Measuring universal intelligence: Towards an anytime intelligence test

José Hernández Orallo¹, David L. Dowe²

1. Departament de Sistemes Informàtics i Computació, Universitat Politècnica de València, Spain. jorallo@dsic.upv.es.

2. Computer Science & Software Engineering, Clayton School of I.T., Monash University, Clayton, Victoria, 3800, Australia. david.dowe@infotech.monash.edu.au.
Outline

- Towards a universal intelligence test
- Precedents
- Addressing the problems of universal intelligence
- An anytime test
- Instances and implementation
- Conclusions and future work
Towards a universal intelligence test

Evaluating intelligence. Some issues:

1. Harder the less we know about the examinee.

2. Harder if the examinee does not know it is a test.

3. Harder if evaluation is not interactive (static vs. dynamic).

4. Harder if examiner is not adaptive.
Towards a universal intelligence test

State of the art: different subjects, different tests.

- **IQ tests:**
 1. Human-specific tests. Natural language assumed.
 2. The examinees know it is a test.
 4. Generally non-adaptive (pre-designed set of exercises)
- Other tests exist (interviews, C.A.T.)

- **Turing test:**
 1. Held in a human natural language.
 2. The examinees ‘know’ it is a test.
 3. Interactive.
- Other task-specific tests exist.
 - Robotics, games, machine learning.

- **Children’s intelligence evaluation:**
 1. Perception and action abilities assumed.
 2. The examinees do not know it is a test. Rewards are used.
 3. Interactive.
 4. Frequently non-adaptive (pre-designed set of exercises).

- **Animal intelligence evaluation:**
 1. Perception and action abilities assumed.
 2. The examinees do not know it is a test. Rewards are used.
 3. Interactive.
 4. Generally non-adaptive (pre-designed set of exercises).
Towards a universal intelligence test

Can we construct a test for all of them?

- Without knowledge about the examinee,
- Derived from computational principles,
- Non-biased (species, culture, language, etc.)
- No human intervention,
- Producing a score,
- Meaningful,
- Practical, and
- **Anytime.**

Is this possible?

- No previous measurement or test of intelligence presented to date fulfils all of these requirements.
Towards a universal intelligence test

Project: **anYnt** (Anytime Universal Intelligence)

http://users.dsic.upv.es/proy/anynt/

- **Any** kind of system (biological, non-biological, human)
- **Any** system now or in the future.
- **Any** moment in its development (child, adult).
- **Any** degree of intelligence.
- **Any** speed.
- Evaluation can be stopped at **any** time.
Precedents

- **Turing Test** (Turing 1950): anytime and adaptive.

- It is a test of humanity, and needs human intervention.
- Not actually conceived to be a practical test to measure intelligence up to and beyond human intelligence.

Exercises (series) are not arbitrarily chosen.
They are drawn and constructed from a universal distribution:

\[k = 9 : \text{a, d, g, j, \ldots} \quad \text{Answer: m} \]
\[k = 12 : \text{a, a, z, c, y, e, x, \ldots} \quad \text{Answer: g} \]
\[k = 14 : \text{c, a, b, d, b, c, c, e, c, d, \ldots} \quad \text{Answer: d} \]

Fig. 2. Examples of series of \(K_t \) complexity 9, 12, and 14 used in the C-test [7].

However, some relatively simple agents can cheat on them (Sanghi and Dowe 2003) and they are static (no planning abilities are required).
Precedents

- **Captcha**s (von Ahn, Blum and Langford 2002): quick and practical, but strongly biased. They soon become obsolete.

 Type the characters you see in the picture below.

 ![Captcha Image]

 Letters are not case-sensitive

 abac

- A strong impact in real applications and in the scientific community.

- But...
 - They are not conceived to evaluate intelligence, but to tell humans and machines apart at the current state of AI technology.
 - It is widely recognised that CAPTCHAs will not work in the future.
Universal Intelligence (Legg and Hutter 2007): an interactive extension to C-tests from sequences to environments.

\[R(\pi, U) := \sum_{\mu=i}^{\infty} p_U(\mu) \cdot V_{\mu}^{\pi} = \sum_{\mu=i}^{\infty} p_U(\mu) \cdot E \left(\sum_{i=1}^{\infty} r_i^{\mu,\pi} \right) \]

= performance over a universal distribution of environments.

Obvious Problems:
- \(U \) is a choice which defines the environment class.
- The probability distribution is not computable.
- There are two infinite sums (number of environments and interactions).
- Time/speed is not considered for the environment or for the agent.

