11] and is compared to Kolmogorov com-
plexity and algorithmic complexity [13, 10, 3] in [18].

For further discussions of these issues and for contrast
with the much later Minimum Description Length (MDL)
principle [12], see [18], other articles in that 1999 special
issue of the Computer Journal and [4, sec. 11.4].

1.3. MML compared to other methods

Maximum Likelihood. (ML) chooses the hypotheses H
which give the largest likelihood Pr(D|H) for the observed
data. A problem with ML is that it can not reliably choose
between models of different complexity. A greater likeli-
hood is almost always attained by models with a greater
number of parameters. Unlike maximum likelihood, MML
works well when comparing models with different numbers
of parameters [20, sec. 6].

Even when Maximum Likelihood’s tendency to overfit
is reduced by introducing the penalty term in Akaike’s In-
formation Criterion (AIC), we still find both theoretical and
empirical reasons for preferring MML over AIC [5].

Alternative Bayesian approaches. As well as being in
general statistically consistent [6, 15, 5], another advan-
tage of MML over alternative Bayesian approaches is that



it is statistically invariant [17] - meaning that the inference
is preserved under 1-to-1 transformations of the parameter
space. The posterior median is only defined in one dimen-
sion, the posterior mean is not invariant and - when, as
usual, it is used to maximise a density rather than a prob-
ability - the posterior mode (or Maximum A Posteriori, or
MAP) is also not invariant. See [19, secs. 5,6] and [4].

2. Inference of spatial correlation

2.1. A model for spatial correlation

Let G = (N,E) be an undirected graph with N and
E the sets of nodes and edges respectively. We will used
i and j to denote nodes in N while ei,j ∈ E is the edge
between i and j. With each edge is associated a distance
wi,j satisfying the usual triangle inequality wik ≤ wij+wjk

and wii = 0. Denote the set of neighbours of node i by δi.
G is undirected, so if i ∈ δj then j ∈ δi.

Let x ∈ X be a vector of discrete valued variables
xi ∈ {1, 2, ...,K} indexed by the set of nodes i ∈ N .
We assume that the probability distribution over x forms
a Markov Random Field (MRF). That is, for each node
Pr(xi|φ, xj , j 6= i) = Pr(xi|φ, xj , j ∈ δi) and
Pr(x|φ) > 0 for all possible assignments of x. φ denotes
the model parameters to be inferred. So each variable xi is
conditionally independent of all others given its neighbours.

A Gibbs Random Field (GRF) for the graph G and con-
figuration space X is a probability distribution over X
which can be written in terms of an energy function q(x).
Equations 1 and 2 show the form of this distribution for first
order GRFs. The Hammersley-Clifford theorem, proved in
[9, 1, 8], states that MRFs and GRFs are equivalent hence
our distribution over x can be written as:

Pr(x|φ) = Z(φ)e−q(x,φ) (1)

q(x, φ) =
∑
i∈N

qi(xi, φ) +
∑

ei,j∈E

qi,j(xi, xj , φ) (2)

where Z(φ) is a normalisation term known as the partition
function and q(x, φ) is the energy of state x. Thus the prob-
ability of a state is determined by its energy with more prob-
able states having lower energies. The terms qi are known
as first order clique potentials (corresponding to individual
nodes) and the terms qi,j are known as second order clique
potentials (corresponding to edges). A clique of G is any
subset of nodes in N (of size equal to the clique order)
which are all neighbours of each other. While clique poten-
tials of order three and higher are sometimes used in MRF
image models, we will not consider higher order cliques.

2.2. Detecting spatial correlation

We now describe how the Minimum Message Length
principle can be used to determine if an observed vector x

for a given graph G displays spatial correlation. There are
two hypotheses to be compared.

1. H1: there is no spatial correlation,
Pr(xi|φ1, xj , j 6= i) = Pr(xi|φ1)

2. H2: there is spatial correlation,
Pr(xi|φ2, xj , j 6= i) = Pr(xi|φ2, xj , j ∈ δi)

To choose between these two models we can calculate the
minimum message lengths for H1 and H2 and choose the
one which leads to the most compression. The difference
in message lengths gives us a degree of preference for one
model over the other.

