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1 INTRODUCTION

The problem of statistical — or inductive — inference pervades a large number of
human activities and a large number of (human and non-human) actions requiring
‘intelligence’. Human and other ‘intelligent’ activity often entails making inductive
inferences, remembering and recording observations from which one can make
inductive inferences, learning (or being taught) the inductive inferences of others,
and acting upon these inductive inferences.

The Minimum Message Length (MML) approach to machine learning (within
artificial intelligence) and statistical (or inductive) inference gives us a trade-off
between simplicity of hypothesis (H) and goodness of fit to the data (D) [Wallace
and Boulton, 1968, p. 185, sec 2; Boulton and Wallace, 1969; 1970, p. 64, col 1;
Boulton, 1970; Boulton and Wallace, 1973b, sec. 1, col. 1; 1973c; 1975, sec 1 col
1; Wallace and Boulton, 1975, sec. 3; Boulton, 1975; Wallace and Georgeff, 1983;
Wallace and Freeman, 1987; Wallace and Dowe, 1999a; Wallace, 2005; Comley
and Dowe, 2005, secs. 11.1 and 11.4.1; Dowe, 2008a, sec 0.2.4, p. 535, col. 1 and
elsewhere]. There are several different and intuitively appealing ways of thinking
of MML. One such way is to note that files with structure compress (if our file
compression program is able to find said structure) and that files without structure
don’t compress. The more structure (that the compression program can find), the
more the file will compress.

Another, second, way to think of MML is in terms of Bayesian probability,
where Pr(H) is the prior probability of a hypothesis, Pr(D|H) is the (statis-
tical) likelihood of the data D given hypothesis H, − log Pr(D|H) is the (neg-
ative) log-likelihood, Pr(H|D) is the posterior probability of H given D, and
Pr(D) is the marginal probability of D — i.e., the probability that D will be
generated (regardless of whatever the hypothesis might have been). Applying
Bayes’s theorem twice, with or without the help of a Venn diagram, we have
Pr(H|D) = Pr(H&D)/Pr(D) = (1/Pr(D)) Pr(H)Pr(D|H).

Choosing the most probable hypothesis (a posteriori) is choosing H so as to max-
imise Pr(H|D). Given that Pr(D) and 1/Pr(D) are independent of the choice of
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hypothesis H, this is equivalent to choosing H to maximise Pr(H) . P r(D|H). By
the monotonicity of the logarithm function, this is in turn equivalent to choosing
H so as to minimise − log Pr(H) − log Pr(D|H). From Shannon’s information
theory (see sec. 2.1), this is the amount of information required to encode H (in
the first part of a two-part message) and then encode D given H (in the second
part of the message). And this is, in turn, similar to our first way above of thinking
about MML, where we seek H so as to give the optimal two-part file compression.

We have shown that, given data D, we can variously think of the MML hypoth-
esis H in at least two different ways: (a) as the hypothesis of highest posterior
probability and also (b) as the hypothesis giving the two-part message of mini-
mum length for encoding H followed by D given H; and hence the name Minimum
Message Length (MML).

Historically, the seminal Wallace and Boulton paper [1968] came into being
from Wallace’s and Boulton’s finding that the Bayesian position that Wallace
advocated and the information-theoretic (conciseness) position that Boulton ad-
vocated turned out to be equivalent [Wallace, 2005, preface, p. v; Dowe, 2008a,
sec. 0.3, p. 546 and footnote 213]. After several more MML writings [Boulton and
Wallace, 1969; 1970, p. 64, col. 1; Boulton, 1970; Boulton and Wallace, 1973b,
sec. 1, col. 1; 1973c; 1975, sec. 1, col. 1] (and an application paper [Pilowsky et

al., 1969], and at about the same time as David Boulton’s PhD thesis [Boulton,
1975]), their paper [Wallace and Boulton, 1975, sec. 3] again emphasises the equiv-
alence of the probabilistic and information-theoretic approaches. (And all of this
work on Minimum Message Length (MML) occurred prior to the later Minimum
Description Length (MDL) principle discussed in sec. 6.7 and first published in
1978 [Rissanen, 1978].)

A third way to think about MML is in terms of algorithmic information theory
(or Kolmogorov complexity), the shortest input to a (Universal) Turing Machine
[(U)TM] or computer program which will yield the original data string, D. This
relationship between MML and Kolmogorov complexity is formally described —
alongside the other two ways above of thinking of MML (probability on the one
hand and information theory or concise representation on the other) — in [Wallace
and Dowe, 1999a]. In short, the first part of the message encodes H and causes
the TM or computer program to read (without yet writing) and prepare to output
data, emulating as though it were generated from this hypothesis. The second
part of the input then causes the (resultant emulation) program to write the data,
D.

So, in sum, there are (at least) three equivalent ways of regarding the MML
hypothesis. It variously gives us: (i) the best two-part compression (thus best
capturing the structure), (ii) the most probable hypothesis (a posteriori, after
we’ve seen the data), and (iii) an optimal trade-off between structural complexity
and noise — with the first-part of the message capturing all of the structure (no
more, no less) and the second part of the message then encoding the noise.

Theorems from [Barron and Cover, 1991] and arguments from [Wallace and
Freeman, 1987, p241] and [Wallace, 2005, chap. 3.4.5, pp. 190-191] attest to the
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general optimality of this two-part MML inference — converging to the correct
answer as efficiently as possible. This result appears to generalise to the case of
model misspecification, where the model generating the data (if there is one) is not
in the family of models that we are considering [Grünwald and Langford, 2007, sec.
7.1.5; Dowe, 2008a, sec. 0.2.5]. In practice, we find that MML is quite conservative
in variable selection, typically choosing less complex models than rival methods
[Wallace, 1997; Fitzgibbon et al., 2004; Dowe, 2008a, footnote 153, footnote 55 and
near end of footnote 135] while also appearing to typically be better predictively.

Having introduced Minimum Message Length (MML), throughout the rest of
this chapter, we proceed initially as follows. First, we introduce information theory,
Turing machines and algorithmic information theory — and we relate all of those to
MML. We then move on to Ockham’s razor and the distinction between inference
(or induction, or explanation) and prediction. We then continue on to relate MML
and its relevance to a myriad of other issues.

2 INFORMATION THEORY — AND VARIETIES THEREOF

2.1 Elementary information theory and Huffman codes

Tossing a fair unbiased coin n times has 2n equiprobable outcomes of probability
2−n each. So, intuitively, it requires n bits (or binary digits) of information to
encode an event of probability 2−n, so (letting p = 2−n) an event of probability p
contains − log2 p bits of information. This results holds more generally for bases
k = 3, 4, ... other than 2.

The Huffman code construction (for base k), described in (e.g.) [Wallace, 2005,
chap. 2, especially sec. 2.1; Dowe, 2008b, p. 448] and below ensures that the code
length li for an event ei of probability pi satisfies − logk pi ≈ li < − logk pi + 1.

Huffman code construction proceeds by taking m events e1, . . . , em of proba-
bility p1, . . . , pm respectively and building a code tree by successively (iteratively)
joining together the events of least probability. So, with k = 2, the binary code
construction proceeds by joining together the two events of least probability (say
ei and ej) and making a new event ei,j of probability pi,j = pi + pj . (For a k-ary
code construction of arity k, we join the k least probable events together — see,
e.g., fig. 3, with arity k = 3. We address this point a little more later.) Having
joined two events into one event, there is now 1 less event left. This iterates one
step at a time until the tree is reduced to its root.

An example with k = 2 from [Dowe, 2008b, p. 448, Fig. 1] is given in Figure 1.
Of course, we can not always expect all probabilities to be of the form k−n, as

they are in the friendly introductory example of fig. 1.
One example with k = 2 (binary) and where the probabilities are not all some k

raised to the power of a negative (or zero) integer is 1/21, 2/21, 3/21, 4/21, 5/21,
6/21, as per fig. 2, which we now examine.

Immediately below, we step through the stages of the binary Huffman code
construction in fig. 2. The two events of smallest probability are e1 and e2 of
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e1 1/2 0 ---------------------------------------

0 |

|

|______

e2 1/4 10 ---------------------------- |

| |

e3 1/16 1100 --------- 110 1/2 |_________|

1/8 |--------- | 1

e4 1/16 1101 --------- | |

1/4 |---------

| 11

e5 1/8 111 -------------------

Figure 1. A simple (binary) Huffman code tree with k = 2

e1 1/21 0000 ---------

| 000

3/21 |---------

| |

e2 2/21 0001 --------- | 00

6/21 |---------

| | 0

e3 3/21 001 ------------------- 12/21 |---------

| |

e6 6/21 01 ----------------------------- |

|------

|

e4 4/21 10 ------------------ 1 |

9/21 |--------------------

e5 5/21 11 ------------------

Figure 2. A not so simple (binary) Huffman code tree with k = 2
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probabilities 1/21 and 2/21 respectively, so we join them together to form e1,2 of
probability 3/21. The two remaining events of least probability are now e1,2 and
e3, so we join them together to give e1,2,3 of probability 6/21. The two remaining
events of least probability are now e4 and e5, so we join them together to give
e4,5 of probability 9/21. Three events now remain: e1,2,3, e4,5 and e6. The two
smallest probabilities are p1,2,3 = 6/21 and p6 = 6/21, so they are joined to give
e1,2,3,6 with probability p1,2,3,6 = 12/21. For the final step, we then join e4,5 and
e1,2,3,6. The code-words for the individual events are obtained by tracing a path
from the root of the tree (at the right of the code-tree) left across to the relevant
event at the leaf of the tree. For a binary tree (k = 2), every up branch is a 0 and
every down branch is a 1. The final code-words are e1: 0000, e2: 0001, e3: 001,
etc. (For the reader curious as to why we re-ordered the events ei, putting e6 in
the middle and not at an end, if we had not done this then some of the arcs of
the Huffman code tree would cross — probably resulting in a less elegant and less
clear figure.)

For another such example with k = 2 (binary) and where the probabilities are
not all some k raised to the power of a negative (or zero) integer, see the example
(with probabilities 1/36, 2/36, 3/36, 4/36, 5/36, 6/36, 7/36, 8/36) from [Wallace,
2005, sec. 2.1.4, Figs. 2.5–2.6].

An example with k = 3 is given in Fig. 3. The Huffman code construction for
k = 3 is very similar to that for k = 2, but it also sometimes has something of a
small pre-processing step. Each step of the k-ary Huffman construction involves
joining k events together, thus reducing the number of events by (k − 1), which is
equal to 2 for k = 3. So, if the number of events is even, our initial pre-processing
step is to join the two least probable events together. That done, we now have
an odd number of events and our code tree construction is, at each step, to join
the three least probable remaining events together. We continue this until just
one event is left, when we are left with just the root node and we have finished.
The assignment of code-words is similar to the binary case, although the ternary
construction (with k = 3) has 3-way branches. The top branch is 0, the middle
branch is 1 and the bottom branch is 2. The reader is invited to construct and
verify this code construction example (in fig. 3) and the earlier examples referred
to above.

For higher values of k, the code construction joins k events (or nodes) into 1
node each time, reducing the number of nodes by (k−1) at each step. If the number
of nodes is q(k−1)+1 for some q ≥ 0, then the Huffman code construction does not
need a pre-processing step. Otherwise, if the number of nodes is q(k−1)+1+r for
some q ≥ 0 and some r such that 1 ≤ r ≤ k − 2, then we require a pre-processing
step of first joining together the (r + 1) least probable events into one, reducing
the number of nodes by r to q(k − 1) + 1.

The result mentioned earlier that

− logk pi ≈ li < − logk pi + 1 (1)
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e1 1/9 00 -------------------

00 |

|

e2 1/9 01 -------------------

01 |

| 0

1/3 +---------

e3 1/27 020 --------- | |

1/9 | 02 | |

e4 1/27 021 ---------+--------- |

| |

e5 1/27 022 --------- |

|_________

1 |

e6 1/3 1 -----------------------------|

|

|

|

e7 1/9 20 ------------------- |

| |

1/3 | |

e8 1/9 21 -------------------+---------

| 2

|

e9 1/9 22 -------------------

Figure 3. A simple (ternary) Huffman code tree with k = 3
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follows from the Huffman construction. It is customary to make the approximation
that li = − logk pi.

Because of the relationship between different bases of logarithm a and b that
∀x > 0 logb x = (loga x)/(loga b) = (logb a) loga x, changing base of logarithms has
the effect of scaling the logarithms by a multiplicative constant, logb a. As such,
the choice of base of logarithm is somewhat arbitrary. The two most common
bases are 2 and e. When the base is 2, the information content is said to be in
bits. When the base is e, the information content is said to be in nits [Boulton
and Wallace, 1970, p. 63; Wallace, 2005, sec. 2.1.8; Comley and Dowe, 2005, sec.
11.4.1; Dowe, 2008a, sec. 0.2.3, p. 531, col. 1], a term which I understand to have
had its early origins in (thermal) physics. Alternative names for the nit include
the natural ban (used by Alan Turing (1912-1954) [Hodges, 1983, pp. 196-197])
and (much much later) the nat.

2.2 Prefix codes and Kraft’s inequality

Furthermore, defining a prefix code to be a set of (k-ary) strings (of arity k, i.e.,
where the available alphabet from which each symbol in the string can be selected
is of size k) such that no string is the prefix of any other, then we note that the 2n

binary strings of length n form a prefix code. Elaborating, neither of the 21 = 2
binary strings 0 and 1 is a prefix of the other, so the set of code words {0, 1} forms
a prefix code. Again, none of the 22 = 4 binary strings 00, 01, 10 and 11 is a
prefix of any of the others, so the set of code words {00, 01, 10, 11} forms a prefix
code. Similarly, for k ≥ 2 and n ≥ 1, the kn k-ary strings of length n likewise form
a prefix code. We also observe that the fact that the Huffman code construction
leads to a (Huffman) tree means that the result of any Huffman code construction
is always a prefix code. (Recall the examples from sec. 2.1.)

Prefix codes are also known as (or, perhaps more technically, are equivalent
to) instantaneous codes. In a prefix code, as soon as we see a code-word, we
instantaneously recognise it as an intended part of the message — because, by the
nature of prefix codes, this code-word can not be the prefix of anything else. Non-
prefix (and therefore non-instantaneous) codes do exist, such as (e.g.) {0, 01, 11}.
For a string of the form 01n, we need to wait to the end of the string to find out
what n is and whether n is odd or even before we can decode this in terms of our
non-prefix code. (E.g., 011 is 0 followed by 11, 0111 is 01 followed by 11, etc.) For
the purposes of the remainder of our writings here, though, we can safely and do
restrict ourselves to (instantaneous) prefix codes.

A result often attributed to Kraft [1949] but which is believed by many to have
been known to at least several others before Kraft is Kraft’s inequality — namely,
that in a k-ary alphabet, a prefix code of code-lengths l1, . . . , lm exists if and only
if

∑m
i=1 k−li ≤ 1. The Huffman code construction algorithm, as carried out in

our earlier examples (perhaps especially those of figs. 1 and 3), gives an informal
intuitive argument as to why Kraft’s inequality must be true.
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2.3 Entropy

Let us re-visit our result from equation (1) and the standard accompanying ap-
proximation that li = − log pi.

Let us begin with the 2-state case. Suppose we have probabilities p1 and p2 =
1 − p1 which we wish to encode with code-words of length l1 = − log q1 and
l2 = − log q2 = − log(1 − q1) respectively. As per the Huffman code construction
(and Kraft’s inequality), choosing such code lengths gives us a prefix code (when
these code lengths are non-negative integers).

The negative of the expected code length would then be

p1 log q1 + (1 − p1) log(1 − q1),

and we wish to choose q1 and q2 = 1− q1 to make this code as short as possible on
average — and so we differentiate the negative of the expected code length with
respect to q1.

0 =
d

dq1
(p1 log q1 + (1 − p1) log(1 − q1)) = (p1/q1) − ((1 − p1)/(1 − q1))

= (p1(1 − q1) − q1(1 − p1))/(q1(1 − q1)) = (p1 − q1)/(q1(1 − q1))

and so (p1 − q1) = 0, and so q1 = p1 and q2 = p2.