Other less obvious problems.
A definition of intelligence does not ensure an intelligence test.

The C-test used Solomonoff’s theory of inductive inference (predictive learning) to define an inductive inference test.

Universal intelligence provides a definition which adds interaction and the notion of “planning” to the formula (so intelligence = learning + planning).

For “Universal Intelligence” we will have to “redefine” it, and then to think about how to use it to construct a feasible test.
On the **difficulty of environments**:

- Very simple environments are given a very high probability

\[
 K_U(x) := \min_{p \text{ such that } U(p) = x} l(p)
\]

\[
 p_U(x) := 2^{-K_U(x)}
\]

- Most of the score will come from very simple environments.
 - E.g. The 256 environments with \(K \leq 8 \) accumulate a probability of 0.996 (and hence weight, i.e., score) in the definition.

\[
 \gamma(\pi, U) := \sum_{\mu=1}^{\infty} p_U(\mu) \cdot V^\pi_\mu
\]

- Since we don’t have any information about the examinee, we cannot set any limit (or to *soften* the distribution).
 - one solution is to make the test adaptive.
Selecting **discriminative environments:**

- Many environments will be completely useless to evaluate intelligence, because:
 - Rewards may be independent to agent actions.
 - There must be sequences of actions that lead to unrecoverable “states”. We cannot assume environments to be ergodic.
 - Some environments may be highly benevolent (high expected rewards) and some others can be very malevolent (low expected rewards).

- We introduce two constraints on environments:
 - Environments must be reward-sensitive: *an agent must be able to influence rewards at any point.*
 - Environments must be balanced: *a random agent must have an expected reward of 0 (with rewards ranging between -1 and 1).*
On **practical interactions**:
- We have to consider that environments should react almost immediately. We modify the universal distribution as follows:

 Definition 9 (*Kt* complexity weighting interaction steps).

\[
K_{t_{ii}}^{\text{max}}(\mu, n) := \min_{p \text{ such that } \cup(p) = \mu} \left\{ l(p) + \log \left(\max_{a_{1:i}, l \leq n} \Delta \text{time}(U, p, a_{1:i}) \right) \right\}
\]

- The use of a parameter *n* makes the definition computable.
- From here, we redefine the distribution:

\[
p_{U}^{t}(\mu) := 2^{-K_{t_{ii}}^{\text{max}}(\mu, n_{i})}
\]

- And now:
 - We create a finite sample of environments.
 - We also use a limit of interactions for each environment.
Time and intelligence:

- We must consider fast but unintelligent agents as well as slow and intelligent ones.
 - But we cannot make these two things independent.
 - Otherwise, intelligence would be computationally easier than it is.
- A way to do that is to set a finite period of time for each environment instead of a “number of interactions”.
 - Speed will be important because it will increase both exploration and exploitation possibilities.
 - In fact, agent’s speed will be very relevant.
 - But, it is crucial to consider balanced environments.
Reward aggregation:

- Can we use RL aggregation measures such as accumulated reward and general discounting?
 - We show they present important caveats when measuring agents:
 - with a finite (previously unknown) period of time,
 - Why?
 - Given an evaluation time ζ, a fast agent could act randomly and get a good accumulated score and then rest on its laurels.
 - These are called “stopping” policies in games.
 - We introduce [48] a new measure for aggregating rewards in a given time ζ, where “discounting” is made to be robust to delaying and stopping policies.

Definition 16 *(Average reward with diminishing history)*:

$$\overline{r}_\mu^{\pi} \|	au := \frac{1}{n^*} \sum_{k=1}^{n^*} r_{\mu,\pi_k} \quad \text{where} \quad n^* = \left\lfloor n_\tau \left(\frac{t_{n_\tau}}{\tau} \right) \right\rfloor$$
Given all the previous constraints and modifications we can give a definition, which is useful for a test.

Definition 17 (Universal intelligence considering time (finite set of reward-sensitive and balanced environments, finite number of interactions, \(K_{\max}^{\text{max}}\) complexity) with adjusted score and using physical time to limit interactions).

\[
\mathcal{R}^{\text{iv}}(\pi, U, m, n_i, \tau) := \frac{1}{m} \sum_{\mu \in S} \hat{W}_\mu \| \tau
\]

where \(S\) is a finite subset of \(m\) balanced environments that are also \(n_i\)-actions reward-sensitive. \(S\) is extracted with \(p_{Uj}^{\text{iv}}(\mu) := 2^{-K_{ij}^{\text{max}}(\mu, n_i)}\).

