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Abstract. In Minimum Message Length (MML) clustering (unsuper-
vised classification, mixture modelling) the aim is to infer a set of classes
that best explains the observed data items. There are cases where parts
of the observed data do not need to be explained by the inferred classes
but can be used to improve the inference and resulting predictions. Our
main contribution is to provide a simple and flexible way of using such
context data in MML clustering. This is done by replacing the traditional
mixing proportion vector with a new context matrix. We show how our
method can be used to give evidence regarding the presence of apparent
long-term trends in climate-related atmospheric pressure records. Akaike
Information Criterion (AIC) and Bayesian Information Criterion (BIC)
solutions for our model have also been implemented to compare with the
MML solution.

1 Introduction

1.1 Minimum Message Length

The Minimum Message Length (MML) [16, 17, 21] principle states that the best
explanation for observed data D is the one that minimises the optimal coding
length (according to information theory) of a two-part message. The first part
encodes the hypothesis H (this is known as the assertion) from Bayesian priors
while the second part encodes the data D given the H (this is known as the
detail). In practice, we do not actually construct any message but rather strive
to infer a hypothesis which minimises some approximation to that code length.

The MML principle can be thought of as a quantitative version of Ockham’s
razor [5, footnotes 18 and 181-182] and is compared to Kolmogorov complexity
and algorithmic complexity [2, 12, 15] in [19]. For a contrast with the much later
Minimum Description Length (MDL) principle [14], see [4, sec. 11.4] and [16,
chap. 10]. MML inference is statistically invariant (inference is preserved under
1-to-1 transformations of the parameter space) and is in general statistically
consistent [5, 6, 16]. Where many methods have been shown to be statistically
inconsistent on misspecified models [9], there is as yet no known example of
MML having this failing [9, sec. 7.1.5][5, sec. 0.2.5].

MML is capable of selecting between models with varying numbers of parame-
ters without overfitting [21, sec. 6], and outperforms Maximum Likelihood (ML)
even when aided by Akaike’s Information Criterion (AIC) [6].
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MML is a general model selection criterion and as such is intended to replace
traditional hypothesis tests and confidence intervals. Instead, message lengths
are compared for different hypotheses. Akaike’s Information Criterion (AIC)
and the Bayesian Information Criterion (BIC) are two comparable and popular
model selection criteria. We have implemented both AIC and BIC versions of
our method for comparison with the MML solution (section 3).

1.2 Clustering with Minimum Message Length

Given a set of observed items y = (y1, y2, ..., yN) the aim of clustering is to find
a set of C classes such that each item can be assigned to a class. The number,
C, is often assumed known and the properties of the classes are inferred from
the data. These inferred properties of a class describe its typical items.

MML clustering as described in [17, 18, 20] and [16, sec. 6.8] is an unsupervised
mixture modelling method which will also select the number of classes present.

The Expectation Maximisation (EM) algorithm is used to infer the class pa-
rameters for a fixed number of classes. This is repeated assuming different num-
bers of classes. For each such EM run a message length (section 1.1) is calculated.
The solution with the smallest message length is selected as the best.

Given an inferred hypothesis, the message length is calculated as the length
of an optimal code described as follows.

1. The Assertion encodes the hypothesis in the following order.
(a) The number of classes used, C.
(b) The relative frequencies of all classes.
(c) The inferred parameters defining each class.
(d) The partial assignments of items to classes.

2. The Detail encodes the data given the hypotheses.
(a) The observed attributes of each item.

1.3 Our Extension and Some Motivations

Since this work was developed with atmospheric time-series data in mind we will
use that as an example throughout this paper but our methods are intended to
be general purpose.

MML clustering attempts to capture all regularities that are present in the
data. This means that in practice as one adds more attributes to each data
item, the number of classes inferred tends to increase. As there is more data to
compress the first part of the message can become larger and more complex. Too
many classes can be hard to interpret - which in some cases may be undesirable.

In our data set each data item yi is a set of atmospheric pressure values from
several weather stations for a single day. These pressure values yi,j (where i
indices a day and j indexes a weather station) are the attributes that we wish
to cluster. There may be other attributes that can be associated with each day
(data item) which might help with the clustering but which we do not wish to
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model or explain with the classes inferred. Examples include seasons, extreme
weather conditions and global indexes such as those relating to the El Niño cycle.

It helps to notice that with clustering there are often two types of attributes.
One can think of them as target attributes and context (known) attributes. We
are not interested in discovering regularities in the context attributes and it
is not desirable that the number of classes and the complexity of the classes
increase to explain those regularities. On the other hand the inferred hypothesis
should mention these attributes if they help explain the target attributes.