This result also holds for p1, p2, p3, q1, q2 and q3 in the 3-state case, as we now
show. Let P2 = p2/(p2 + p3), P3 = p3/(p2 + p3) = 1 − P2, Q2 = q2/(q2 + q3) and
Q3 = q3/(q2 +q3) = 1−Q2, so p2 = (1−p1)P2, p3 = (1−p1)P3 = (1−p1)(1−P2),
q2 = (1 − q1)Q2 and q3 = (1 − q1)Q3 = (1 − q1)(1 − Q2).

Encoding the events of probability p1, p2 and p3 with code lengths − log q1,
− log q2 and − log q3 respectively, the negative of the expected code length is then
p1 log q1 + (1 − p1)P2 log((1 − q1)Q2) + (1 − p1)(1 − P2) log((1 − q1)(1 − Q2)). To
minimise, we differentiate with respect to both q1 and Q2 in turn, and set both of
these to 0.

0 =
∂

∂q1
(p1 log q1 + (1 − p1)P2 log((1−1)Q2) +

(1 − p1)(1 − P2) log((1 − q1)(1 − Q2)))

= (p1/q1) − ((1 − p1)P2)/(1 − q1) − ((1 − p1)(1 − P2))/(1 − q1)

= (p1/q1) − (1 − p1)/(1 − q1)

= (p1 − q1)/(q1(1 − q1))

exactly as in the 2-state case above, where again q1 = p1.

0 =
∂

∂Q2
(p1 log q1 + (1 − p1)P2 log((1 − q1)Q2) +

(1 − p1)(1 − P2) log((1 − q1)(1 − Q2)))
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= (((1 − p1)P2)/Q2) − ((1 − p1)(1 − P2)/(1 − Q2))

= (1 − p1) × ((P2/Q2) − (1 − P2)/(1 − Q2))

= (1 − p1) × (P2 − Q2)/(Q2(1 − Q2))

In the event that p1 = 1, the result is trivial. With p1 6= 1, we have, of very similar
mathematical form to the two cases just examined, 0 = (P2/Q2)−(1−P2)/(1−Q2),
and so Q2 = P2, in turn giving that q2 = p2 and q3 = p3.

One can proceed by the principle of mathematical induction to show that, for
probabilities (p1, ..., pi, ..., pm−1, pm = 1 − ∑m−1

i=1 pi) and code-words of respective

lengths (− log q1, ...,− log qi, ...,− log qm−1,− log qm = − log(1 −
∑m−1

i=1 qi)), the
expected code length −(p1 log q1 + ... + pi log qi + ... + pm−1 log qm−1 + pm log qm)
is minimised when ∀i qi = pi.

This expected (or average) code length,

m
∑

i=1

pi × (− log pi) = −
m

∑

i=1

pi log pi (2)

is called the entropy of the m-state probability distribution (p1, ..., pi, ..., pm).
Note that if we sample randomly from the distribution p with code-words of

length − log p, then the (expected) average long-term cost is the entropy.
Where the distribution is continuous rather than (as above) discrete, the sum

is replaced by an integral and (letting x be a variable being integrated over) the
entropy is then defined as

∫

f × (− log f) dx = −
∫

f log f dx = −
∫

f(x) log f(x) dx

=

∫

f(x) × (− log f(x)) dx (3)

And, of course, entropy can be defined for hybrid structures of both discrete and
continuous, such as Bayesian network graphical models (of sec. 7.6) — see sec. 3.6,
where it is pointed out that for the hybrid continuous and discrete Bayesian net
graphical models in [Comley and Dowe, 2003; 2005] (emanating from the current
author’s ideas in [Dowe and Wallace, 1998]), the log-loss scoring approximation to
Kullback-Leibler distance has been used [Comley and Dowe, 2003, sec. 9].

The next section, sec. 2.4, introduces Turing machines as an abstract model
of computation and then discusses the formal relationship between MML and
minimising the length of some (constrained) input to a Turing machine. The
section can be skipped on first reading.

2.4 Turing machines and algorithmic information theory

The area of algorithmic information theory was developed independently in the
1960s by Solomonoff [1960; 1964], Kolmogorov [1965] and Chaitin [1966], indepen-
dently of and slightly before the seminal Wallace & Boulton paper on MML [1968].
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Despite the near-simultaneous independent work of the young Chaitin [1966] and
the independent earlier work of Solomonoff [1960; 1964] pre-dating Kolmogorov,
the area of algorithmic information theory is often referred to by many as Kol-
mogorov complexity (e.g., [Wallace and Dowe, 1999a; Li and Vitányi, 1997]). Be-
fore introducing the notion of the algorithmic complexity (or Kolmogorov complex-
ity) of a string s, we must first introduce the notion of a Turing machine [Turing,
1936; Wallace, 2005, sec. 2.2.1; Dowe 2008b, pp. 449-450]. Following [Dowe, 2008b,
pp. 449-450], a Turing machine (TM) [Wallace, 2005, sec. 2.2.1; Dowe, 2008b, pp.
449-450] is an abstract mathematical model of a computer program. It can be
written in a language from a certain alphabet of symbols (such as 1 and (blank)
“ ”, also denoted by “⊔”). We assume that Turing machines have a read/write
head on an infinitely long tape, finitely bounded to the left and infinitely long to
the right. Turing machines have a set of instructions — or an instruction set —
as follows. A Turing machine in a given state (with the read/write head) reading
a certain symbol either moves to the left (L) or to the right (R) or stays where it
is and writes a specified symbol. The instruction set for a Turing machine can be
written as: f : States × Symbols → States × ({L,R} ∪ Symbols).

So, the definition that we are using is that a Turing Machine M is a set of
quadruples {Qn} = {〈qi, qj , sk, {sl,H}〉} where

• qi, qj ∈ {1, . . . ,m} (the machine states)

• sk, sl ∈ {s0, . . . , sr} (the symbols)

• H ∈ {R,L} (tape head direction)

(such that no two quadruples have the same first and third elements). The Turing
machine in state qi given input sk goes into state qj and either stays where it is
and writes a symbol (sl) or moves to the left or right (depending upon the value
of H) without writing a symbol.

An alternative equivalent definition of a Turing Machine M which we could
equally well use instead is a set of quintuples {Qn} = {〈qi, qj , sk, sl,H〉} where

• (the machine states) qi, qj ∈ {1, . . . ,m}

• (the symbols) sk, sl ∈ {s0, . . . , sr}

• (tape head direction) H ∈ {R,L}

and the Turing machine in state qi given input sk then goes into state qj , writes
symbol sl and moves the head in direction H (and, again, we require that no two
quintuples have the same first and third elements).

Note that the Turing Machine (TM) in the first definition either writes a (new)
symbol or moves the head at each step whereas the TM in the second of these two
equivalent definitions both writes a (new) symbol and moves the head.
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Without loss of generality we can assume that the alphabet is the binary alpha-
bet {0, 1}, whereupon the instruction set for a Turing machine can be written as:
f : States × {0, 1} → States × ({L,R} ∪ {0, 1}).

Any known computer program can be represented by a Turing Machine. Uni-

versal Turing Machines (UTMs) are like (computer program) compilers and can
be made to emulate any Turing Machine (TM).

An example of a Turing machine would be the program from fig. 4, which, given
two inputs, x0 and x1, adds them together, writing x0 + x1 and then stopping1.
This machine adds two unary numbers (both at least 1), terminated by blanks
(and separated by a single blank). In unary, e.g., 4 is represented by “1111⊔”. In
general in unary, n is represented by n 1s followed by a blank.

_1R

1
11R

2
11R

_ _ L
3

11R

1_R
4 H

Figure 4. A Turing machine program for adding two numbers

Alternatively, recalling our notation of quintuples, < qi, qj , sk, sl,H >, this
Turing machine adding program from fig. 4 can be represented as:

{〈1, 2, 1, 1, R〉, 〈2, 2, 1, 1, R〉, 〈2, 3,⊔, 1, R〉, 〈3, 3, 1, 1, R〉, 〈4, 5, 1,⊔, R〉}

(where state 5 is the Halting — or stop — state, also referred to as H).
(This Turing machine program over-writes the blank (⊔) in the middle with a 1
and removes a 1 from the right end of the second number — and, in so doing,
leaves behind the unary representation of the sum.)

Another example of a Turing machine would be a program which, for some a0

and a1, when given any input x, calculates (or outputs) a0 + a1x. In this case, x
would input in binary (base 2), and the output would be the binary representation
of a0 + a1x.

A Universal Turing machine (UTM) [Wallace, 2005, sec. 2.2.5] is a Turing ma-
chine which can simulate any other Turing machine. So, if U is a UTM and M is

1Wherever he might or might not have inherited it from, I acknowledge obtaining the figure
in fig. 4 from Kevin B. Korb.
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a TM, then there is some input cM such that for any string s, U(cMs) = M(s)
and the output from U when given the input cMs is identical to the output from
M when given input s. In any other words, given any TM M , there is an emula-
tion program [or translation program] (or code) cM so that once U is input cM it
forever after behaves as though it were M .

The algorithmic complexity (or Kolmogorov complexity), KU (x), of a string x
is the length of the shortest input (lx) to a Universal Turing Machine such that,
given input lx, U outputs x and then stops. (This is the approach of Kolmogorov
[1965] and Chaitin [1966], referred to as stream one in [Wallace and Dowe, 1999a].)

Algorithmic information theory can be used to give the algorithmic probability
[Solomonoff, 1960; 1964; 1999; 2008] of a string (x) or alternatively also to insist
upon the two-part MML form [Wallace and Dowe, 1999a; Wallace, 2005, secs.
2.2–2.3].

Let us elaborate, initially by recalling the notion of a prefix code (from sec. 2.2)
and then by considering possible inputs to a UTM. Let us consider the two binary
strings 0 and 1 of length 1, the four binary strings 00, 01, 10 and 11 of length 2,
and (in general) the 2n binary strings of length n. Clearly, if a Turing Machine
stops on some particular input (of length n), then it will stop on that input with
any suffix appended.

The (unnormalized) probability that a UTM, U , will generate x from random
input is PU (x) =

∑

s:U(s)=x 2−length(s), summing over the strings s such that
U taking input s will output x and then stop. In Solomonoff’s original predic-
tive specification [Solomonoff, 1960; 1964] (stream two from [Wallace and Dowe,
1999a]), the (unnormalized) summation actually includes more strings (and leads
to a greater sum), including [Wallace, 2005, sec. 10.1.3] those strings s such that
U on input s produces x and possibly a suffix — i.e., outputs a string for which
x is a prefix. For this sum to be finite, we must add the stipulation that the
strings s (over which we sum) must form a prefix code. In choosing the strings s
to form a prefix code, the sum is not affected by insisting that the strings s are
all chosen so that (e.g.) for no prefix s′ of s does U(s′) = x and then halt. And,
for the sum

∑

x PU (x) to be useful, we must again make sure that the strings x
are prefix-free — i.e., that the strings x all together form a prefix code - so as to
avoid double-counting.

Clearly, 2−KU (x) < PU (x), since KU (x) takes only the shortest (and biggest)
[input] term outputting x, whereas PU (x) takes all the terms which output x
(whether or not we wish to also include terms which append a suffix to x). The
earlier mention above of “(unnormalized)” is because, for many inputs, the UTM
will not halt [Turing, 1936; Chaitin, 2005; Dowe, 2008a, footnote 70]. For the
purposes of prediction, these considerations just discussed are sufficient. But, for
the purposes of inference (or, equivalently, explanation or induction), we need
a two-part construction — as per theorems from [Barron and Cover, 1991] and
arguments from [Wallace and Freeman, 1987, p. 241; Wallace, 2005, sec. 3.4.5, pp.
190–191] (and some examples of what can go wrong when we don’t have a two-part
construction [Wallace and Dowe, 1999a, sec. 6.2; 1999b, secs. 1.2, 2.3 and 3; 1999c,
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sec. 2]). Our two-part input to the (Universal) Turing Machine will be such that
[Wallace and Dowe, 1999a; Wallace, 2005, secs. 2.3.6–2.3.9] the first part results
in no output being written but rather the Turing machine is programmed with
the hypothesis, H. Now programmed with the hypothesis, H, the Turing machine
now looks at the second part of the message (which is possibly the output of a
Huffman code) and uses H to write out the data, D. The MML inference will be
the hypothesis, H, which is represented by the first part of the shortest two-part
input giving rise to the data, D.

The other thing to mention here is the Bayesianism inherent in all these ap-
proaches. The Bayesian and (two-part [file compression]) information-theoretic
interpretations to MML are both clearly Bayesian. And, although some authors
have been known to neglect this (by sweeping Order 1, O(1), terms under the
carpet or otherwise neglecting them), the choice of (Universal) Turing Machine
in algorithmic information theory is (obviously?) also a Bayesian choice [Wallace
and Dowe, 1999a, secs. 2.4 and 7; 1999c, secs. 1–2; Comley and Dowe, 2005, p.
269, sec. 11.3.2; Dowe, 2008a, footnotes 211, 225 and (start of) 133, and sec. 0.2.7,
p. 546; 2008b, p. 450].

2.5 Digression on Wallace non-universality probability

This section is a digression and can be safely skipped without any loss of continuity
or context, but it does follow on from sec. 2.4 — which is why it is placed here.

The Wallace non-universality probability [Dowe, 2008a, sec. 0.2.2, p. 530, col. 1
and footnote 70] of a UTM, U , is the probability that, given a particular infinitely
long random bit string as input, U will become non-universal at some point. Quite
clearly, the Wallace non-universality probability (WNUP) equals 1 for all non-
universal TMs. Similarly, WNUP(U) is greater than 0 for all TMs, U ; and WNUP
equals 1 for some UTM if and only if it equals 1 for all UTMs. Wallace, others and
I believed it to equal 1. In unpublished private communication, George Barmpalias
argues that it isn’t equal to 1, appealing to a result of Kucera. George is correct
(and Chris and I mistaken) if and only if inf{U :U a UTM} WNUP(U) = 0.

This section was a digression and could be safely skipped without any loss of
continuity or context.

3 PROBABILISTIC INFERENCE, LOG-LOSS SCORING AND
KULLBACK-LEIBLER DISTANCE — AND UNIQUENESS

There are many measures of predictive accuracy. The simplest of these, such as
on a quiz show, is the number of correct answers (or “right”/“wrong” scoring).
There are likewise many measures of how close some estimated function is to the
true function from which the data is really coming.

We shall present the notions of probabilistic scoring and of measuring a distance
between two functions.
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From the notion of probabilistic scoring, we shall present our new apparent
uniqueness property of log-loss scoring [Dowe, 2008a, footnote 175 (and 176);
2008b, pp. 437–438]. From the notion of measuring a distance between two func-
tions, we shall present a related result showing uniqueness (or two versions of
uniqueness) of Kullback-Leibler distance [Dowe, 2008a, p. 438]. For those inter-
ested in causal decision theory and scoring rules and to those simply interested
in scoring rules and scoring probabilities, I highly recommend log-loss scoring and
Kullback-Leibler distance — partly for their invariance and partly for their appar-
ent uniqueness in having this invariance.

3.1 “Right”/“wrong” scoring and re-framing

Imagine two different quizzes which are identical apart from their similar but not
quite identical beginnings. Quiz 1 begins with a multiple-choice question with 4
possible answers: 0, 1, 2, 3 or (equivalently, in binary) 00, 01, 10, 11.

Quiz 2 begins with 2 multiple-choice questions:

• Q2.1: is the 2nd last bit a 0 or a 1?, and

• Q2.2: is the last bit a 0 or a 1?

Getting a score of 1 correct at the start of quiz 1 corresponds to getting a score
of 2 at the start of quiz 2. Getting a score of 0 at the start of quiz 1 corresponds
to a score of either 0 or 1 at the start of quiz 2. This seems unfair — so we might
try to attribute the problem to the fact that quiz 1 began with 1 4-valued question
where quiz 2 began with 2 2-valued questions and explore whether all is fair when
(e.g.) all quizzes have 2 2-valued questions.

But consider now quiz 3 which, like quiz 2, begins with 2 2-valued questions, as
follows:

• Q3.1: is the 2nd last bit a 0 or a 1?, and

• Q3.2: are the last two bits equal or not equal?

Getting Q3.2 correct means that on quiz 2 we either get 0 (if we get Q2.1 wrong)
or 2 (if we get Q2.2 correct and therefore all questions correct).