The definition is parameterised by the **number of environments** \(m\) and the **time limit** for each of them \(\zeta\).

- The higher \(m\) and \(\zeta\) are, the better the assessment is expected to be.
- For a new (unknown) agent, it is difficult to tell the appropriate \(m\) and \(\zeta\).
Definition 18 (Anytime universal intelligence test taking time into account). We define $\gamma^v(\pi, U, H, \Theta)$ as the result of the following algorithm, which can be stopped anytime:

1. ALGORITHM: Anytime Universal Intelligence Test
2. INPUTS: π (an agent), U (a universal machine), H (a complexity function),
 Θ (test time, not as a parameter if the test is stopped anytime)
3. OUTPUTS: a real number (approximation of the agent's intelligence)
4. BEGIN
5. $\gamma \leftarrow 0$ (initial intelligence)
6. $\tau \leftarrow 1$ microsecond (or any other small time value)
7. $\xi \leftarrow 1$ (initial complexity)
8. $S_{used} \leftarrow \emptyset$ (set of used environments, initially empty)
9. WHILE (TotalElapsedTime $< \Theta$) DO
10. REPEAT
11. $\mu \leftarrow \text{Choose}(U, \xi, H, S_{used})$ (get a balanced, reward-sensitive environment with $\xi - 1 \leq H \leq \xi$ not already in S_{used})
12. IF (NOT FOUND) THEN (all of them have been used already)
13. $\xi \leftarrow \xi + 1$ (we increment complexity artificially)
14. ELSE
15. BREAK REPEAT (we can exit the loop and go on)
16. END IF
17. END REPEAT
18. Reward $\leftarrow V^\pi_{\mu} \parallel \tau$ (average reward until time-out τ stops)
19. $\gamma \leftarrow \gamma + \text{Reward}$ (adds the reward)
20. $\xi \leftarrow \xi + \text{Reward/2}$ (updates the level according to reward)
21. $\tau \leftarrow \tau + \tau/2$ (increases time)
22. $S_{used} \leftarrow S_{used} \cup \{\mu\}$ (updates set of used environments)
23. END WHILE
24. $\gamma \leftarrow \gamma / |S_{used}|$ (averages accumulated rewards)
25. RETURN γ
26. END ALGORITHM
Implementation of the anytime test requires:

- To define an environment class U (e.g. a Turing-complete machine), where all the environments are balanced and reward-sensitive (or define a computable, preferably efficient, sieve to select them).
- A complexity function (e.g., $K_{\text{t}}^{\text{max}}$)

Several environment classes may determine general or specific performance tests:

- In [53] we have presented a Turing-complete environment class Λ which is balanced and reward-sensitive.
- Other specific classes can be used to evaluate subfields of AI:
 - If U is chosen to only comprise static environments, we can define a test to evaluate performance on sequence prediction (for machine learning).
 - If U is chosen to be *games* (e.g. using the Game Description Language in the AAAI General Game Playing Competition), we have a test to evaluate performance on game playing.
 - Similar things can be done with the reinforcement learning competition, maze learning, etc.
Since the late 1990s, we have derived several general intelligence tests and definitions with a precise mathematical formulation.

Algorithmic Information theory (a.k.a. Kolmogorov complexity) is the key for doing that.

The most important conclusions of this work are:

We have shaped the question of whether it is possible to construct an intelligence test which is universal, formal, meaningful and anytime.

We have identified the most important problems for such a test:

- the notion of environment complexity and an appropriate distribution,
- the issue that many environments may be useless for evaluation (not discriminative),
- a proper sample of environments and time slots for each environment,
- computability and efficiency,
- time and speed for both agent and environment,
- evaluation (reward aggregation) in a finite period of time,
- the choice of an unbiased environment.
This proposal can obviously be refined and improved:

- The use of balanced environments and the character of the anytime test suggest that for many (Turing-complete) environment classes, the measure is convergent, but this should be shown theoretically or experimentally.
- K_{max} needs a parameter to be computable. Other variants might exist without parameters (e.g. using the speed prior).
- The probability of social environments (other intelligent agents inside) is almost 0. A complexity measure including other agents could be explored.

Implementation:

- Currently implementing an approximation to the test using the environment class Λ.
- Also considering to implement an approximation using the GDL (Game Description Language) as environment class.

Experimentation:

- On AI agents (e.g. RL Q learning, AIXI approximations, etc.), humans, non-human animals, children.