Our aim is to explain the target attributes while using the context attributes
to discriminate and (this aim) is therefore similar to what Jebara [10] describes
as combining Discriminative and Generative learning.

Our work provides a simple yet flexible way of dealing with these context
attributes differently from target attributes while adhering to the well established
MML clustering framework of [17, 20] and [16, sec. 6.8]. By doing that our
method inherits the features of MML clustering which has made it successful
which includes the ability to select the number of classes without over-fitting.

2 Methods

2.1 A Clustering Model with Context Data

Let y be a set of observed items where yi,j is the value of attribute j for data
item i. Let x be the corresponding class assignments where xi ∈ {1, 2, ..., C} and
C is the number of classes. In our atmospheric time-series example yi,j is the
measurement on day i at weather station j.

There are other context attributes associated with each day that we can use
to improve the clustering but do not wish to model. For our climate example
this could include time of year (season) or global indices such as those relating to
the El Niño cycle. For this we introduce a context value zi,k where i indexes the
item (day) and k ∈ {1, 2, ..., K}. Here there are K different contexts. Each item i
belongs to each context to some degree zi,k. The context data z is given as prior
knowledge. Each context vector zi is used much like a fuzzy indicator, however,
we interpret them strictly as probability distributions, hence we require that for
all i,

∑k=K
k=1 zi,k = 1 and that all zi,k ≥ 0.

As an example we can divide the days of each year into four seasons, so K = 4.
A day in the middle of summer (context k = 1) can be assigned completely to
that season zi,1 = 1 while a day between summer and autumn can be assigned
partially to those two seasons zi,1 = 0.5, zi,2 = 0.5.

In our model we replace the mixing proportion parameter vector with a K×C
mixing proportion matrix S. Now the probability of item i belonging to class c
is defined as,

Pr(xi = c) =
K∑

k=1

zi,kSk,c. (1)

Each of the K rows of matrix S is a relative frequency vector associated with a
context. In our example Sk,c is the probability of day i belonging to class c if the
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season is zi,k = 1. It follows that
∑C

c=1 Sk,c = 1 and all Sk,c ≥ 0. This mixing
proportion matrix S will be inferred from the data. In our season example this
means that the effective mixing proportions will change gradually according to
time of year and we avoid having to use hard boundaries when specifying z.

The matrix S allows the context vector z to be used to provide information
about the class assignments x prior to seeing the data y. This means x can be
encoded more efficiently given S and z but only if that saving is not outweighed
by the cost of stating S, which increases with K and C. Effectively S allows z to
inform the classification and inferred model. We are not encoding z at all, one
could imagine a separate message fragment encoding z preceding the rest of the
message. This imaginary message fragment would be unaffected by y, x, S, C
and the class parameters. The idea is that how z is modelled or encoded does
not affect the rest of the message.

Each class defines a distribution Pr(yi|xi) for the data items assigned to it.
These distributions have parameters associated with them which must be in-
ferred. For our climate example we will consider each weather station to have
an independent Gaussian distribution. For details on how these parameters are
inferred with MML, for this and other distributions, see [16, 18, 20].

2.2 Coding Approximation and Optimisation Algorithm

In MML inference one usually creates an approximation to the message length
of the two-part code described in section 1.1, and then infers a hypothesis which
optimises that approximation. We first describe the form of the hypothetical
message, then how it is approximated and then the optimisation algorithm.
Given a hypothesis the message is made up of the same message fragments as in
the list given at the end of section 1.2. For our model part 1b of that list states
the matrix S instead of a single mixing proportion vector.

In accordance with MML convention our message lengths are calculated in
nits where 1 nit = log2 e bits. For item 1a we use the prior distribution 2−C over
the number of classes, this message fragment has a length of C loge 2 nits.

For part 1b the rows of matrix S can be stated using a standard MML multi-
state distribution solution (see [20]).

The code length for the class parameters (1c) can be approximated using
standard MML solutions for the distributions used (see [20]). Because the order
of the classes is arbitrary, loge C! nits can be subtracted from this length.

For part 1d the coding length for stating each class assignment xi precisely
is the negative logarithm of the conditional probability Pr(xi|zi, S). Since an
optimal code would not state these parameters (x) precisely, a coding trick (see
[16, sec. 6.8]) can be used to calculate the message length improvement that
can be achieved through imprecisely encoding x. The result of this is that one
can subtract form the above described message length the entropy of x given
everything else (z,y,S and the class parameters).