We see that no matter how we re-frame the question — whether as one big
question or as lots of little questions — we get all answers correct on one quiz
if and only if we get all answers correct on all quizzes. But, however, as the fol-
lowing example (of Quiz 4 and Quiz 5) demonstrates, we also see that even when
all questions are binary (yes/no), it is possible to have two different framings of
n questions such that in one such quiz (here, Quiz 4) we have (n − 1) questions
answered correctly (and only 1 incorrectly) and in the re-framing to another quiz
(here, Quiz 5) all n questions are answered incorrectly.
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Quiz 4 (of n questions):

• Q4.1: What is the 1st of the n bits?

• Q4.i (i = 2, ..., n): Is the 1st bit equal to the ith bit?

Quiz 5 (of n questions):

• Q5.1: What is the 1st of the n bits?

• Q5.i (i = 2, ..., n): What is the ith bit?

If the correct bit string is 0n = 0...0 and our guess is 1n = 1...1, then on
Quiz 4 we will get (n − 1) correct (and 1 wrong) whereas on quiz 5 we will get 0
correct (and all n wrong).

This said by way of motivation, we now look at forms of prediction that remain
invariant to re-framing — namely, probabilistic prediction with log(arithm)-loss
— and we present some recent uniqueness results [Dowe, 2008a, footnote 175 (and
176); 2008b, pp. 437-438] here.

3.2 Scoring predictions, probabilistic predictions and log-loss

The most common form of prediction seems to be a prediction without a proba-
bility or anything else to quantify it. Nonetheless, in some forms of football, the
television broadcaster sometimes gives an estimated probability of the kicker scor-
ing a goal — based on factors such as distance, angle and past performance. And,
of course, if it is possible to wager a bet on the outcome, then accurately estimat-
ing the probability (and comparing this with the potential pay-out if successful)
will be of greater interest.

Sometimes we don’t care overly about a probability estimate. On some days,
we might merely wish to know whether or not it is more probable that it will rain
or that it won’t. On such occasions, whether it’s 52% probable or 97% probable
that it will rain, we don’t particularly care beyond noting that both these numbers
are greater than 50% and we’ll take our umbrella with us in either case.

And sometimes we most certainly want a good and reliable probability estimate.
For example, a patient reporting with chest pains doesn’t want to be told that
there’s only a 40% chance that you’re in serious danger (with a heart attack),
so you can go now. And nor does an inhabitant of an area with the impending
approach of a raging bush-fire want to be told that there’s only a 45% chance of
your dying or having serious debilitation if you stay during the fire, so you might
as well stay. The notion of “reasonable doubt” in law is pertinent here — and,
without wanting to seem frivolous, so, too, is the notion of when a cricket umpire
should or shouldn’t give the “benefit of the doubt” to the person batting (in l.b.w.
or other contentious decisions).

Now, it is well-known that with logarithm-loss function (log p) for scoring prob-
abilistic predictions, the optimal strategy is to give the true probability, if known.



916 David L. Dowe

This property also holds true for quadratic loss ((1−p)2) and has also been shown
to be able to hold for certain other functions of probability [Deakin, 2001]. What
we will show here is our new result that the logarithm-loss (or log-loss) function
has an apparent uniqueness property on re-framing of questions [Dowe, 2008a,
footnote 175 (and 176); 2008b, pp. 437–438].

Let us now consider an example involving (correct) diagnosis of a patient. (With
apologies to any and all medically-informed human earthlings of the approximate
time of writing, the probabilities in the discussion(s) below might be from non-
earthlings, non-humans and/or from a different time.) We’ll give four possibilities:

1. no diabetes, no hypothyroidism

2. diabetes, but no hypothyroidism

3. no diabetes, but hypothyroidism

4. both diabetes and hypothyroidism.

Of course, rather than present this as one four-valued diagnosis question, we
could have presented it in a variety of different ways.

As a second possibility, we could have also asked, e.g., the following two two-
valued questions:

1. no diabetes

2. diabetes

and

1. hypothyroidism

2. no hypothyroidism.

As another (third) alternative line, we could have begun with

1. no condition present

2. at least one condition present,

and then finished if there we no condition present but, if there were at least one
condition present, instead then continued with the following 3-valued question:

1. diabetes, but no hypothyroidism

2. no diabetes, but hypothyroidism

3. both diabetes and hypothyroidism.
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To give a correct diagnosis, in the original setting, this requires answering one
question correctly. In the second setting, it requires answering exactly two ques-
tions correctly — and in the third setting, it might require only answering one
question correctly but it might require answering two questions correctly.

Clearly, then, the number of questions answered correctly is not invariant to
the re-framing of the question. However, the sum of logarithms of probabilities
is invariant, and — apart from (quite trivially, multiplying it by a constant, or)
adding a constant multiple of the entropy of the prior distribution - would appear
to be unique in having this property.

Let us give two examples of this. In the first example, our conditions will
be independent of one another. In the second example, our conditions will be
dependent upon one another.

So, in the first case, with the conditions independent of one another, suppose
the four estimated probabilities are

1. no diabetes, no hypothyroidism; probability 1/12

2. diabetes, but no hypothyroidism; probability 2/12 = 1/6

3. no diabetes, but hypothyroidism; probability 3/12 = 1/4

4. both diabetes and hypothyroidism; probability 6/12 = 1/2.

Then, in the second possible way we had of looking at it (with the two given
two-valued questions), in the first case we have

1. no diabetes; probability 1/3

2. diabetes; probability 2/3

and — because the diseases are supposedly independent of one another in the
example — we have

1. no hypothyroidism; probability 1/4

2. hypothyroidism; probability 3/4.

The only possible way we can have an additive score for both the diabetes
question and the hypothyroid question separately is to use some multiple of the
logarithms. This is because the probabilities are multiplying together and we want
some score that adds across questions, so it must be (a multiple of) the logarithm
of the probabilities.

In the third alternative way that we had of looking at it, Pr(no condition
present) = 1/12. If there is no condition present, then we do need need to ask
the remaining question. But, in the event (of probability 11/12) that at least one
condition is present, then we have

1. diabetes, but no hypothyroidism; probability 2/11
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2. no diabetes, but hypothyroidism; probability 3/11

3. both diabetes and hypothyroidism; probability 6/11.

And the logarithm of probability score again works.
So, our logarithm of probability score worked when the conditions were assumed

to be independent of one another.
We now consider an example in which they are not independent of one another.

Suppose the four estimated probabilities are

1. no diabetes, no hypothyroidism; probability 0.1

2. diabetes, but no hypothyroidism; probability 0.2

3. no diabetes, but hypothyroidism; probability 0.3

4. both diabetes and hypothyroidism; probability 0.4.

Then, in the second possible way we had of looking at it (with the two given
two-valued questions), for the first of the two two-valued questions we have

1. no diabetes; probability 0.4

2. diabetes; probability 0.6

and then for the second of which we have either

1. no hypothyroidism; prob(no hypothyroidism | no diabetes) = 0.1/(0.1 +
0.3) = 0.1/0.4 = 0.25

2. hypothyroidism; prob(hypothyroidism | no diabetes) = 0.3/(0.1 + 0.3) =
0.3/0.4 = 0.75

or

1. no hypothyroidism; prob(no hypothyroidism | diabetes) = 0.2/(0.2 + 0.4) =
0.2/0.6 = 1/3

2. hypothyroidism; prob(hypothyroidism | diabetes) = 0.4/(0.2+0.4) = 0.4/0.6 =
2/3.

And in the third alternative way of looking at this, prob(at least one condition
present) = 0.9. If there is no condition present, then we do need need to ask
the remaining question. But, in the event (of probability 9/10) that at least one
condition is present, then we have the following three-way question:

1. diabetes, but no hypothyroidism; probability 2/9

2. no diabetes, but hypothyroidism; probability 3/9

3. both diabetes and hypothyroidism; probability 4/9.
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We leave it to the reader to verify that the logarithm of probability score again
works, again remaining invariant to the phrasing of the question. (Those who
would rather see the above examples worked through with general probabilities
rather than specific numbers are referred to a similar calculation in sec. 3.6.)

Having presented in sec. 3.1 the problems with “right”/“wrong” scoring and
having elaborated on the uniqueness under re-framing of log(arithm)-loss scoring
[Dowe, 2008a, footnote 175 (and 176); 2008b, pp. 437-438] above, we next mention
at least four other matters.

First, borrowing from the spirit of an example from [Wallace and Patrick, 1993],
imagine we have a problem of inferring a binary (2-class) output and we have
a binary choice (or a binary split in a decision tree) with the following output
distributions. For the “no”/“left” branch we get 95 in class 1 and 5 in class 2 (i.e.,
95:5), and for the “yes”/“right” branch we get 55 in class 1 and 45 in class 2 (i.e.,
55:45).

Because both the “no”/“left” branch and the “yes”/“right” branch give a ma-
jority in class 1, someone only interested in “right”/“wrong” score would fail to
pick up on the importance and significance of making this split, simply saying that
one should always predict class 1. Whether class 1 pertains to heart attack, dying
in a bush-fire or something far more innocuous (such as getting wet in light rain),
by reporting the probabilities we don’t run the risk of giving the wrong weights
to (so-called) type I and type II errors (also known as false positives and false
negatives). (Digressing, readers who might incidentally be interested in applying
Minimum Message Length (MML) to hypothesis testing are referred to [Dowe,
2008a, sec. 0.2.5, p. 539 and sec. 0.2.2, p. 528, col. 1; 2008b, p. 433 (Abstract),
p. 435, p. 445 and pp. 455–456; Musgrave and Dowe, 2010].) If we report a prob-
ability estimate of (e.g.) 45%, 10%, 5%, 1% or 0.1%, we leave it to someone else
to determine the appropriate level of risk associated with a false positive in di-
agnosing heart attack, severe bush-fire danger or getting caught in light drizzle
rain.

And we now mention three further matters.

First, some other uniqueness results of log(arithm)-loss scoring are given in
[Milne, 1996; Huber, 2008]. Second, in binary (yes/no) multiple-choice questions, it
is possible (and not improbable for a small number of questions) to serendipitously
fluke a good “right”/“wrong” score, even if the probabilities are near 50%-50%,
and with little or no risk of downside. But with log(arithm)-loss scoring, if the
probabilities are near 50%-50% (or come from random noise and are 50%-50%),
then predictions with more extreme probabilities are fraught with risk. And,
third, given all these claims about the uniqueness of log(arithm)-loss scoring in
being invariant to re-framing (as above) [Dowe, 2008a, footnote 175 (and 176);
2008b, pp. 437–438] and having other desirable properties [Milne, 1996; Huber,
2008], we discuss in sec. 3.3 how a quiz show contestant asked to name (e.g.) a
city or a person and expecting to be scored on “right”/“wrong” could instead
give a probability distribution over cities or people’s names and be scored by
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log(arithm)-loss.

3.3 Probabilistic scoring on quiz shows

Very roughly, one could have probabilistic scoring on quiz shows as follows. For
a multiple-choice answer, things are fairly straightforward as above. But what if,
e.g., the question asks for a name or a date (such as a year)?

One could give a probability distribution over the length of the name. For
example, the probability that the name has length l might be 1/2l = 2−l for
l = 1, 2, .... Then, for each of the l places, there could be 28 possibilities (the 26
possibilities a, ..., z, and the 2 possibilities space “ ” and hyphen “-”) of probability
1/28 each. So, for example, as a default, “Wallace” would have a probability of
2−7 × (1/28)7. Call this distribution Default. (Of course, we could refine Default
by, e.g., noticing that the first character will neither be a space “ ” nor a hyphen
“-” and/or by (also) noticing that both the space “ ” and the hyphen “-” are
never followed by a space “ ” or a hyphen “-”.) For the user who has some
idea rather than no proverbial idea about the answer, it is possible to construct
hybrid distributions. So, if we wished to allocate probability 1/2 to “Gauss” and
probability 1/4 to “Fisher” and otherwise we had no idea, then we could give
a probability of 1/2 to “Gauss”, 1/4 to “Fisher” and for all other answers our
probability we would roughly be 1/4 × Default. A similar comment applies to
someone who thinks that (e.g.) there is a 0.5 probability that the letter “a”
occurs at the start and a 0.8 probability that the letter “c” appears at least once
or instead that (e.g.) a letter “q” not at the end can only be followed by an “a”,
a “u”, a space “ ” or a hyphen “-”.

If a question were to be asked about the date or year of such and such an
event, one could give a ([truncated] Gaussian) distribution on the year in the same
way that entrants having been giving (Gaussian) distributions on the margin of
Australian football games since early 1996 as per sec. 3.5.

It would be nice to see a (television) quiz (show) one day with this sort of
scoring system. One could augment the above as follows. Before questions were
asked to single contestants — and certainly before questions were thrown upon to
multiple contestants and grabbed by the first one pressing the buzzer — it could
be announced what sort of question it was (e.g., multiple-choice [with n options]
or open-ended) and also what the bonus in bits was to be. The bonus in bits
(as in the constant to be added to the logarithm of the contestant’s allocated
probability to the correct answer) could relate to the ([deemed] prior) difficulty
of the question, (perhaps) as per sec. 3.4 — where there is a discussion of adding
a term corresponding to (a multiple of) the log(arithm) of the entropy of some
Bayesian prior over the distribution of possible answers. And where quiz shows
have double points in the final round, that same tradition could be continued.

One comment perhaps worth adding here is that in typical quiz shows, as also
in the probabilistic and Gaussian competitions running on the Australian Football
League (AFL) football competitions from sec. 3.5, entrants are regularly updated
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on the scores of all their opponents. In the AFL football competitions from sec.
3.5, this happens at the end of every round. In quiz shows, this often also happens
quite regularly, sometimes after every question. The comment perhaps worth
adding is that, toward the end of a probabilistic competition, contestants trying
to win who are not winning and who also know that they are not winning might
well nominate “aggressive” choices of probabilities that do not represent their true
beliefs and which they probably would not have chosen if they had not been aware
that they weren’t winning.

Of course, if (all) this seems improbable, then please note from the immediately
following text and from sec. 3.5 that each year since the mid-1990s there have
been up to hundreds of people (including up to dozens or more school students,
some in primary school) giving not only weekly probabilistic predictions on results
of football games but also weekly predictions of probability distributions on the
margins of these games. And these have all been scored with log(arithm)-loss.

3.4 Entropy of prior and other comments on log-loss scoring

Before finishing with some references to papers in which we have used log(arithm)-
loss probabilistic (“bit cost”) scoring and mentioning a log-loss probabilistic com-
petition we have been running on the Australian Football League (AFL) since
1995 in sec. 3.5, two other comments are worth making in this section.

Our first comment is to return to the issue of quadratic loss ((1− p)2, which is
a favourite of many people) and also the loss functions suggested more recently by
Deakin [2001]. While it certainly appears that only log(arithm)-loss (and multiples
thereof) retains invariance under re-framing, we note that

− log(pn
1 pn

2 . . . pn
m) = −n

m
∑

i=1

log pi (4)

So, although quadratic loss ((1 − p)2) does not retain invariance when adding
scores between questions, if we were for some reason to want to multiply scores
between questions (rather than add, as per usual), then the above relationship in
equation (4) between a power score (quadratic score with n = 2) and log(arithmic)
score — namely, that the log of a product is the sum of the logs — might possibly
enable some power loss to be unique in being invariant under re-framing (upon
multiplication).

The other comment to make about the uniqueness of log(arithm)-loss (upon
addition) under re-framing is that we can also add a term corresponding to (a
multiple of) the entropy of the Bayesian prior [Tan and Dowe, 2006, sec. 4.2;
Dowe, 2008a, footnote 176; 2008b, p. 438]. (As is hinted at in [Tan and Dowe,
2006, sec. 4.2, p. 600] and explained in [Dowe, 2008a, footnote 176], the idea for
this arose in December 2002 from my correcting a serious mathematical flaw in
[Hope and Korb, 2002]. Rather than more usefully use the fact that a logarithm of
probability ratios is the difference of logarithms of probabilities, [Hope and Korb,
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2002] instead suggests using a ratio of logarithms — and this results in a system
where the optimal score will rarely be obtained by using the true probability.)