For H1, we can simply set all second order clique poten-
tials to zero and let Z(φ) = 1. This leads to a distribution
where Pr(xi|φ1) = e−qi(xi,φ1). Note this is simply a dis-
crete multi-state distribution. For H1 the model parameters
are φ1 = (a1, a2, ..., aK−1) where e−qi(k,φ1) = ak and∑K

k=1 ai = 1. This leads to the following message length
[15, chap. 5]:

IH1 = − log(h(H1)) + K−1
2 (log( |N |

12 ) + 1)
− log(h(φ1))−

∑K
k=1(nk + 1

2 ) log(ak)
(3)

where nk is the number of xi equal to k, h(H1) is the a
priori probability of H1 being true and h(φ1) is the a priori
density over the model parameters ak.

For H2, the model parameters are φ2 =
(β, a1, a2, ..., aK−1) where the parameters ak are de-
fined as before while β is a parameter (not used in φ1) that
determines the degree of spatial correlation. The second
order clique potentials are,

qi,j(xi, xj , φ) =
β

1 + w2.5
i,j

c(xi, xj) (4)

where c(xi, xj) is a suitably chosen measure of the differ-
ence between xi and xj . If the values of xi are categori-
cal (or nominal or multi-state) we can define c(xi, xj) as
0 if they are the same and 1 otherwise. If they are ordinal
(ordered but discrete, for example integers) something like
|xi − xj | for example can be used. The term 1

1+w2.5
i,j

may
be replaced by other reasonable functions of wi,j depending
on the application. The message length for H2 is:

IH2 = − log(h(H2)) + K
2 (log( 1

12 ) + 1)
− log(h(φ2)) + 1

2 log(F (φ2))− log(Pr(x|φ2))
(5)

Let L = − log(Pr(x|φ2)) be the (negative) log likelihood.
Let F (φ2) be the determinant of the matrix of expected sec-
ond derivatives of L with respect to the parameters φ2 [15,
chap. 5] [20]. For this problem the term Pr(x|φ2) can not
be calculated easily [14, sec. 5.6], and F (φ2) is presumably
harder to evaluate. The following two subsections describe
how they can be approximated.



For H1, given an a priori density over φ1 the optimal es-
timates for those parameters can often be calculated directly
[15, 19]. For H2 the message length can only be calculated
using numerical approximations and for optimization of the
parameters φ2 we use simple but slow search algorithms.

2.3. Calculating the likelihood term

We describe here two numerical approximations for the
likelihood term Pr(x|φ) needed for our message length cal-
culations. Note that φ is notationally used here as this ap-
plies to both φ2 and φ3 (introduced in a later section) for H2
and H3 respectively.

The first numerical approximation is the numerical ap-
proximation used in [14, secs. 5.5,5.6]. The second is a sim-
pler method which is computationally less expensive when
the number of nodes is small (about 300 or less). The focus
of this paper is on smaller data sets as inferring the presence
and properties of spatial correlation becomes more difficult
when little data is available. Note that both these methods
rely on Gibbs sampling from the distribution over x defined
by the parameters φ. The time needed to generate such sam-
ples reliably depends on the graph used. The graphs used
in our tests were all laid out on two dimensional planes (us-
ing the distance between points as the edge weights) and
presented no such problems. Both approximations have rel-
atively large variances, however they seem to settle on the
same value when run slowly enough.

For large data sets. This numerical approximation is the
one used in [14, secs. 5.5, 5.6]. Let Z(T, φ)e−q(x,φ)/T be
the distribution over x at temperature T . As T increases this
distribution reaches its maximum possible entropy. It can
be shown that dH

dT = dQ
dT /T (hence dH = dQ/T ) where

H(T, φ) is the entropy of the distribution over x at temper-
ature T and Q(T, φ) is the expected energy at this temper-
ature. Gibbs sampling can be used to sample random states
of x given T and φ, and hence Q(T, φ) can be approximated
at any temperature. [8] describes how Gibbs sampling can
be used to sample from Markov Random Fields.

We know that at T = ∞ the entropy H(T, φ) attains
its maximum value, which can be easily calculated. The
entropy of the distribution at temperature T = 1 can be
calculated as follows. Starting at T = 1 and slowly incre-
menting it up to some value high enough to give a distri-
bution similar to that attained at T = ∞, calculate dQ at
each temperature increment. By subtracting the term dQ/T
at each increment from the maximum entropy |N | log(K)
we end with a good estimate of H(1, φ). It can be shown
that Pr(x|φ) = H(1, φ)−Q(1, φ) + q(x, φ) , this gives us
an approximation of the likelihood. Note that using Gibbs
sampling to sample from the distribution at each tempera-
ture is computationally expensive and to get a good estimate
requires that small increments be used [14, Sec. 5.6].