Finally the length of the detail (part 2) is simply the negative log likelihood
of y given the inferred assignments x and the inferred class parameters.
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Because of these imprecise encodings of x one can interpret their assignments
as partial (uncertain) and the expectations (over the partial assignments of x)
of the code length described above (parts 1b, 1c, 1d and 2) is used.

Now that we have an approximation to the code length for a given hypothesis
and data set, a search algorithm which finds an optimal hypothesis is needed.
The Expectation Maximisation (EM) algorithm is used.

1: initialise partial assignments for x;

2: initialise values for S;

while(not(some termination condition))

{

3: update class parameters to their optimal values given x and y;

4: update partial assignments of x given S and y;

5: update the matrix S given x and z;

}

Step 3 is done as with standard MML clustering, see [20] or [16, sec. 6.8]. In
step 4 the optimal degree of assignment of item i to class c is equal to its posterior
probability Pr(xi = c|S, z, y). This type of estimate for discrete parameters like x
is discussed in [16, sec. 6]. Step 5 uses the same multi-state distribution solution
used in standard MML clustering for the rows of S, however the contribution of
item i to the parameter row vector Sk is weighted according to,

wi,k =
zi,k

∑C
c=1 Sk,c Pr (yi|xi = c)

∑K
t=1 zi,t

∑C
c=1 St,c Pr (yi|xi = c)

. (2)

These weights are also used in the message length calculations for S. The indi-
vidual reassignments (steps 3, 4 and 5) each decrease the overall message length
in every iteration and the result is that the solution as a whole moves to a local
optimum.

3 Data and Results

3.1 Tests on Artificially Generated Data

Because MML is a Bayesian method, our first claim is that if a true hypothesis is
generated from the assumed model then our method will on average tend to be
good at inferring back that true hypothesis. The hypotheses that were generated
for these tests were intended to roughly imitate those one would expect to infer
for our atmospheric pressure data.

For the first test the true model has 5 classes with 5 pressure values gener-
ated for each day over a 50 year period. The context variable z has been used to
divide the 50 years into 4 long term divisions. This simulates how the relative
frequencies of our 5 classes change over the long run. Each day is assigned par-
tially to two of these divisions so that the change in relative frequencies occurs
slowly and smoothly over time (as with the seasons example in section 2.1).

Data was generated from the assumed hypothesis as described above. Half the
attributes from this data were randomly removed as a validation set. From the
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training set our algorithm was used to infer the number of long term divisions
while knowing the true number of classes. This test was repeated for ten such
data sets. The results are summarised in figs. 1 and 2. Aside from the MML
criterion we have also optimised the Akaike’s Information Criterion (AIC) and
Bayesian Information Criterion (BIC) for all results. In Fig. 1 the lines titled
MML, AIC and BIC show the average resulting criterion values belonging to the
left vertical axis. Here we can see all three criteria have their average optimal
value at the correct number of divisions (K = 4). The predictive performance
is measured as the average negative log likelihood of the validation set given
the chosen hypotheses, divided by the validation set size. This measure is titled
score in Fig. 1 and belongs to the right vertical axis. It can be seen that the
predictive score reaches its optimal value for K = 4 and extra divisions do not
improve this.

In Fig. 2 we can see the number of data sets (out of ten) for which MML, AIC
and BIC preferred K divisions. The results show that MML and BIC tended to
be similarly conservative while AIC sometimes prefers more divisions than the
true number K = 4.

Fig. 1. Average MML, AIC and BIC values inferred for different values of K belong
to the left axis. The predictive performance score belongs to the right axis. The true
value is K = 4.

Fig. 2. The number of data sets (out of ten) for which MML, AIC and BIC preferred
K divisions, with the true value being K = 4
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In the next test we have generated data as with the first test but now the
algorithm knows the number of long-term divisions (K = 4) while the number
of classes (C = 5) must be inferred. For this test MML and BIC performed
similarly and well (preferring either C = 5 or C = 4) while AIC tended to
over-fit (preferring 6 ≤ C ≤ 8).

In the final artificial data test we have generated data using only one long
term division K = 1 (equivalent to no context variable). All three methods were
used to infer K as before. Here both MML and BIC chose the correct number
K = 1 all ten times while AIC chose K = 1 seven times but also made estimates
as high as K = 5.

Our conclusion from these three tests is that both MML and BIC can be
expected to either choose the true values for K and C or to choose more con-
servatively, while AIC will occasionally overestimate these values.

3.2 Atmospheric Time-Series Data and MML Clustering

The meteorological data was derived from historical sub-daily station mean sea
level air pressure observations digitised by the Australian Bureau of Meteorology.
The air pressure was observed in approximately 50 weather stations across Aus-
tralia with earliest observations dating back to 1859. The data has been quality
controlled. This processing included removal of errors in the observations by mis-
takes made when digitising observations or when observers incorrectly recorded
air pressure values.