Some of many papers using log(arithm)-loss scoring include [Good, 1952] (where
it was introduced for the binomial distribution) and [Dowe and Krusel, 1993, p.
4, Table 3; Dowe et al., 1996d; Dowe et al., 1996a; Dowe et al., 1996b; Dowe et

al., 1996c; Dowe et al., 1998, sec. 3; Needham and Dowe, 2001, Figs. 3–5; Tan and
Dowe, 2002, sec. 4; Kornienko et al., 2002, Table 2; Comley and Dowe, 2003, sec.
9; Tan and Dowe, 2003, sec. 5.1; Comley and Dowe, 2005, sec. 11.4.2; Tan and
Dowe, 2004, sec. 3.1; Kornienko et al., 2005a, Tables 2–3; Kornienko et al., 2005b;
Tan and Dowe, 2006, secs. 4.2–4.3] (and possibly also [Tan et al., 2007, sec. 4.3]),
[Dowe, 2007; 2008a, sec. 0.2.5, footnotes 170–176 and accompanying text; 2008b,
pp. 437–438]. The 8-class multinomial distribution in [Dowe and Krusel, 1993, p.
4, Table 3] (from 1993) is the first case we are aware of in which log-loss scoring
is used for a distribution which is not binomial, and [Dowe et al., 1996d; 1996a;
1996b; 1996c] (from 1996) are the first cases we are aware of in which log-loss
scoring was used for the Normal (or Gaussian) distribution.

3.5 Probabilistic prediction competition(s) on Australian football

A log(arithm)-loss probabilistic prediction competition was begun on the outcome
of Australian Football League (AFL) matches in 1995 [Dowe and Lentin, 1995;
Dowe, 2008b, p. 48], just before Round 3 of the AFL season. In 1996, this was
extended by the author to a log(arithm)-loss Gaussian competition on the margin
of the game, in which competition entrants enter a µ and a σ — in order to give
a predictive distribution N(µ, σ) on the margin — for each game [Dowe et al.,
1996d; 1996a; 1996b; 1996c; 1998, sec. 3; Dowe, 2008a, sec. 0.2.5]. These log-loss
compression-based competitions, with scores in bits (of information), have been
running non-stop ever since their inceptions, having been put on the WWW in
1997 and at their current location of www.csse.monash.edu.au/~footy since 1998
[Dowe, 2008a, footnote 173]. (And thanks to many, especially Torsten Seemann
for all the unsung behind the scenes support in keeping these competitions going
[Dowe, 2008a, footnote 217].) The optimal long-term strategy in the log(arithm)-
loss probabilistic AFL prediction competition would be to use the true probability
if one knew it. Looking ahead to sec. 3.6, the optimal long-term strategy in the
Gaussian competition would be to choose µ and σ so as to minimise the Kullback-
Leibler distance from the (true) distribution on the margin to N(µ, σ2). (In the
log-loss probabilistic competition, the “true” probability is also the probability for
which the Kullback-Leibler distance from the (true) distribution is minimised.)
Competitions concerned with minimising sum of squared errors can still be re-
garded as compression competitions motivated by (expected) Kullback-Leibler
distance minimisation, as they are equivalent to Gaussian competitions with σ
fixed (where σ can be presumed known or unknown, as long as it’s fixed).
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3.6 Kullback-Leibler “distance” and measuring “distances” between
two functions

Recall from sec. 2.3 that the optimal way of encoding some probability distribution,
f , is with code-words of length − log f , and that the average (or expected) cost
is

∑m
i=1 fi × (− log fi), also known as the entropy. The log(arithm)-loss score is

obtained by sampling from some real-world data. If we are sampling from some
true (known) distribution, then the optimal long-run average that we can expect
will be the entropy.

One way of thinking about the Kullback-Leibler divergence (or “distance”) be-
tween two distributions, f and g, is as the inefficiency (or sub-optimality) of encod-
ing f using g rather than (the optimal) f . Equivalently, one can think about the
Kullback-Leibler distance between two distributions, f and g, as the average (or
expected) cost of sampling from distribution f and coding with the corresponding
cost of − log g minus the entropy of f — and, of course, the entropy of f (namely,
−∑

f log f) is independent of g.
Recalling equations (2) and (3) for the entropy of discrete and continuous models

respectively, the Kullback-Leibler distance from f to g is

(

m
∑

i=1

f × (− log gi)) − (

m
∑

i=1

f × (− log fi)) =

m
∑

i=1

f × log(fi/gi) (5)

for the discrete distribution. As one might expect, for a continuous distribution,
the Kullback-Leibler distance from f to g is

(

∫

f(x) × (− log g(x)) dx) − (

∫

f(x) × (− log f(x)) dx)

=

∫

f × log(f(x)/g(x)) dx =

∫

dx f × log(f/g) (6)

We should mention here that many refer to the Kullback-Leibler “distance”
as Kullback-Leibler divergence because it is not — in general — symmetrical. In
other words, there are plenty of examples when KL(f, g), or, equivalently, ∆(g||f),
is not equal to KL(g, f) = ∆(f ||g).

In sec. 3.2, we showed a new result about uniqueness of log(arithm)-loss scoring
in terms of being invariant under re-framing of the problem [Dowe, 2008a, footnote
175 (and 176); 2008b, pp. 437–438]. It turns out that there is a similar uniqueness
about Kullback-Leibler distance in terms of being invariant to re-framing of the
problem [Dowe, 2008b, p. 438]. Despite some mathematics to follow which some
readers might find slightly challenging in places, this follows intuitively because
(the entropy of the true distribution, f , is independent of g and) the − log g term in
the Kullback-Leibler distance is essentially the same as the log(arithm)-loss term
in sec. 3.2.

Before proceeding to this example, we first note that the Kullback-Leibler dis-
tance is quite clearly invariant under re-parameterisations such as (e.g.) trans-
forming from polar co-ordinates (x, y) to Cartesian co-ordinates (r = sign(x) .
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√

x2 + y2, θ = tan−1(y/x)) and back from Cartesian co-ordinates (r, θ) to polar
co-ordinates (x = r cos θ, y = r sin θ).

We give an example of our new result (about the uniqueness of Kullback-Leibler
distance in terms of being invariant to re-framing) below, letting f and g both have
4 states, with probabilities f1,1, f1,2, f2,1, f2,2, g1,1, g1,2, g2,1 and g2,2 respectively.
The reader is invited to compare the example below with those from sec. 3.2.
The reader who would prefer to see specific probabilities rather than these general
probabilities is suggested more strongly to compare with sec. 3.2.

KL(f, g) = ∆(g||f) =

2
∑

i=1

2
∑

j=1

fi,j(log fi,j − log gi,j)

=

2
∑

i=1

2
∑

j=1

fi,j log(fi,j/gi,j) (7)

Another way of looking at the Kullback-Leibler “distance” (or Kullback-Leibler
divergence, or KL-distance) is to say that a proportion f1,· = f1,1+f1,2 of the time,
we have the Kullback-Leibler distance to the corresponding cross-section (g1,·) of
g, and then the remaining proportion 1 − f1,· = f2,· = f2,1 + f2,2 of the time,
we have the Kullback-Leibler distance to the corresponding (other) cross-section
(g2,·) of g.

To proceed down this path, we have to do the calculations at two levels. (Anal-
ogously with sec. 3.2, we could do the calculation in one step involving four terms
or break it up into two levels of parts each involving two terms.) At the top level,
we have to calculate the KL-divergence from the binomial distribution (f1,·, f2,·)
to the binomial distribution (g1,·, g2,·). This top-level KL-divergence is

f1,· log(f1,·/g1,·) + f2,· log(f2,·/g2,·) (8)

It then remains to go to the next level (or step) and first look at the binomial
distribution f1,1/(f1,1 + f1,2) and f1,2/(f1,1 + f1,2) versus g1,1/(g1,1 + g1,2) and
g1,2/(g1,1 + g1,2) (on the first or left branch), and then to look at the binomial
distribution f2,1/(f2,1 + f2,2) and f2,2/(f2,1 + f2,2) versus g2,1/(g2,1 + g2,2) and
g2,2/(g2,1 + g2,2) (on the second or right branch). Note that the first of these (KL-
divergences or) coding inefficiencies will only occur a proportion f1,1 + f1,2 = f1,·

of the time, and the second of these (KL-divergences or) coding inefficiencies will
only occur a proportion f2,1 + f2,2 = f2,· = 1 − f1,· of the time.

The first of these KL-divergences is the (expected or) average coding inefficiency
when encoding (f1,1/(f1,1 + f1,2), f1,2/(f1,1 + f1,2)) not using itself, but rather
instead (sub-optimally) using (g1,1/(g1,1 + g1,2), g1,2/(g1,1 + g1,2)). This first KL-
divergence is

f1,1/(f1,1 + f1,2) log((f1,1/(f1,1 + f1,2))/(g1,1/(g1,1 + g1,2)))

+ f1,2/(f1,1 + f1,2) log((f1,2/(f1,1 + f1,2))/(g1,2/(g1,1 + g1,2)))
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= (f1,1/(f1,1 + f1,2)) × ((log f1,1/g1,1) − (log((f1,1 + f1,2)/(g1,1 + g1,2))))

+ (f1,2/(f1,1 + f1,2)) × ((log f1,2/g1,2) − (log((f1,1 + f1,2)/(g1,1 + g1,2))))

= (f1,1/f1,·) × (log(f1,1/g1,1) − log(f1,·/g1,·))

+ (f1,2/f1,·) × (log(f1,2/g1,2) − log(f1,·/g1,·)) (9)

Changing the very first subscript from a 1 to a 2, we then get that the second of
these KL-divergences, namely the KL-divergence from the binomial distribution
(f2,1/(f2,1 + f2,2)), f2,2/(f2,1 + f2,2)) to the binomial distribution (g2,1/(g2,1 +
g2,2)), g2,2/(g2,1 + g2,2)), is

f2,1/(f2,1 + f2,2) log((f2,1/(f2,1 + f2,2))/(g2,1/(g2,1 + g2,2)))

+ f2,2/(f2,1 + f2,2) log((f2,2/(f2,1 + f2,2))/(g2,2/(g2,1 + g2,2)))

= (f2,1/(f2,1 + f2,2)) × ((log f2,1/g2,1) − (log((f2,1 + f2,2)/(g2,1 + g2,2))))

+ (f2,2/(f2,1 + f2,2)) × ((log f2,2/g2,2) − (log((f2,1 + f2,2)/(g2,1 + g2,2))))

= (f2,1/f2,·) × (log(f2,1/g2,1) − log(f2,·/g2,·))

+ (f2,2/f2,·) × (log(f2,2/g2,2) − log(f2,·/g2,·)) (10)

The first coding inefficiency, or KL-divergence, given in equation (9), occurs
a proportion f1,· = (f1,1 + f1,2) of the time. The second coding inefficiency, or
KL-divergence, given in equation (10), occurs a proportion f2,· = (f2,1 + f2,2) =
(1 − (f1,1 + f1,2)) = 1 − f1,· of the time.

So, the total expected (or average) coding inefficiency of using g when we should
be using f , or equivalently the KL-divergence from f to g, is the following sum:
the inefficiency from equation (8) + (f1,· × (the inefficiency from equation (9)))
+ (f2,· × (the inefficiency from equation (10))).

Before writing out this sum, we note that

(f1,· × (the inefficiency from equation (9)))

= f1,1 × (log(f1,1/g1,1) − log(f1,·/g1,·))

+ f1,2 × (log(f1,2/g1,2) − log(f1,·/g1,·)) (11)

and similarly that

(f2,· × (the inefficiency from equation (10)))

= f2,1 × (log(f2,1/g2,1) − log(f2,·/g2,·))

+ f2,2 × (log(f2,2/g2,2) − log(f2,·/g2,·)) (12)

Now, writing out this sum, summing equations (8), (11) and (12), it is

f1,· log(f1,·/g1,·) + f2,· log(f2,·/g2,·)

+ f1,1 × (log(f1,1/g1,1) − log(f1,·/g1,·))

+ f1,2 × (log(f1,2/g1,2) − log(f1,·/g1,·))
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+ f2,1 × (log(f2,1/g2,1) − log(f2,·/g2,·))

+ f2,2 × (log(f2,2/g2,2) − log(f2,·/g2,·))

= f1,1 log(f1,1/g1,1) + f1,2 log(f1,2/g1,2)

+f2,1 log(f2,1/g2,1) + f2,2 log(f2,2/g2,2)

=

2
∑

i=1

2
∑

j=1

fi,j log(fi,j/gi,j)

=

2
∑

i=1

2
∑

j=1

fi,j(log fi,j − log gi,j) = KL(f, g) = ∆(g||f) (13)

thus reducing to our very initial expression (7).
Two special cases are worth noting. The first special case is when events are

independent — and so fi,j = fi,· × φj = fi × φj and gi,j = gi,· × γj = gi × γj for
some φ1, φ2, γ1 and γ2 (and f1 +f2 = 1, g1 +g2 = 1, φ1 +φ2 = 1 and γ1 +γ2 = 1).
In this case, following from equation (7), we get

KL(f, g) = ∆(g||f) =
2

∑

i=1

2
∑

j=1

fi,j log(fi,j/gi,j) =
2

∑

i=1

2
∑

j=1

fiφj log(fiφj/(giγj))

=
2

∑

i=1

2
∑

j=1

(fiφj log(fi/gi) + fiφj log(φj/γj))

= (
2

∑

i=1

fi log(fi/gi)) + (
2

∑

j=1

φj log(φj/γj)) (14)

= (
2

∑

i=1

fi log(1/gi)) + (
2

∑

j=1

φj log(1/γj))

− (

2
∑

i=1

2
∑

j=1

−fiφj log(fiφj)) (15)

= (

2
∑

i=1

fi log(1/gi)) + (

2
∑

j=1

φj log(1/γj)) − (Entropy of f) (16)

We observe in this case of the distributions being independent that the Kullback-
Leibler scores de-couple in exactly the same uniquely invariant way as they do for
the probabilistic predictions in sec. 3.2.

The second special case of particular note is when probabilities are correct in
both branching paths — i.e., f1,1/f1,· = g1,1/g1,·, f1,2/f1,· = g1,2/g1,·, f2,1/f2,· =
g2,1/g2,· and f2,2/f2,· = g2,2/g2,·. In this case, starting from equation (7), we get

KL(f, g) = ∆(g||f) =

2
∑

i=1

2
∑

j=1

fi,j log(fi,j/gi,j)
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=

2
∑

i=1

2
∑

j=1

fi,·(fi,j/fi,·) log((fi,·(fi,j/fi,·))/(gi,·(gi,j/gi,·)))

=

2
∑

i=1

2
∑

j=1

fi,·(fi,j/fi,·) log((fi,·/gi,·) × [(fi,j/fi,·)/(gi,j/gi,·)])

=

2
∑

i=1

2
∑

j=1

fi,·(fi,j/fi,·) log(fi,·/gi,·)

=

2
∑

i=1

fi,· log(fi,·/gi,·) =

2
∑

i=1

fi,· log(1/gi,·) − (Entropy of f) (17)

We observe in this second special case of probabilities being correct in both
branching paths that the divergence between the two distributions is the same
as that between the binomial distributions (f1,·, f2,· = 1 − f1,·) and (g1,·, g2,· =
1− g1,·), exactly as it should and exactly as it would be for the uniquely invariant
log(arithm)-loss (“bit cost”) scoring of the probabilistic predictions in sec. 3.2.

Like the invariance of the log(arithm)-loss scoring of probabilistic predictions
under re-framing (whose uniqueness is introduced in [Dowe, 2008a, footnote 175
(and 176)] and discussed in [Dowe, 2008b, pp. 437–438] and sec. 3.2), this in-
variance of the Kullback-Leibler divergence to the re-framing of the problem is
[Dowe, 2008b, p. 438] due to the fact(s) that (e.g.) log(f/g) = log f − log g and
− log(f1,1/(f1,1 + f1,2)) + log f1,1 = log(f1,1 + f1,2).

A few further comments are warranted by way of alternative measures of “dis-
tance” or divergence between probability distributions. First, where one can de-
fine the notion of the distance remaining invariant under re-framing for these, the
Bhattacharyya distance, Hellinger distance and Mahalanobis distance are all not
invariant under re-framing. Versions of distance or divergence based on the Rényi
entropy give invariance in the trivial case that α = 0 (where the distance will
always be 0) and the case that α = 1 (where we get the Shannon entropy and, in
turn, the Kullback-Leibler distance that we are currently advocating).