For small data sets. Let x = {x1, x2, ...xn} using some
arbitrary ordering over the elements of x. Let xD =
(xi+1, xi+2, ..., xn) be the vector of descendants of i and
let xA = (x1, x2, ..., xi−1) be the ancestors. The likelihood
term can be written as:

Pr(x|φ) =
n∏

i=1

Pr(xi|φ, xA) (6)

The terms in the left hand product can be approximated by:

Pr(xi|φ, xA) =∑
xD∈Kn−i Pr(xi|φ, xD, xA) Pr(xD|φ, xA)
≈ 1

|Si|
∑

xD∈Si
Pr(xi|φ, xD, xA)

(7)

where Si is a set of assignments for xD ∈ Kn−i randomly
sampled from the distribution Pr(xD|φ, xA). These sam-
ples can be obtained by fixing the values of xA and perform-
ing Gibbs sampling on the remaining elements of x. As |Si|
increases the accuracy of the approximation improves. This
sampling process is performed for each node and the re-
sulting approximations of Pr(xi|φ, xA) can be put together
(equation 6) to give a value for Pr(x|φ).

2.4. Precision of the model parameters

The term 1
2 log(F (φ)) in equation 5 is from the MML

approximation introduced in [20] and arises because in an
optimal code the parameters φ need only be stated to finite
precision. In [14, Sec. 5.4] the F (φ) term was discarded
because of its relatively low contribution to the message
length. For our problem and in general for small data sets
this is no longer true.

Calculating the determinant of the matrix F (φ) directly
is impractical. For this term we approximate the likelihood
using a pseudo-likelihood function [2, sec. 3.3]:

Pr(x|φ) ≈
∏
i∈N

Pr(xi|φ, xj , j ∈ δi) (8)

The second derivatives of this function with respect to the
parameters φ can be calculated for given values of x and
φ. The expectation of these second derivatives can then be
approximated by sampling values of x from Pr(x|φ).

For this approximation to be useful it is necessary that
the second derivatives of the pseudo-likelihood function
with respect to the parameters of φ are close to the second
derivatives of the true likelihood. Note also under some
conditions the standard MML approximation from [20]
used here does break down. MML approximations other
than the one presented in [20] (e.g., Dowe’s MMLD/I1D

[15, sec. 4.10]) may provide a better solution however they
have as yet proven to be too computationally expensive.



3. Comparing models of varying complexity

One significant strength of MML over other methods is
its ability to choose between models with different num-
bers and types of parameters. We will now present a model
which is more complex than H2, whose hypotheses we will
denote by H3. Note that such models are not uncommon in
image analysis and texture analysis. The model parameters
are φ3 = (β, a1, a2, ..., aK−1) where β is now a K × K
symmetric matrix, where we recall from section 2.1 that K
denotes the number of states of the variables xi. All diag-
onal entries are forced to be zero for the sake of simplicity.
This leaves K(K − 1)/2 parameters in β to be estimated.
The difference between this model and the one presented
in section 2.2 and equation (4) is simply that the energies
associated with the edges of the graph are now defined as:

qi,j(xi, xj , φ3) =
βxi,xj

1 + w2.5
i,j

c(xi, xj) (9)

That is the energy penalty due to conflicting neighbours
now depends on the values of those neighbours according
to parameters to be inferred. Similarly to H2 presented in
section 2.2 equation 5 the message length for H3 is:

IH3 = − log(h(H3)) + (K+2)(K−1)
4 (log( 1

12 ) + 1)
− log(h(φ3)) + 1

2 log(F (φ3))− log(Pr(x|φ3))
(10)

Near optimal estimates for φ3 can be found as described for
H2 and the resulting message length IH3 can then be com-
pared with IH2 and IH1 to decide which model to choose.

4. Preliminary tests on artificial data

To begin we generate artificial data from the models H1,
H2 and H3 to see if our criterion can select the correct
model given enough data. We generate a random graph of
order (number of nodes) S by assigning to each node a two
dimensional coordinate randomly selected from a uniform
density over a square with side lengths

√
S. Only the 4S

shortest possible edges (using edge weights wi,j equal to
the Euclidean distance between i and j) are included in the
graph. The values xi ∈ {1, 2, ...,K} for each node are then
generated by sampling the state configuration x from some
chosen model using this graph.