Clustering such data both from real world observations or from climate model
output is valuable as it allows for large and complex data sets to be interpreted
more easily. This can then be used to look for variations in pattern frequencies
over time and to link these variations to other climate/weather related events.
Self Organising Maps (SOM) [11] have been successfully used for this purpose in
the past [1, 13]. The work we present in this paper is an early step in continuing
work aimed at providing alternative tools to SOM and k-means clustering specific
to atmospheric time-series data.

The existence of multiple atmospheric circulation regimes (classes) in the
extratropics is an important, but a controversial, hypothesis in meteorology [3].
Many conflicting results exist and are critically discussed in [3].

We hope that by refining our probabilistic models to fit this problem domain,
MML can with its resistance to overfitting provide important evidence regarding
this issue. In this paper for this data set our primary goal is to measure and anal-
yse the link between context information and the atmospheric data. Sections 3.3
and 3.4 demonstrate this.

3.3 Dividing the Year into Seasons

It is known that atmospheric pressure states are dependent on time of year
(seasons). We demonstrate how our method can be used to determine into how
many seasons each year can be divided. We test our method’s ability to choose
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the best predictive model by dividing the data into training and validation sets
and comparing predictive performance with the message lengths.

The data from 1865 to 1915 was used. Half the observed measurements were
randomly removed as a validation set. We have assumed here that the number
of classes is C = 20. The algorithm was used to infer the number of seasonal
divisions K. Each day is assigned partially to two seasonal divisions as described
in section 2.1. In this way we model how the relative frequencies of classes cycle
smoothly over time. Fig. 3 compares the resulting MML message lengths and
BIC and AIC values for different numbers of seasonal divisions K. For each value
of K MML, BIC and AIC inference were repeated 10 times and the solution for
which each criterion performed best was selected and is shown on Fig. 3.

For this test, both MML and BIC preferred 8 seasonal divisions while AIC
preferred 16. It can be seen that there is no significant improvement on the
validation set for more than 8 divisions.

Fig. 3. MML, BIC and AIC values for different numbers of seasonal divisions K belong
to the left axis. The score measures the performance of the validation set and belongs
to the right axis.

3.4 Identifying Long-Term Trends in Atmospheric Time-Series
Data

Finally we have used our method with the data from 1865 to 1965 to see how
many long-term trends can be justified when assuming C = 20 classes. Again
half the data was randomly removed as a validation set. The algorithm was used
to infer the correct number of long-term divisions K as defined in section 3.1.
For each value of K both MML and BIC inference were repeated 10 times and
the solution for which each criterion performed best was selected. MML had a
clear preference for 4 long term divisions while BIC preferred 7. Both the 4-term
and 7-term solutions had the same predictive performance.
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4 Conclusion and Further Work

In clustering there is often additional information that can be used to improve
the inference but which should not be included as target attributes (attributes
to be clustered). The context clustering method that we have presented provides
a flexible yet simple extension to standard MML clustering which achieves our
goal of using context data. Our results on artificial data show that we can detect
the presence of such context divisions and estimate their number if the assumed
model is correct. An implementation of our algorithm which uses BIC instead
of MML performs similarly while AIC tends to overfit. With the atmospheric
pressure time-series data we have demonstrated how our method can be used to
give evidence regarding the presence of apparent long term trends in atmospheric
pressure patterns and to determine the number of seasonal divisions that can be
justified.

It is known for this data set that the class of each day is highly dependant
on the class of the previous day and that this can be modelled using a hidden
Markov unit model as in [7]. We are currently working on combining our context
variable model with that hidden Markov unit model.

Instead of using the context variable for long term divisions or seasons one
could use it to try and link global weather indexes, like those measuring the
El Niño cycle, to atmospheric pressure patterns. This would require that the
context variable have two possible assignments, one for El Niño and one for La
Niña, where each day would be (partially) assigned to both with some degree
based on the Southern Oscillation Index (SOI).

Other uses for the context variable could include weather extremes such as
storms, unusual rainfall, cyclones and hurricanes. Another simple extension of
this work will be to allow multiple context variables to be use, this would allow
for example for both season and long term trend information to be used.

With clustering real world data the difference between model and reality can
lead to an excessive number of classes. One way to address this is to remove the
assumption that the attributes within each class can be modelled as independent
Gaussian distributions. It should be possible to allow for inter-attribute relations
such as latent factors, which have been used in MML clustering in [8].
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