A second further comment is that, just as in [Tan and Dowe, 2006, sec. 4.2], we
can also add a term corresponding to (a multiple of) the entropy of the Bayesian
prior. Just like the Kullback-Leibler divergence (and any multiple of it), this (and
any multiple of it) will also remain invariant under re-parameterisation or other
re-framing [Dowe, 2008a, footnote 176; 2008b, p. 438].

A third — and important — further comment is that it is not just the Kullback-
Leibler distance from (say, the true distribution) f to (say, the inferred distribu-
tion) g, KL(f, g) = ∆(g||f), that is invariant and appears to be uniquely invariant
under re-framing, but clearly also KL(g, f) = ∆(f ||g) is invariant, as will also be a
sum of any linear combination of these, such as (e.g.) αKL(f, g) + (1−α)KL(g, f)
(with 0 ≤ α ≤ 1, although this restriction is not required for invariance) [Dowe,
2008b, p. 438]. The case of α = 1/2 gives the symmetric Kullback-Leibler distance.

The notion of Kullback-Leibler distance can be extended quite trivially — as
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above — to hybrid continuous and discrete Bayesian net graphical models [Tan
and Dowe, 2006, sec. 4.2; Dowe 2008a, sec. 0.2.5; 2008b, p. 436] (also see sec.
7.6) or mixture models [Dowe, 2008b, p. 436], etc. For the hybrid continuous and
discrete Bayesian net graphical models in [Comley and Dowe, 2003; 2005] (which
resulted at least partly from theory advocated in [Dowe and Wallace, 1998]), the
log-loss scoring approximation to Kullback-Leibler distance has been used [Comley
and Dowe, 2003, sec. 9].

4 OCKHAM’S RAZOR (AND MISUNDERSTANDINGS) AND MML

Let us recall Minimum Message Length (MML) from secs. 1 and 2.4, largely so
that we can now compare and contrast MML with Ockham’s razor (also written
as Occam’s razor). Ockham’s razor, as it is commonly interpreted, says that if two
theories fit the data equally well then prefer the simplest (e.g., [Wallace, 1996b,
sec. 3.2.2, p. 48, point b]). Re-phrasing this in statistical speak, if Pr(D|H1) =
Pr(D|H2) and Pr(H1) > Pr(H2), then Ockham’s razor advocates that we prefer
H1 over H2 — as would also MML, since Pr(H1)Pr(D|H1) > Pr(H2)Pr(D|H2).
It is not clear what — if anything — Ockham’s razor says in the case that
Pr(H1) > Pr(H2) but Pr(D|H1) < Pr(D|H2), although MML remains appli-
cable in this case by comparing Pr(H1) × Pr(D|H1) with Pr(H2) × Pr(D|H2).
In this sense, I would at least contend that MML can be thought of as a generali-
sation of Ockham’s razor — for MML tells us which inference to prefer regardless
of the relationships of Pr(H1) with Pr(H2) and Pr(D|H1) with Pr(D|H2), but it
is not completely clear what Ockham’s razor per se advocates unless we have that
Pr(D|H1) = Pr(D|H2).

Our earlier arguments (e.g., from sec. 1) tell us why the MML theory (or hypoth-
esis) can be thought of as the most probable hypothesis. Informal arguments of
Chris Wallace’s from [Dowe, 2008a, footnote 182] (in response to questions [Dowe
and Hajek, 1997, sec. 5.1; 1998, sec. 5]) suggest that, if Pr(D|H1) = Pr(D|H2)
and Pr(H1) > Pr(H2), then we expect H1 to be a better predictor than H2.
But, in addition, there is also an alternative, more general and somewhat informal
argument for, in general, preferring the predictive power of one hypothesis over
another if the former hypothesis leads to a shorter two-part message length. This
argument is simply that the theory of shorter two-part message length contributes
more greatly (i.e., has a greater Bayesian weighting) in the optimal Bayesian pre-
dictor. In particular, the MML model will essentially have the largest weight in
the predictor. In those cases where the optimal Bayesian predictor is statistically
consistent (i.e., converges to any underlying data when given sufficient data), the
optimal Bayesian predictor and the MML hypothesis appear always to converge.

Several papers have been written with dubious claims about the supposed inef-
fectiveness of MML and/or of Ockham’s razor. Papers using inefficient (Minimum
Description Length [MDL] or MML) coding schemes lead quite understandably
to sub-optimal results — but a crucial point about minimum message length is
to make sure that one has a reliable message length (coding scheme) before one
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sets about seeking the minimum of this “message length”. For corrections to such
dubious claims in such papers by using better coding schemes to give better results
(and sometimes vastly better coding schemes to get vastly better results), see (e.g.)
examples [Wallace and Dowe, 1999a, secs. 5.1 and 7; 1999c, sec. 2; Wallace, 2005,
sec. 7.3; Viswanathan et al., 1999; Wallace and Patrick, 1993; Comley and Dowe,
2005, secs. 11.3 and 11.4.3; Needham and Dowe, 2001; Wallace, 2005, sec. 5.1.2;
Grünwald, 2007, sec. 17.4, An Apologetic Remark; Dowe, 2008a, p. 536] such as
those in [Dowe, 2008a, footnote 18]. Not unrelatedly, a variety of misconceptions
have led a variety of authors to make ill-founded criticisms of Ockham’s razor.
One (such) interpretation (I think I should say, misinterpretation) of Ockham’s
razor seems to go along the lines that Ockham’s razor supposedly advocates the
simplest hypothesis, regardless of any data — and so (e.g.) DNA should suppos-
edly be shaped in a single-helix rather than a double-helix. [And it seems a pity
to misinterpret Ockham’s razor so — especially in a biological framework — be-
cause interpreting Ockham’s razor more properly using MML enables us to make
a strong case that proteins fold with the Helices (and Extendeds) forming first
and then the “Other” turn classes forming subsequently to accommodate these
structures [Edgoose et al., 1998, sec. 6; Dowe et al., 1996, sec. 5, p. 253] (see also
[Dowe et al., 1995]) [Wallace, 1998a, sec. 4.2; Dowe, 2008a, footnote 85; 2008b, p.
454].

What seems like a variation of this misconception is an argument in one pa-
per that if we fit data from within some model family (such as fitting the data
with a decision tree) and then subsequently find that a more complicated model
predicts better, then this is somehow supposedly empirical evidence against Ock-
ham’s razor. (See also a comment here from [Jorgensen and Gentleman, 1998,
Some Criticisms].)

Using MML as our (more general) form of Ockham’s razor, these supposed
criticisms based on using overly simple models and paying insufficient attention
to the data seem somewhat silly. For a discussion of the adverse consequences of
not giving equals weights to the lengths of the two parts of an MML message, see,
e.g., [Dowe, 2008a, footnote 130].

For those who would like every function — both the simple functions and the
more complicated functions — to have the same prior probability, not only does
this seem counter-intuitive, but — furthermore — it is not possible when there are
infinitely many theories. When there are infinitely many theories, it necessarily
follows that, as we look at progressively more and more complicated theories, it
must necessarily follow that the prior probability must tend asymptotically to zero
so that the countable sum over the prior probabilities of the theories can equal 1
(or unity).

Another criticism of the Bayesian approach — and therefore of our Bayesian
MML interpretation of Ockham’s razor — is that this approach can be undone by
a pathological (sabotaging) form of prior. If we look at Bayes’s theorem (from sec.
1) and its consequences in terms of MML, we see what our intuition tells us — that
we get a reasonable posterior distribution over the hypotheses if we start off with a
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reasonable prior distribution. Our Bayesian priors (as we use them in problems of
inference) should be somewhere between what we genuinely suspect a priori and
(partly politically, so that we are less open to being accused of fudging our results,
and perhaps partly to protect ourselves from ourselves) something innocuous (and
seemingly “objective”).

For problems where the number of parameters is bounded above — or grows
sufficiently slowly when the amount of data increases — Bayesian inference will
converge to the underlying model given sufficient data. To criticise Bayesian MML
and/or Ockham’s razor after being sabotaged by a counter-intuitive and misrepre-
sentative pathological prior is somewhat akin to criticising any inference method
when the bulk of the relevant explanatory variables are not made available (or at
least not made available until after much data has been seen) but in their stead is
a plethora of essentially irrelevant variables.

4.1 Inference (or explanation) and prediction

Inference — also variously known as explanation [Wallace, 2005, sec. 1.1, first
sentence and sec. 1.5], induction and/or inductive inference — pertains to find-
ing the single best explanation for a body of data. Prediction pertains to the
activity of anticipating the future, whether this is done using a single inference
or a combination of more than one inference. To give an example, someone do-
ing inference would be interested in a model of stock market prices which gives
a theory of how the stock market works. An investor would certainly find that
useful, but an investor would perhaps be more interested in whether prices are
expected to be going up or down (and a probability distribution over these events
and the magnitude of movement). To give a second example [Dowe et al., 2007,
sec. 6.1.4], when two models of slightly different (Bayesian posterior) probabilities
give substantially different answers, inference would advocate going with the more
probable theory where prediction would advocate doing some sort of averaging of
the theories.

In the classical (non-Bayesian) approach, inference and prediction are perhaps
the same thing. Certainly, an inference can be used to predict — and, to the
classically (non-Bayesian) minded, prediction seems to be done by applying the
single best inference. But, to the Bayesian, the best predictor will often result
from combining more than one theory [Wallace, 1996b, sec. 3.6, p. 55; Oliver and
Hand, 1996; Wallace and Dowe, 1999a, sec. 8; Tan and Dowe, 2006].

Herein lies a difference between the predictive approach of Solomonoff and the
MML inductive inference approach of Wallace from sec. 2.4. By taking the single
best theory, MML is doing induction. Despite the potentially confusing use of the
term “Solomonoff induction” by some others, Solomonoff (is not doing induction
[and not really inductive inference per se, either] but rather) is doing prediction
[Solomonoff, 1996; Wallace, 1996b, sec. 3.6, p. 55; 2005, sec 10.1].

On the relative merits of induction (or [inductive] inference) vs prediction, there
can be no doubting that humans acknowledge and reward the intelligence behind
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inductive inferences. When we ask for a list of great human intellects, whoever
else is on the list, there will be people who have made prominent inductive infer-
ences. Examples of such people and theories include Isaac Newton for the theory
of gravity, Charles Darwin and Alfred Russel Wallace for the theory of natural
selection and evolution, Albert Einstein for the theories of special and general rel-
ativity, Alfred Wegener for the theory of “continental drift”, and countless Nobel
laureates and/or others in a variety of areas for their theories [Sanghi and Dowe,
2003, sec. 5.2]. (And when a human is paid the compliment of being called “per-
ceptive”, my understanding of this term is that one thing that is being asserted is
that this “perceptive” person is good at making inductive inferences about human
behaviour.) Of course, those such theories as are accepted and whose developers
are rewarded usually are not just good pieces of induction but typically also lead
to good predictions. And whether or not predictions are done with the single best
available theory or with a combination of theories, people are certainly interested
in having good predictors.

In trying to re-construct or restore a damaged image, the argument in support of
inference is that we clearly want the single best inference rather than a probability
distribution over all possible re-constructions. On the other hand, if there are a
few inferences almost as good as the best (MML) inference, we would also like
to see these alternative models [Dowe, 2008a, sec. 0.3.1]. Let me now essentially
repeat this example but modify its context. If you think that the sentence you
are currently reading is written in grammatically correct unambiguous English
(and that you correctly understand the author’s intended meaning), then you are
using several little innocuous inferences — such as (e.g.) the author and you
(the reader) have at least sufficiently similar notions of English-language word
meaning, English-language grammar and English-language spelling. However, if
the writing were smudged, the spelling was questionable and the grammar and
punctuation were poor (several of which can happen with the abbreviated form of
a telegram, some e-mails or a mobile text message), inference would advocate going
with the single best interpretation. A related case in point is automatic (machine)
translation. Whether for the smudged poorly written (ambiguous) sentence or
for automatic translation, prediction (in its pure platonic form) would advocate
having a probability distribution over all interpretations. In reality, if there is one
outstandingly clear interpretation to the sentence, then someone doing prediction
would most probably be satisfied with this interpretation, (as it were) “beyond a
reasonable doubt”. But, as with the damaged image, if there are a few inferences
almost as good as the best (MML) inference, we would again also like to see these
alternative models.

The distinction between explanation (or inference, or inductive inference, or in-
duction) and prediction is something which at least some other authors are aware
of [Wallace and Dowe, 1999a, sec. 8; Wallace 2005, sec. 10.1.2; Shmueli and Kop-
pius, 2007, Dowe et al., 2007, secs. 6.1.4, 6.3 and 7.2; Dowe, 2008b, pp. 439–440],
and we believe that both have their place [Dowe et al., 2007, sec. 6.3]. Whether or
not because of our newly discussed uniqueness in invariance properties of Kullback-
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Leibler distance (from [Dowe, 2008a, p. 438] and sec. 3.6), some authors regard
prediction as being about minimising the expected log-likelihood error — or equiv-
alently, minimising the expected Kullback-Leibler distance between the true model
(if there is one) and the inferred model. While the reasons (of many) for doing this
might be (more) about minimising the expected log-likelihood error, the unique-
ness in invariance properties of Kullback-Leibler distance suggest it is certainly a
worthy interpretation of the term “prediction” and that doing prediction this way
is worthy of further investigation.

Recalling the invariance of the Kullback-Leibler distance (from, e.g., sec. 3.6),
taking the Bayesian approach to minimising the expected Kullback-Leibler dis-
tance will be invariant under re-parameterisation (e.g., from polar to Cartesian
co-ordinates) [Dowe et al., 1998; Wallace, 2005, secs. 4.7–4.9; Dowe et al., 2007,
secs. 4 and 6.1.4; Dowe, 2008a, sec. 0.2.2]. Recalling α at the very end of sec. 3.6
[from the expression αKL(f, g) + (1−α)KL(g, f) = α∆(g||f) + (1−α)∆(f ||g)],
the extreme of α = 1 sees us choose a function (g) so that the expected coding
inefficiency of using our function (g) rather than the (ideal) truth (true function,
f) is minimised, weighting over our posterior distribution on f ; and the other
extreme of α = 0 sees us choose a function (g) so that (under the hypothetical
assumption that the data were being sampled from distribution, g) the expected
inefficiency of using a function (f) sampled from the (actual) Bayesian posterior
rather than using our function (g) is minimised. Although both of these are statis-
tically invariant, convention is that we are more interested in choosing a function
of minimal expected coding inefficiency relative to the (ideal) truth (true function)
— equivalently minimising the expected log-likelihood error (and hence choosing
α = 1).

As a general rule of thumb, the MML estimator lies between the Maximum
Likelihood estimator (which is given to over-fitting) on the one hand and the
Bayesian minEKL estimator (which is, curiously, given to under-fitting) on the
other hand [Wallace, 2005, secs. 4.7–4.9]. (Wallace makes an excellent intuitive
case for this in [Wallace, 2005, sec. 4.9].) Four examples of this are the multinomial
distribution, the Neyman-Scott problem (see sec. 6.4) [Wallace, 2005, sec. 4.2–4.8],
the “gap or no gap” (“gappy”) problem [Dowe et al., 2007, sec. 6.2.4 and Appendix
B] and the bus number problem [Dowe, 2008a, footnote 116; 2008b, p. 440]. We
outline these below, and then mention at the end not yet totally explored possible
fifth and sixth (which would probably begin from [Schmidt and Makalic, 2009b])
examples.

For the multinomial distribution, with counts s1, ..., sm, ..., sM in classes 1, ...,m,
...,M respectively and S = s1 + ... + sm + ... + sM , Maximum Likelihood gives
p̂m = sm/S. With a uniform prior, the minEKL estimator (also known as the
Laplace estimate or the posterior mean) is (sm +1)/(S+M), whereas the Wallace-
Freeman MML approximation [Wallace and Freeman, 1987; Wallace, 2005, sec. 5.4]
with this same prior is (p̂m)MML = (sm + 1/2)/(S + M/2).