4.1. Comparing H1 and H2

Using data from H1. A random graph generated as de-
scribed above is used. The data x is sampled from the
non-spatial model H1 with uniform distribution φtrue =
(0.25, 0.25, 0.25, 0.25) over K = 4 states. Parameters for
H1 and H2 are then inferred and message lengths calculated
for both. For these tests we use φtrue to denote the param-
eters of the model used to generate the data while φ1 and

φ2 denote the inferred parameters obtained by assuming H1
and H2 respectively. H1 and H2 are assumed to be equally
likely a priori. The prior over the parameters of H1 φ1 is
uniform h(φ1) = (K − 1)!. The prior over the parameters
of H2 φ2 = (β, a1, a2, ..., aK−1) is h(φ2) = 0.5(K − 1)!
if 0 < β < 2 else zero. The function c(xi, xj) from section
2.2 equation 4 is defined here as 0 if xi = xj else 1.

This test was repeated 20 times, with a new graph
and assignment for x in each case, using graphs of order
(number of nodes) 20, 30, 50 and 80. The averages for each
set of twenty runs are recorded in the table below in nits
(where 1 nit = log2 e bits). The first column shows the data
set size, the next three show the average inferred message
lengths assuming H1, the three after that show the average
inferred message lengths assuming H2. The rightmost two
columns show the average difference between the message
lengths for H1 and H2 and the number of times that the
correct hypothesis was chosen out of 20. We denote the
length of encoding the hypothesis by (H), the length of
the data given the hypothesis by (D|H) and the message
length by IH = (H) + (D|H).

size (H1) (D|H1) IH1

20 7.0 25.9 32.9
30 7.5 40.1 47.6
50 8.2 67.6 75.8
80 8.9 109.5 118.4
(H2) (D|H2) IH2 diff correct

9.0 25.9 34.9 2.0 20
8.8 40.0 48.8 1.2 20
10.8 67.5 78.3 2.5 20
12.0 109.3 121.3 2.9 20

For each test performed here the correct model was selected.
In most cases the inferred value of β was close to zero (less
than 0.1). In the most extreme case (using 30 nodes) the
inferred value was quite high (β = 0.68).

Using data from H2. This test was performed as in the
immediately preceding subsection however, this time the
data was generated from H2 with parameters
φtrue = (β, a1, a2, a3, a4) = (0.9, 0.25, 0.25, 0.25, 0.25).
The priors over the inferred parameters for H1 and H2 are
the same as before.

size (H1) (D|H1) IH1

20 7.5 20.6 28.1
30 7.9 34.7 43.6
50 8.5 60.9 69.4
80 9.1 100.3 109.4



(H2) (D|H2) IH2 diff correct

8.0 21.8 28.8 0.7 8
9.3 34.5 43.8 0.2 11
9.9 52.2 61.1 -8.3 19
11.1 87.5 98.6 -10.8 20

In most cases for the sets of size 50 and 80 the inferred
values of β fell between 0.6 and 1.1. We can see here that
for the cases where the set size was 30 or less the simpler
explanation was often preferred.

4.2. Comparing H1, H2 and H3

In this test, data was generated from H3 with node states
taking three possible values K = 3. The parameters φtrue

used to generate the data are a1 = a2 = a3 = 1
3 and:

β =

 0 .2 1
.2 0 .2
1 .2 0


Parameters for H1, H2 and H3 were inferred for the
generated data and their message lengths calculated. The
prior for H3 over φ3 is uniform over the region where the
three non-diagonal entries of β each fall between 0 and 2.
The priors for H1 and H2 were as with the previous tests.
This test was repeated 10 times using data sets of size 100
and 150. The message length averages are in the table
below in the same format as before.

size (H1) (D|H1) IH1

100 5.9 101.3 107.2
150 6.3 156.2 162.5
(H2) (D|H2) IH2

8.6 97.7 106.3
9.3 151.3 160.6

(H3) (D|H3) IH3 correct

11.4 94.6 106.0 4
12.6 144.7 157.3 10

For the size 100 case there seems to be no preference for
H2 or H3, the correct model (H3) was selected 4 out of 10
times. The non-spatial model was not selected in any of
these runs. As expected with more data (size 150) prefer-
ence for the true model (H3) increases.

Note also that we could not find any data sets for which
H3 was selected for data generated from H1 or H2.

5. Applications to classification

This section describes how our work can be applied to
the technique given in [14] for the classification of spatially
correlated data. In that paper the positions of the data ele-
ments was assumed to lie on a rectangular grid. The sec-
ond order clique potential parameter β was a single scalar

(as with H2) as opposed to the K ×K matrix used in H3.
Research on applying our extensions to this sort of MML
classification of spatially correlated data is still in progress.
We present here an outline of the theory behind it.