For the particular case of the “gap or no gap” (“gappy”) problem [Dowe et

al., 2007, sec. 6.2.4 and Appendix B], data ({xi : 0 ≤ xi ≤ 1, i = 1, ..., N} for
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increasing N) are being generated uniformly either from the closed interval [0, 1]
or from a sub-region [0, a] ∪ [b, 1] for some a and b such that a < b. We see
Maximum Likelihood and Akaike’s Information Criterion (AIC) over-fitting here,
surmising a gap even whether there isn’t one. At the other extreme, we see the
minEKL estimator under-fitting, stating no gap even in extreme cases such as
(e.g.) [0, 0.001] ∪ [0.999, 1] with a = 0.001 and b = 0.999. The curious behaviour
of minEKL is due to the fact that the posterior probability that the region is [0, 1]
will get arbitrarily small for large N but never down to 0, and there is an infinite
penalty in Kullback-Leibler distance for ascribing a probability of 0 to something
which can actually happen. Unlike the over-fitting Maximum Likelihood and AIC,
and unlike the under-fitting minEKL, MML behaves fine in both cases [Dowe et

al., 2007].
For the Neyman-Scott problem (of sec. 6.4), see [Wallace, 2005, sec. 4.2–4.8].

For the bus number problem [Dowe, 2008a, footnote 116; 2008b, p. 440] (where
we arrive in a new town with θ buses numbered consecutively from 1 to θ, and we
see only one bus and observe its number, xobs, and are then asked to estimate the
number of buses in the town), the Maximum Likelihood estimate is the number
of the observed bus, xobs, which is an absolute lower bound and seems like a silly
under-estimate. At the other extreme, minEKL will behave in similar manner to
how it did with the abovementioned “gappy” problem. It will choose the largest
positive integer (no less than xobs) for which the prior (and, in turn, the posterior)
is non-zero. In the event that the prior never goes to 0, it will return infinity.
It seems fairly trivial that the MML estimate must fall between the Maximum
Likelihood estimate (the lowest possible value) and the minEKL estimate (from
a Bayesian perspective, the highest possible estimate). For further discussion of
the behaviour of MML here, see [Dowe, 2008a, footnote 116]. In addition to the
four examples we have just given of the MML estimate lying between (over-fitting)
Maximum Likelihood and (under-fitting) minEKL, of possible interest along these
lines as potential fifth and sixth examples worthy of further exploration, see sec. 6.5
on panel data (as a probable fifth example) and the treatment of MML shrinkage
estimation in [Schmidt and Makalic, 2009b].

5 DESIDERATA: STATISTICAL INVARIANCE, STATISTICAL
CONSISTENCY, EFFICIENCY, SMALL-SAMPLE PERFORMANCE,

ETC.

In this section, we look at several desiderata — or properties that we might desire
— from statistical estimators.

5.1 Statistical invariance

Statistical invariance [Wallace, 2005, sec. 5.2; Dowe et al., 2007, sec. 5.3.2; Dowe,
2008b, p. 435] says, informally, that we get the same answer no matter how we
phrase the problem.
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So, if we know that the relationship between the area A of a circle and its radius
r is given by A = πr2 (and, equivalently, r =

√

A/π), then statistical invariance
requires that our estimate of the area is π times our the square of our estimate
of the radius. The estimator function is often denoted by a hat (or circumflex), ,̂
above. So, for a circle, statistical invariance in the estimator would require that
Â = πr̂2.

If we replace r by κ in the Cartesian and polar co-ordinates example from sec.
3.6, (κ = sign(x) .

√

x2 + y2, θ = tan−1(y/x)) and (x = κ cos θ, y = κ sin θ). If we
are estimating the strength and direction (κ, θ) of a magnetic field or equivalently
the x and y co-ordinates (x, y) [Wallace and Dowe, 1993], then statistical invariance
requires that x̂ = κ̂ cos θ, ŷ = κ̂ sin θ.

Statistical invariance is surely an aesthetic property of an estimate. In many
problems, we are not committed to only one parameterisation - and, in those cases,
statistical invariance is more useful than a simple aesthetic nicety.

Maximum Likelihood, Akaike’s Information Criterion, Strict Minimum Message
Length (SMML) [Wallace and Boulton, 1975; Wallace, 2005, chap. 3] and many
MML approximations [Wallace and Freeman, 1987; Wallace, 2005, chaps. 4–5;
Dowe 2008a, sec. 0.2.2 and footnote 159; Schmidt, 2008; Dowe, 2008b, p. 438
and p. 451] are statistically invariant, but there do exist approaches — such as
the Bayesian Maximum A Posteriori (MAP) approach [Oliver and Baxter, 1994;
Dowe et al., 1996e; Wallace and Dowe, 1999b, secs. 1.2–1.3; 1999c, sec. 2, col. 1;
2000, secs. 2 and 6.1; Comley and Dowe, 2005, sec. 11.3.1; Dowe et al., 2007, sec.
5.1, coding prior; Dowe 2008a, footnote 158; 2008b, p. 443 and pp. 448–449] —
which are not statistically invariant.

5.2 Statistical consistency

For those who like collecting larger and larger data sets in the hope and belief
that this will bring us closer and closer to whatever model or process underlies the
data, statistical consistency — the notion of getting arbitrary close to any true
underlying model given sufficient data [Dowe et al., 2007, secs. 5.3.4, 6.1.3 and
later; Dowe 2008b, pp. 436–437] — is of paramount importance.

More formally, we might write it as [Dowe, 2008b, p. 436]

∀θ ∀ǫ > 0 ∃N0 ∀N ≥ N0 Pr(|θ − θ̂| < ǫ) > 1 − ǫ

and we could even venture to write it (in a parameterisation-invariant way) as
(e.g.)

∀θ ∀ǫ > 0 ∃N0 ∀N ≥ N0 Pr(∆(θ̂||θ) = KL(θ, θ̂) < ǫ) > 1 − ǫ.

Of course, as highlighted by Grünwald and Langford [2004; 2007], cases of model
misspecification do occur. In other words, it might be that the true model θ (if
there is one) is not contained in the family (or class) of models over which we

conduct our search for θ̂. In such cases, we can modify (or generalise) the notion
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of statistical consistency to be that (as implicitly described in [Dowe, 2008a, sec.
0.2.5, p. 540, col. 1]), as we get more and more data, we get the Kullback-Leibler
distance arbitrarily close to that of the closest available member in our model
space. Or, more formally,

∀θ ∀ǫ > 0 ∃N0 ∀N ≥ N0 Pr(∆(θ̂||θ) = KL(θ, θ̂) < KL(θ, θ̂best) + ǫ) > 1 − ǫ,

where θ̂best is as close as one can get in Kullback-Leibler distance to θ from within
the space of models being considered.

I should (and do now) qualify this slightly. It is possible that θ̂best might not
exist in the same sense that there is no number in the list 1, 1/2, 1/3, 1/4, ... which
is the list’s smallest element. One of a few ways of dealing with this is simply to
replace the start of the above with “∀θ′ in our model space” and to replace the
finish of the above with “Pr(KL(θ, θ̂) < KL(θ, θ′)+ ǫ) > 1− ǫ”, thus now making
it

∀θ′ in our model space

∀ǫ > 0 ∃N0 ∀N ≥ N0 Pr(KL(θ, θ̂) < KL(θ, θ′) + ǫ) > 1 − ǫ.

(As a second point, replacing the first ǫ by ǫ/2 does not change the semantics of
the definition. Similarly, replacing one of the ǫ terms by a δ and adding a quan-
tifier ∀δ > 0 out front also does not change the semantics, as we can (e.g.) re-set
ǫ′ = min{δ, ǫ}.)

With an eye to secs. 6.4 and 6.5 and this issue of statistical consistency under
misspecification, it is worth bearing in mind that — even though there is misspec-
ification — the class (or family) of models over which we conduct our search might
be dense in the space of possible models. In other words, if you have a non-negative
valued function (or probability distribution) on the real line which integrates to 1
(and can’t be written as a finite mixture model), it can still be possible to find a
sequence of finite (Gaussian) mixture models which fit it arbitrarily closely. (For
reading on mixture models, see, e.g., [Jorgensen and McLachlan, 2008].)

5.3 Efficiency, small-sample performance, other considerations, etc.

The notion of efficiency is perhaps ambiguous in that it has been used in the
literature with at least two different meanings. On the one hand, efficiency has
been taken to mean that the message length calculations and approximations are
both optimal or near-optimal (with li ≈ − log pi) [Wallace, 2005, sec. 5.2.4]. On
the other hand, efficiency of an estimator has been taken to mean the speed
with which that estimator converges to the true model generating the data as the
amount of data increases [Dowe et al., 2007, secs. 5.3.4 and 8].

While these two notions are different, it should be pointed out that, insofar
as reliable MML coding schemes lead to good inferences and less reliable coding
schemes lead to less reliable inferences [Quinlan and Rivest, 1989; Wallace and
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Patrick, 1993, Kearns et al., 1997; Viswanathan et al., 1999; Wallace, 2005, sec.
7.3; Murphy and Pazzani, 1994; Needham and Dowe, 2001; Wallace and Dowe,
1999a, secs. 5.1 and 7; 1999c, sec. 2; Comley and Dowe, 2005, secs. 11.3 and
11.4.3; Wallace, 2005, sec. 5.1.2; Dowe, 2008a, footnote 18], the two notions are
very related.

As well as the notions of statistical invariance (from sec. 5.1), statistical con-
sistency (from sec. 5.2) and efficiency, there are also issues of performing well on
small-sample sizes [Dowe, 2008b, p. 436 and p. 456]. The issue of which likelihood
function(s), sample size(s), parameterisation(s), Bayesian prior(s) and protocol(s)
(or which parts of LNPPP-space) are important when comparing the efficacy of
two estimators is discussed in [Dowe, 2008a, sec. 0.2.7, pp. 543–544].

6 MINIMUM MESSAGE LENGTH (MML) AND STRICT MML

As in sec. 1, historically, the seminal Wallace and Boulton paper [1968] came into
being from Wallace’s and Boulton’s finding that the Bayesian position that Wal-
lace advocated and the information-theoretic (conciseness) position that Boulton
advocated turned out to be equivalent [Wallace, 2005, preface, p. v; Dowe, 2008a,
sec. 0.3, p. 546 and footnote 213]. After several more MML writings [Boulton and
Wallace, 1969; 1970, p. 64, col. 1; Boulton, 1970; Boulton and Wallace, 1973b, sec.
1, col. 1; 1973c; 1975, sec. 1, col. 1] (and an application paper [Pilowsky et al.,
1969], and at about the same time as David Boulton’s PhD thesis [Boulton, 1975]),
their paper [Wallace and Boulton, 1975, sec. 3] again emphasises the equivalence
of the probabilistic and information-theoretic approaches. (Different but not un-
related histories are given by Solomonoff [1997a] and a review of much later work
by Kontoyiannis [2008]. For those interested in the formative thinking of Wallace
(and Boulton) leading up to the seminal Wallace and Boulton MML paper [1968],
see evidence of the young Bayesian (but pre-MML) Wallace in his mid-20s in the
1950s [Brennan, 2008, sec. 4; Brennan et al., 1958, Appendix] and see Wallace’s
accounts of his early discussions with David Boulton [Wallace, 2005, preface, p. v;
Dowe, 2008a, sec. 0.3, p. 546, col. 2 and footnote 213 (and sec. 1)] which resulted in
[Wallace and Boulton, 1968]. If you can obtain it, then I also commend [Wallace,
1992] for background.)

As in sec. 1 and following the principles of information theory from sec. 2.1,
given data D, we wish to choose a hypothesis H so as to minimise the length of a
two-part message conveying H (in part 1) followed (in part 2) by D given H. The
length of this message is

− log Pr(H) − log Pr(D|H).

A one-part form of the message was examined in [Boulton and Wallace, 1969],
but various pieces of theory and practice (e.g., [Barron and Cover, 1991]) point to
the merits of the two-part form of the message.

We now point to the Strict Minimum Message Length (SMML) formulation
from Wallace and Boulton [1975] in sec. 6.1, and then go on to talk about some
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“MML” approximations to SMML, some conjectures about the possible uniqueness
of Strict MML in being both statistically invariant and statistically consistent for
certain classes of problems, and some applications of MML to a variety of problems
in inference and other areas in science and philosophy.

6.1 Strict MML (SMML)

The Strict Minimum Message Length (SMML) formulation from Wallace and Boul-
ton [Wallace and Boulton, 1975; Wallace and Freeman, 1987; Wallace, 1996c; Dowe
et al., 1998; Wallace and Dowe, 1999a; 1999b; Farr and Wallace, 2002; Fitzgibbon
et al., 2002b, Fitzgibbon, 2004; Agusta, 2005; Wallace, 2005, chap. 3; Comley
and Dowe, 2005, sec. 11.2; Dowe et al., 2007; Dowe, 2008a, footnotes 12, 153,
158 and 196, and sec. 0.2.2] shows how to generate a code-book whose expected
two-part message length is minimised, but this turns out to be computationally
intractable except in the simplest of cases — such as the binomial distribution
[Farr and Wallace, 2002; Wallace, 2005, chap. 3].

Of historical interest is the fact [Dowe, 2008a, sec. 0.1, p. 524, col. 1] that, even
though MML had been in print many times over since 1968 [Wallace and Boulton,
1968, p. 185, sec. 2; Boulton and Wallace, 1969; 1970, p. 64, col. 1; Boulton, 1970;
Boulton and Wallace, 1973b, sec. 1, col. 1; 1973c; 1975, sec. 1, col. 1; Boulton,
1975], referees delayed the publication of Strict MML until Wallace and Boulton
[1975].

Strict MML (SMML) partitions in data-space and optimises a formula of the
form

(−
∑

j

(qj log qj)) + (−
∑

j

∑

i∈cj

(qj .
r(xi)

qj
. log f(xi|θj))) (18)

Note here first that i indexes over the data. This set must be countable, as all
recorded measurements are truncated and recorded to some finite accuracy. (See
[Dowe, 2008a, footnote 63] for a discussion of consequences of attempting to side-
step such an insistence.) This point established, we now assign data to groups
indexed by j. The number of groups will certainly be countable (and to date I
am not aware of any cases where there are infinitely many groups). Letting h(·)
be the prior and f(·|·) denote the statistical likelihood, r(xi) =

∫

h(θ)f(xi|θ) dθ
is the marginal probability of datum xi. Note that r(xi) is a probability and not

a density, and also that
∑

i r(xi) = 1. The term qj =
∑

i∈cj
r(xi) is the amount

of prior probability associated with the data group cj .
The groups cj form a partition of the data, with each datum being assigned to

exactly one group — from which it follows that
∑

j qj = 1.
For each data group cj , we choose the estimate θj which maximises the weighted

log-likelihood
∑

i∈cj
r(xi) log f(xi|θj).

As we have written equation (18), the first term is the expected length of encod-
ing the hypothesis (see, e.g., sec. 2.3) and the second term is the expected length
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of encoding the data given this hypothesis — namely the hypothesis that datum
xi lies in group cj with (prior) probability qj and estimate θj .

The computational intractability of Strict MML (except in the simplest of cases
— such as the binomial distribution [Farr and Wallace, 2002; Wallace, 2005, chap.
3]) is largely due to its discrete nature — or its being “gritty” (as Chris Wallace
once put it) — requiring shuffling of data between data groups, then re-estimating
the qj and θj for each data group cj , and then re-calculating the message length.
The code-book with the shortest expected message length as per equation (18)
is the SMML code-book, and the SMML estimator for each datum xi is the θj

corresponding to the group cj to which xi is assigned.

6.2 Strict Strict MML (SSMML)

Recall the notion of (algorithmic information theory or) Kolmogorov complexity
from sec. 2.4 and sec. 1. It could be said that the relationship between Strict MML
and Kolmogorov complexity [Wallace and Dowe, 1999a; Wallace, 2005, chaps. 2–3]
might be slightly enhanced if we turn the negative logarithms of the probabilities
from equation (18) into integer code lengths — such as would seem to be required
for constructing a Huffman code from sec. 2.1 (or other fully-fledged kosher code).
From [Wallace, 2005, sec. 3.4, p. 191] and earlier writings (e.g., [Wallace and
Freeman, 1987]), it is clear that Wallace was aware of this issue but chose to
neglect and not be distracted by it.

Although it is hard to imagine it having anything other than the most minor
effect on results, we take the liberty here of introducing here what I shall call
Strict Strict MML (SSMML), where the constituent parts of both the first part
(currently, for each j, of length − log qj) and the second part (currently, for each
j, for each i, of length − log f(xi|θj)) of the message have non-negative integer
lengths.

One reason for preferring Strict MML to Strict Strict MML is that, as can
be seen from inspecting equation (18), the Strict MML data groups, estimates
and code-book will all be independent of the base of logarithm — be it 2, 10, e
or whatever — and the (expected) message length will transform in the obvious
invariant way with a change of base of logarithms. However, Strict Strict MML
will require an integer greater than or equal to 2 to be the base of logarithms,
and will not be independent of this choice of base. The simplest response to this
objection is to insist that the base of logarithms is always 2 for Strict Strict MML.

My guess is that Strict Strict MML (with base of logarithms set to 2, although
any larger positive integer base should work both fine and similarly as the amount
of data increases) will typically be very similar to Strict MML. By construction,
Strict Strict MML (with fixed base of logarithms, such as 2) will necessarily be
statistically invariant, and Strict Strict MML will presumably share statistical
consistency and other desirable properties of Strict MML.

There is another issue which arises when relating Strict MML (from sec. 6.1)
and Strict Strict MML to Kolmogorov complexity (or algorithmic information
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theory). As per equation (18) and associated discussion(s), both Strict MML and
Strict Strict MML require the calculation of the marginal probability, r(xi) =
∫

h(θ)f(xi|θ) dθ, of each datum, xi. As in sec. 6.1, these marginal probabilities
are then used to calculate what we call the “coding prior” [Dowe et al., 2007,
sec. 5.1], namely the discrete set of possible estimates {θj} and their associated
prior probabilities, {qj}, with

∑

j qj = 1. (Strict MML is then equivalent to using
the coding prior in combination with the given statistical likelihood function and
doing conventional Bayesian Maximum A Posteriori (MAP).) As per [Wallace and
Dowe, 1999a] and [Wallace, 2005, chaps. 2–3], the input to the Turing machine
will be of a two-part form such that the first part of this input message (which
conveys the hypothesis, theory or model) programs the Turing machine (without
any output being written). The second part is then input to the program resulting
from the first part of the message, and this input causes the desired Data to be
output. (In the example with noise in sec. 7.2, the first part of the message would
encode the program together with an estimate of the noise, and the second part
would encode the data with code lengths depending upon the probabilities as per
sec. 2.1.)

The particular additional issue which arises when relating Strict MML and Strict
Strict MML to Kolmogorov complexity (or algorithmic information theory) occurs
when dealing with universal Turing machines (UTMs) and the Halting problem
(Entscheidungsproblem) — namely, we can get lower bounds on the marginal prob-
ability (r(xi)) of the various data (xi) but, due to the Halting problem, typically
for at least many values of xi we will not be able to calculate r(xi) exactly but
rather only give a lower bound. If the Turing machine (TM) representing our
prior is not universal (e.g., if we restrict ourselves to the family of multivariate
polynomials with one of the Bayesian priors typically used in such a case), then we
can calculate r(xi) to arbitrary precision for each xi. But if the TM representing
our prior is a UTM, then we might have to live with only having ever-improving
lower bounds on each of the r(xi). If we stop this process after some finite amount
of time, then we should note that the coding prior corresponding to the group-
ing arising from Strict MML (and ditto from Strict Strict MML) would appear
to have the potential to be different from the prior emanating from our original
UTM. That said, if we don’t go to the trouble of summing different terms con-
tributed from different programs in the calculation of r(xi) but rather simply take
the largest available such term, then we quite possibly get something very similar
or identical to our intuitive notion of a two-part Kolmogorov complexity.

Finally, it is worth changing tack slightly and adding here that Strict MML is
a function of the sufficient statistics in the data [Wallace, 2005, sec. 3.2.6], as also
should be Strict Strict MML. When some authors talk of the Kolmogorov sufficient
statistics, it is as though they sometimes forget or are unaware that sometimes
— such as for the Student t distribution or the restricted cut-point segmentation
problem from [Fitzgibbon et al., 2002b] — the minimal sufficient statistic can be
the entire data set [Comley and Dowe, 2005, sec. 11.3.3, p. 270].
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6.3 Some MML approximations and some properties

Given the typical computational intractability of Strict MML from sec. 6.1 (which
would only be worse for Strict Strict MML from sec. 6.2), it is customary to use
approximations.

Given data, D, the MMLD (or I1D) approximation [Dowe, 2008a, sec. 0.2.2;
Fitzgibbon et al., 2002a; Wallace, 2005, secs. 4.10 and 4.12.2 and chap. 8, p. 360;
Dowe, 2008b, p. 451, eqn (4)] seeks a region R which minimises

− log(

∫

R

h(~θ) dθ) −
∫

R
h(~θ). log f( ~D|~θ) dθ

∫

R
h(~θ) dθ

(19)

The length of the first part is the negative log of the probability mass inside
the region, R. The length of the second part is the (prior-weighted) average over
the region R of the log-likelihood of the data, D.

An earlier approximation similar in motivation which actually inspired Dowe’s
MMLD approximation from eqn (19) above is the Wallace-Freeman approximation
[Wallace and Dowe, 1999a, sec. 6.1.2; Wallace, 2005, chap. 5; Dowe, 2008b, p. 451,
eqn (5)]

− log(h(~θ).
1

√

κd
d Fisher(~θ)

) − log f(~x|~θ) +
d

2

= − log(h(~θ)) + L + (1/2) log(Fisher(~θ)) + (d/2)(1 + log(κd)) (20)

which was first published in the statistics literature [Wallace and Freeman, 1987].
(Digressing, note that if one approximates − log(1/Fisher(~θ)) in equation (20)

very crudely as k log N , then equation (20) reduces to something essentially equiv-
alent to Schwarz’s Bayesian Information Criterion (BIC) [Schwarz, 1978] and Ris-
sanen’s original 1978 version of Minimum Description Length (MDL) [Rissanen,
1978], although it can be strongly argued [Wallace and Dowe, 1999a, sec. 7, p.
280, col. 2] that the − log(1/Fisher(~θ)) term from equation (20) is best not idly
approximated away.)

A very recent approximation certainly showing promise is due to Schmidt [2008]

and in [Dowe, 2008a, footnotes 64–65]. This MMLFS estimator [Schmidt, 2008],
upon close examination, would appear to be based on an idea in [Fitzgibbon
et al., 2002a, sec. 2, especially equation (7)] (which in turn uses Wallace’s FS-
MML Boundary rule as from [Wallace, 1998e]) and [Fitzgibbon et al., 2002b, sec.
4] (again using Wallace’s FSMML Boundary rule as from [Wallace, 1998e] and
[Fitzgibbon et al., 2002b, sec. 3.2], but see also [Wallace, 2005, sec. 4.11]).

My MMLD estimator from equation (19) gives the message length (MsgLen)
for a region. The MMLFS estimator just mentioned gives MsgLen for a point (as
does the Wallace-Freeman [1987] estimator from equation (20)). Both MMLD and
MMLFS are calculated using Markov Chain Monte Carlo (MCMC) methods.

These approximations above, together with the Dowe-Wallace Ideal Group (or
IG) estimator [Wallace, 2005, secs. 4.1, 4.3 and 4.9; Agusta, 2005, sec. 3.3.3,
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pp. 60–62; Fitzgibbon, 2004, sec. 5.2, p. 70, footnote 1; Dowe, 2008a, p. 529,
col. 1 and footnote 62] and other estimators (e.g., TAIG) discussed in [Dowe,
2008a, footnotes 62–65] are all statistically invariant. Recalling the notion of
statistical consistency from sec. 5.2, we now show (in secs. 6.4 and 6.5) that
MML is statistically consistent where a variety of other estimators fail — either
under-estimating (which is typical of most alternatives to MML) or over-estimating
(which is typical of the Bayesian minEKL estimator) the degree of noise.

6.4 Neyman-Scott problem and statistical consistency

In the Neyman-Scott problem [Neyman and Scott, 1948; Dowe, 2008b, p. 453], we
measure N people’s heights J times each (say J = 2) and then infer

1. the heights µ1, ..., µN of each of the N people,

2. the accuracy (σ) of the measuring instrument.

We have JN measurements from which we need to estimate N + 1 parameters.
JN/(N + 1) ≤ J , so the amount of data per parameter is bounded above (by J).

It turns out that σ̂2
MaximumLikelihood → J−1

J σ2, and so for fixed J as N → ∞ we
have that Maximum Likelihood is statistically inconsistent — under-estimating σ
[Neyman and Scott, 1948] and “finding” patterns that aren’t there. The Bayesian
Maximum A Posteriori (MAP) approach (from sec. 5.1) is likewise not statistically
consistent here [Dowe, 2008a, footnote 158].

Curiously, the Bayesian minimum expected Kullback-Leibler distance (minEKL)
estimator [Dowe et al., 1998; Wallace, 2005, secs. 4.7–4.9; Dowe et al., 2007, secs.
4 and 6.1.4; Dowe, 2008a, sec. 0.2.2; 2008b, p. 444] from sec. 4.1 is also statisti-
cally inconsistent for the Neyman-Scott problem, conservatively over-estimating σ
[Wallace, 2005, sec. 4.8]. Recall a discussion of this (the Neyman-Scott problem)
and of the “gappy” (“gap or no gap”) problem in sec. 4.1.

However, the Wallace-Freeman MML estimator from equation (20) and the
Dowe-Wallace Ideal Group (IG) estimator have both been shown to be statisti-
cally consistent for the Neyman-Scott problem [Dowe and Wallace, 1996; 1997a;
1997b; Wallace, 2005, secs. 4.2–4.5 and 4.8; Dowe et al., 2007, secs. 6.1.3–6.1.4;
Dowe, 2008a, secs. 0.2.3 and 0.2.5; 2008b, p. 453]. An interesting discussion of the
intuition behind these results is given in [Wallace, 2005, sec. 4.9].

We now use MML to re-visit a Neyman-Scott(-like) panel data problem from
[Lancaster, 2002], as hinted at in [Dowe, 2008a, sec. 0.2.3, footnote 88].

6.5 Neyman-Scott panel data problem (from Lancaster)

Following the concise discussion in [Dowe, 2008a, sec. 0.2.3, footnote 88], we use
MML here to re-visit the panel data problem from [Lancaster, 2002, 2.2 Example
2, pp. 651–652].
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yi,t = fi + xi,tβ + ui,t (i = 1, ..., N ; t = 1, ..., T ) (21)

where the ui,t are independently Normal(0, σ2) conditional on the regressor se-
quence, fi, and θ = (β, σ2).

We can write the (negative) log-likelihood as

L =
NT

2
log 2π +

NT

2
log σ2 +

1

σ2

N
∑

i=1

T
∑

t=1

(yi,t − fi − xi,tβ)2 (22)

Using the Wallace-Freeman approximation [Wallace and Dowe, 1999a, sec. 6.1.2;
Wallace, 2005, chap. 5; Dowe, 2008b, p. 451, eqn (5)] from equation (20), we
require a Bayesian prior (which does not have a great effect but which does, among
other things, keep the estimator statistically invariant) and the determinant of the
expected Fisher information matrix of expected second-order partial derivatives
(with respect to the fi [i = 1, ..., N ], β and σ2).

Before taking the expectations, let us first take the second-order partial deriva-
tives — starting with the diagonal terms.

∂L

∂fi
= − 1

σ2

T
∑

t=1

(yi,t − fi − xi,tβ) , and
∂2L

∂fi
2 = T/(σ2) (23)

Not dissimilarly,

∂L

∂β
= − 1

σ2

T
∑

t=1

xi,t(yi,t − fi − xi,tβ), and
∂2L

∂β2
=

1

σ2

N
∑

i=1

T
∑

t=1

xi,t
2 (24)

∂L

∂(σ2)
=

NT

2σ2
− 1

2(σ2)2

N
∑

i=1

T
∑

t=1

(yi,t − fi − xi,tβ)2 , and (25)

∂2L

∂(σ2)2
= − NT

2(σ2)2
+

1

(σ2)3

N
∑

i=1

T
∑

t=1

(yi,t − fi − xi,tβ)2 (26)

Still looking at the second derivatives, let us now look at the off-diagonal terms
and then return to take expectations.

∂2L

∂fi∂fj
=

∂2L

∂fj∂fi
=

∂

∂fj
(− 1

σ2

T
∑

t=1

(yi,t − fi − xi,tβ)) = 0 (for i 6= j) (27)
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∂2L

∂fi∂β
=

∂2L

∂β∂fi
=

1

σ2

T
∑

t=1

xi,t (28)

∂2L

∂fi∂(σ2)
=

∂2L

∂(σ2)∂fi
=

1

2(σ2)2

T
∑

t=1

(yi,t − fi − xi,tβ) (29)

∂2L

∂β∂(σ2)
=

∂2L

∂(σ2)∂β
=

1

(σ2)2

N
∑

i=1

T
∑

t=1

xi,t(yi,t − fi − xi,tβ) (30)

Now taking expectations to get the terms contributing to the determinant of the
expected Fisher information matrix, namely the expected Fisher information, let
us first use equation (27) (dealing with the off-diagonal cases i 6= j) and equation
(23) (dealing with the diagonal cases i = j) to give

E(
∂2L

∂f2
) =

N
∏

i=1

E(
∂2L

∂fi
2 ) =

N
∏

i=1

∂2L

∂fi
2 =

N
∏

i=1

T/(σ2) = T/((σ2)N ) (31)

Re-visiting equation (29), we have that

E(
∂2L

∂fi∂(σ2)
) = 0 (for i = 1, ..., N) (32)

Equation (28) gives us a term proportional to 1/(σ2), namely

E(
∂2L

∂fi∂β
) =

1

σ2

T
∑

t=1

E(xi,t) , (33)

and equation (26) gives us

E(
∂2L

∂(σ2)2
) = − NT

2(σ2)2
+

1

(σ2)3
NT E((yi,t − fi − xi,tβ)2)

= − NT

2(σ2)2
+

NTσ2

(σ2)3
=

NT

2(σ2)2
(34)

From [Lancaster, 2002, p. 651, 2.2 Example 2, equation (2.8)] and our equation
(30), we have

E(
∂2L

∂β∂(σ2)
) = 0 (35)
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Looking at the (N + 2) × (N + 2) expected Fisher information matrix, we first
note that the only non-zero entry in the σ2 column is also the only non-zero entry
in σ2 row, namely that from equation (34).

Looking at the rest of the matrix, namely the (N +1)×(N +1) sub-matrix in the
top left, we see that the only non-zero off-diagonal terms are the E(∂L/(∂fi ∂β))
terms from equation (33) in the row and column corresponding to β. Looking at
equations (31) and (33), we see that these few off-diagonal terms from equation
(33) and all the diagonal terms are of the form Const1/(σ2)2.

Combining this with equation (34), we see that the Fisher information is given
by Const2 × (1/(σ2)N+1) × (NT )/(2(σ2)2) = Const/((σ2)N+3).

Anticipating what we need for the Wallace-Freeman (1987) MML approximation

in equation (20), this expression for Fisher(~θ) and equation (22) then give that

L + (log Fisher(~θ))/2

=
NT

2
log 2π +

NT

2
log σ2 +

1

σ2

N
∑

i=1

T
∑

t=1

(yi,t − fi − xi,tβ)2

+ (
1

2
log(Const) − N − 3

2
log σ2)

=
1

2
log((2π)NT Const) +

(N − 1)T − 2

2
log(σ2)

+
1

σ2

N
∑

i=1

T
∑

t=1

(yi,t − fi − xi,tβ)2 (36)

Re-capping, leaving aside the Bayesian priors (which will give statistical invari-
ance to the MML estimator) and some constant terms, we see that the Wallace-
Freeman MML approximation gives us what [Lancaster, 2002, p. 652] calls “the
“correct” degrees of freedom, N(T − 1), apart from a negligible term”.

As per [Dowe, 2008a, sec. 0.2.3, footnote 88], this can be extended to also deal
with the subsequent panel data problem from [Lancaster, 2002, 2.3 Example 2,
pp. 652-653].

Having made these points about statistical invariance and statistical consis-
tency of MML, we perhaps digress slightly and note that Grünwald and Langford
[2004; 2007] have shown statistical inconsistency under model misspecification for
various Bayesian estimators and various forms of the Minimum Description Length
(MDL) principle, but we are not aware of any current evidence for a statistical
inconsistency in MML [Grünwald and Langford, 2007, sec. 7.1.5; Dowe, 2008a,
sec. 0.2.5].