Assume now that for our given graph, each node i has
associated with it a class xi ∈ {1, 2, ...,K} and a vector yi.
The form of the vectors yi depends on the specific problem.
As before the discrete-valued elements of x are spatially
correlated according to one of the models H1, H2 or H3. Let
γ ∈ {H1,H2,H3} denote the inferred spatial correlation
model. Again the parameters φ defining this distribution
need to be inferred. However in this problem we can not
observe the values xi directly, instead we wish to infer them
based on the observed values yi. On top of this we are not
given the number of classes K and need to infer that as well.

To make things practical it is assumed that
Pr(yi|θ, x, yj , j 6= i) = Pr(yi|θ, xi). The form
of the likelihood function used to model the classes
Pr(yi|θ, xi) will depend on the particular application. Here
θ = {θ1, θ2, ..., θK} denotes the parameters defining the K
different classes. It is necessary that MML estimates for θ
given y and some assignment for x exist.

An MML code explaining the observed data y in terms
of the parameters K, γ, φ, x and θ consists of:

1. A statement of the inferred number of classes K.
2. A statement specifying the type of spatial correlation

model chosen γ (for H1, H2 and H3).
3. The parameters for the spatial correlation φ.
4. The parameters θ defining the K different classes.
5. A statement specifying the class assignments x given

K and φ.
6. A statement (known as the detail) of the observed data

y given the above listed parameters.

The length of this code can be calculated as:

I = I1(K) + I2(γ) + I3(K, γ, φ) + I4(K, θ)
+I5(K, φ, x) + I6(K, θ, x, y)− log K! (11)

where the terms I1 through to I6 are the lengths of the mes-
sage fragments listed above in that order. The term− log K!
appears because the numbers assigned to the K different
classes is arbitrary.

The functions I1 and I2 depend on our priors over the
possible values of K and γ respectively. Note that when
K ≤ 2, H3 does not apply. The sum I2 + I3 + I5 is equal
to the message lengths form equations 3, 5 and 10 that we
have given for H1, H2 and H3 respectively. The functions
for I4 and I6 depend on how the classes are modelled and
we refer the reader to [15] and [19] for examples.

Finding optimal assignments for the parameters K, γ, φ,
x and θ is a difficult problem. The search algorithm below
describes how φ, x and θ can be inferred given assumed



values K and γ. To infer K and γ this algorithm needs
to be repeated for different assignments for them and the
resulting message lengths need to be compared.

The justification for this (EM-like) algorithm as a search
algorithm for a minimal message length I is complex and
we refer the reader to [14, sec. 5.1] for a more thorough
explanation.

1. Create some initial set of assignments x.

2. Re-estimate the spatial correlation parameters φ.

3. Re-estimate the class parameters θ.

4. Update x by sampling randomly from the distribution
Pr(y|x)Pr(x) using Gibbs sampling.

5. If a stable solution is reached then terminate, else re-
turn to step 2.

The difference that our extensions make to this algorithm
is in step 2. The parameters φ here need to be optimized
according to equations 3, 5 and 10. Estimating the parame-
ters θ in step 3 depends on the class models used. Standard
MML techniques for that problem exist for many interesting
class model types [15, 19, 7].

6. Conclusion and further work

We have introduced a criterion for analysing spatial cor-
relation for discrete-valued variables associated with the
nodes of a weighted, undirected graph (based on the work
of (Wallace 1998) [14] which used rectangular a grid). The
general class of graphs for which this can be performed
efficiently has not been thoroughly investigated. We have
shown how the Minimum Message Length (MML) princi-
ple can be used to infer not only the presence of spatial cor-
relation but also how it can select between spatial models
of varying complexity. We have refined [14] slightly by in-
cluding a discarded message length term important to small
data sets. While the tests shown here are preliminary they
indicate that this criterion is resistant to over-fitting.

We have argued that MML inference is well suited to
this problem as it is statistically consistent [6, 15, 5], statis-
tically invariant [17] and capable of comparing models with
different numbers of parameters [20, sec. 6][18].

We have outlined here how our work can be applied to
the method of unsupervised classification of spatially corre-
lated data introduced in [14]. Finally, further work needs to
be done to make this more scalable. This might be achieved
by finding classes of spatial models which allow for faster
sampling. Another possibility is to improve or replace the
numerical approximations to the likelihood term given in
section 2.3.
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