The above — and other — evidence and experience has led to the following con-
jectures. The first two conjectures deal with the case that there is a true model
in the space of models being examined, and the subsequent conjectures deal with
the case of model misspecification.



MML, Hybrid Bayesian Network Graphical Models, ... 945

Conjecture 1 [Dowe et al., 1998, p. 93; Edwards and Dowe, 1998, sec. 5.3; Wal-
lace and Dowe, 1999a, p. 282; 2000, sec. 5; Comley and Dowe, 2005, sec. 11.3.1,
p. 269; Dowe, 2008a, sec. 0.2.5, pp. 539–540; 2008b, p. 454]: Only MML and very
closely-related Bayesian methods are in general both statistically consistent and
invariant.

(This first conjecture was once the subject of a panel discussion at a statistics
conference [Dowe et al., 1998a].)

Conjecture 2 (Back-up Conjecture) [Dowe et al., 2007, sec. 8; Dowe, 2008a,
sec. 0.2.5; 2008b, p. 454]: If there are (hypothetically) any such non-Bayesian
methods, they will be far less efficient than MML.

Re the issue of statistical consistency under model misspecification as per sec.
5.2, first, suppose that the space where we conduct our search is dense in the space
from which the true model comes (e.g., suppose the true model space is that of
friendly non-Gaussian t distributions and our search space is the space of finite
mixtures of Gaussian distributions). Then, in this case, if our inference method is
statistically consistent when the true model comes from the search space (i.e., in
this example, if our inference method is statistically consistent within the space
of finite Gaussian mixture models) then we would expect our inference method to
still be statistically consistent for the misspecified true model from the larger class
(i.e., in this example, we would expect our inference method to remain statistically
consistent when the true model is a friendly non-Gaussian t distribution from
[“just”] outside our search space). Paraphrasing, if it’s consistent in the search
space, it can get arbitrarily close within the search space — and, if the search
space is dense in the true space, then it would appear that we can get arbitrarily
close to something arbitrarily close, seemingly implying statistical consistency.

Still on this issue of statistical consistency under model misspecification from
sec. 5.2, we know that MML will be statistically invariant and we further conjecture
[Dowe, 2008a, sec. 0.2.5, especially p. 540] that MML will still — in this more
challenging setting — be statistically consistent. If there are (hypothetically) any
non-Bayesian methods which are statistically consistent in this setting, then we
further conjecture that they will be less efficient than MML.

Note throughout that the statistical consistency is coming from the information-
theoretic properties of MML and the statistical invariance is coming from the
Bayesian priors.

If there is any truth to these conjectures — and I am yet to see anything I
could legitimately call a counter-example — then it would seem to suggest that
inference done properly must inherently be Bayesian. I make this claim because

• recalling sec. 5.1, statistical invariance says that we get the same answer
whether we model in (e.g.) polar or Cartesian co-ordinates, or in (e.g.) side
length, face area or volume of a cube, etc.
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• recalling sec. 5.2, statistical consistency — whether for a properly specified
model or a misspecified model — merely says that collecting extra data (as
people seem very inclined to do) is a worthwhile activity.

For other related arguments in support of Bayesianism and the Bayesian MML
approach, recall Wallace’s notions of Bayesian bias [Wallace, 1996c, sec. 4.1] and
false oracles [Wallace, 1996c, sec. 3; Dowe et al., 2007], Wallace’s intuitive but
nonetheless important proof that sampling from the Bayesian posterior is a false
oracle [Wallace, 1996c, sec. 3.4] and Wallace’s arguments that the Strict MML
estimator (which is deterministic) approximates a false oracle [Wallace, 1996c,
secs. 5–7]. For different arguments in support of Bayesianism and the Bayesian
MML approach for those who like the notions of Turing machines and (Kolmogorov
complexity or) algorithmic information theory from sec. 2.4, recall that (as per the
end of sec. 2.4) the choice of (Universal) Turing Machine in algorithmic information
theory is (obviously?) also a Bayesian choice [Wallace and Dowe, 1999a, secs. 2.4
and 7; 1999c, secs. 1–2; Comley and Dowe, 2005, p. 269, sec. 11.3.2; Dowe, 2008a,
footnotes 211, 225 and (start of) 133, and sec. 0.2.7, p. 546; 2008b, p. 450].

6.6 Further MML work, such as MML Support Vector Machines

The relationship between MML and Kolmogorov complexity (or algorithmic in-
formation theory) [Wallace and Dowe, 1999a; Wallace, 2005, secs. 2.2–2.3] from
sec. 2.4 means that MML can be applied universally across all inference problems
and even compare and contrast two models from very different families.

Let us saying something about the statistical learning theory of Vapnik and
Chervonenkis, VC dimension, Support Vector Machines (SVMs) and Structural
Risk Minimisation (SRM) [Vapnik, 1995] before discussing how this might be put
in an MML framework.

The statistical learning theory of Vapnik and Chervonenkis uses the notion
of the Vapnik-Chervonenkis (VC) dimension of a set to give a classical non-
Bayesian way of doing regression (typically using a technique called Structural
Risk Minimisation [SRM]) and classification (typically using Support Vector Ma-
chines [SVMs]). Recalling the distinction between inference and prediction from
sec. 4.1, both statistical learning theory and Akaike’s Information Criterion (AIC)
seem to be motivated by prediction, whereas MML is motivated by inference — a
point noted in [Wallace, 1997] (ref. [281] in [Dowe, 2008a]).

It is not clear to this writer what statistical learning theory advocates for (com-
paring) models from different families (e.g., polynomial vs exponential), or for de-
cision trees (classification trees) (e.g., [Wallace and Patrick, 1993; Wallace, 2005,
sec. 7.2]), where each split corresponds to a conjunctive “AND”, discretely parti-
tioning the data. It is less clear what statistical learning theory will advocate for
the generalisation of decision trees (classification trees) called decision graphs (clas-
sification graphs) [Oliver and Wallace, 1991; 1992; Oliver, 1993; Tan and Dowe,
2002; 2003], in which a disjunctive “OR” in the formula allows selected branches
of the tree to join — making the model space more general, as now we have two
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discrete operators (both split and join) in addition to various continuous-valued
parameters (such as the multinomial class probabilities in the leaves).

Problems where this writer is either not sure what statistical learning theory
will advocate and/or where I suspect that it might advocate (and have to bear the
statistical inconsistency of) Maximum Likelihood include those mentioned above
and also the Neyman-Scott and Neyman-Scott panel data problems from secs. 6.4
— 6.5 and the “gappy” problem and the bus number problem of sec. 4.1.

Whether or not my ignorance of how statistical learning theory will behave
in certain situations is a shortcoming in statistical learning theory or in me is
something for the reader to decide. Meanwhile, MML is universal — due to its
relationship with Kolmogorov complexity (as per secs. 1 and 6.2) and likewise
because it always has a message length as an objective function.

The original treatments (e.g., [Vapnik, 1995]) of the Vapnik-Chervonenkis (VC)
notion of statistical learning theory, support vector machines (SVMs) and struc-
tural risk minimisation (SRM) are not Bayesian. Efforts have been made to put
the notions of Vapnik-Chervonenkis statistical learning theory into a Bayesian
MML (or similar) framework (starting with [Vapnik, 1995, sec. 4.6]). At least
one motivation for doing this is to be able to apply statistical learning theory to
problems where it might not have otherwise been possible to do so.

Fleshing out ideas hinted at in [Vapnik, 1995, sec. 4.6], MML has been applied
to Support Vector Machines (SVMs) in [Tan and Dowe, 2004] (where we do not
just have SVMs, but we also have decision trees — and, in fact, we have a hybrid
model with SVMs in the leaves of decision trees), with discussions on alterna-
tive and refined coding schemes given in [Dowe, 2007; 2008a, footnote 53; 2008b,
p. 444] including [Dowe, 2008a, footnote 53, fourth way, pp. 527–528; 2008b, p.
444] explicitly modelling the distribution of all the variables, including the input
variables. It is MML’s abovementioned relationship with Kolmogorov complexity
(or algorithmic information theory) that enables us to consider alternative cod-
ing schemes. Explicitly modelling the distribution of all the variables (including
the input variables) would amount to making generalized hybrid Bayesian net-
work graphical models (as per sec. 7.6), some of whose properties are discussed
in secs. 2.3 and and 3.6. (Perhaps digressing, as per [Dowe, 2008a, footnote 56],
[Rubinstein et al., 2007] might also be of some use here.)

Staying with the Vapnik-Chervonenkis VC dimension but moving from SVMs
to SRM, MML was compared with SRM for univariate polynomial regression in
[Wallace, 1997]. See the discussion in [Dowe, 2008a, sec. 0.2.2., p. 528, col. 1,
including also footnotes 57 and 58].

MML has also been applied (e.g.) to hierarchical classification in [Boulton and
Wallace, 1973b; Dowe, 2008a, sec. 0.2.3, p. 531, col. 1 and sec. 0.2.4, p. 537, col.
2] (and elsewhere), with an application of hierarchical MML mixture modelling
in [Wallace and Dale, 2005], to image recognition in [Torsello and Dowe, 2008b;
2008a], with other work on MML mixture modelling in sec. 7.6, and MML applied
to James-Stein estimation in [Schmidt and Makalic, 2009b]. For some of many
more examples, see also (e.g.) sec. 7.6 (in particular) and (in general) all of sec. 7.
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6.7 A note on Minimum Description Length (MDL)

I forget how many times and how regularly I have been asked to summarise and/or
highlight the similarities and differences between MML and the much later Min-
imum Description Length (MDL) principle. Because of this and also because of
a request from at least one and possibly all of my referees, I include the current
section. For want of somewhere to put it, I have placed it here, but the reader can
probably safely skip from sec. 6.6 to sec. 6.8 with probably greater continuity and
perhaps no great loss.

Historically, the Minimum Description Length (MDL) principle [Rissanen, 1978]

(following formative ideas in [Rissanen, 1976]) was first published 10 years, 6
journal papers [Wallace and Boulton, 1968, p. 185, sec. 2; Boulton and Wallace,
1969; 1970, p. 64, col. 1; 1973b, sec. 1, col. 1; 1975, sec. 1, col. 1; Wallace and
Boulton, 1975, sec. 3] (it would be 7 journal papers if we were hypothetically to
count [Boulton and Wallace, 1973a]), 1 Master’s thesis [Boulton, 1970], at least one
conference abstract [Boulton and Wallace, 1973c] and 1 PhD thesis [Boulton, 1975]

after the seminal Wallace and Boulton MML paper [1968], including 3 years after
the Wallace and Boulton [1975] paper introducing Strict MML (whose original
publication was delayed as per sec. 6.1 and [Dowe, 2008a, sec. 0.1, p. 524, col. 1]).

The ideas in MML of being Bayesian and of having a two-part message have been
unwaveringly constant throughout since the original 1968 inception [Wallace and
Boulton, 1968]. A variety of theoretical justifications for Bayesianism are given in
(e.g.) sec. 6.5 and in [Wallace, 1996c, secs. 3 (especially 3.4), 4.1 and 5–7; Wallace
and Dowe, 1999a, secs. 2.4 and 7; 1999c, secs. 1–2; Comley and Dowe, 2005, p.
269, sec. 11.3.2; Dowe et al., 2007; Dowe, 2008a, footnotes 211, 225 and (start of)
133, and sec. 0.2.7, p. 546; 2008b, p. 450]. A variety of theoretical justifications for
the two-part form of the MML message are given in (e.g.) [Wallace and Freeman,
1987, p. 241; Barron and Cover, 1991; Wallace, 2005, sec. 3.4.5, p. 190, note use
of “agrees”; Dowe et al., 2007, sec. 5.3.4].

The objectives — or at the least the way(s) of attempting to achieve the ob-
jectives — of the Minimum Description Length (MDL) principle would appear to
have changed over the years since the first MDL paper in 1978 [Rissanen, 1978],
where part of the motivation appears [Rissanen, 1978, p. 465] to be (algorith-
mic information theory or) Kolmogorov complexity, a term repeated in [Rissanen,
1999a, sec. 2, p. 261]. It is the prerogative of any scientist or any researcher to
change and/or refine their ideas, and I attempt to survey various developments
and changes in the presentations I have seen of MDL.

Rissanen appears throughout his MDL works to want to avoid being Bayesian.
This seems slightly curious to me for a few reasons. First, there are countably
infinitely many Universal Turing Machines (UTMs) and, as per secs. 2.4 and 6.5,
the choice of a UTM is a Bayesian choice. As such, in relating MDL to Kolmogorov
complexity, it seems difficult not to relate MDL to Bayesianism. Second, although
Rissanen does not seem to want to use a Bayesian prior, his Normalised Maximum
Likelihood (NML) uses the Jeffreys “prior” [Rissanen, 1996; 1999a], an approach
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one might facetiously call “Bayesian”. The Jeffreys “prior” is not without issue —
it is based on the data (thus apparently weakening the claimed relationship with
Kolmogorov complexity), it doesn’t always normalise [Wallace and Dowe, 1999b,
sec. 2], and it will typically depend upon things which we would not expect to
be overly relevant to our prior beliefs — namely, the strength and location of our
measuring instruments [Dowe et al., 1996e, p. 217; Wallace and Dowe, 1999a, sec.
2.3.1; Comley and Dowe, 2005, sec. 11.4.3, p. 273]. There are also other concerns
[Wallace and Freeman, 1987, sec. 1, p. 241; Wallace and Dowe, 1999a, sec. 5,
p. 277, col. 2]. Efforts to normalise the Jeffreys prior by restricting its domain
are said by other authors to be “unsatisfying” [Dawid, 1999, sec. 5, p. 325, col.
2] and would certainly appear to be reverting back to Bayesianism (rather than
“Bayesianism”). Another opinion about the Bayesianism or otherwise in MDL is
“... we see that Rissanen’s approach is not incompatible with a Bayesian approach”
[Clarke, 1999, sec. 2, p. 338, col. 2]. And while discussing the Jeffreys “prior” and
Normalised Maximum Likelihood (NML) approach(es) [Rissanen, 1996; 1999a], it
is worth inviting the reader to compare with the approximately contemporaneous
PIC (Phillips Information Criterion, Posterior Information Criterion) [Phillips and
Ploberger, 1996] and the much earlier and very similar Wallace-Freeman approx-
imation [Wallace, 1984a; Wallace and Freeman, 1987] from equation (20) of no
later than 1987 — see also the discussion in [Wallace, 2005, sec. 10.2.1].

The MDL notion of ‘completing the code’ (or complete coding) [Rissanen, 1996;
Grünwald et al., 1998, sec. 4] seems to break down for a variety of relatively simple
cases [Wallace and Dowe, 1999b, secs. 1.2 and 2.3] and would appear to be in viola-
tion of contravening the convergence conditions of the two-part message form from
which the results in [Barron and Cover, 1991] emanate, a variety of theoretical jus-
tifications for which are cited above. The latest versions of MDL seem to advocate
using Normalised Maximum Likelihood (NML) to select the “model class” (see
[Wallace and Dowe, 1999b, sec. 2.1] re issues of ambiguity here) and the order of
the model but not to do the point estimation of the parameters. Given the issues
with Maximum Likelihood of over-fitting and statistical inconsistency raised in
secs. 4.1 and 5.2, we endorse the avoidance of Maximum Likelihood. But then
Normalised Maximum Likelihood (NML) starts to look quite similar to the ear-
lier Wallace-Freeman [1987] approximation for model order selection but without
necessarily easily being able to advocate a point estimate.

And, as in sec. 6.5, Grünwald and Langford [2004; 2007] have shown statistical
inconsistency for various Bayesian estimators and various forms of the Minimum
Description Length (MDL) principle (under model misspecification), but none
of us are aware of any current evidence for a statistical inconsistency in MML
[Grünwald and Langford, 2007, sec. 7.1.5; Dowe, 2008a, sec. 0.2.5]. (It is probably
worth mentioning here an attack on MML [Grünwald et al., 1998] which was later
retracted [Grünwald, 2007, sec. 17.4, An Apologetic Remark; Dowe, 2008a, sec.
0.2.4, p. 536].)

As we near the conclusion of this sub-section, it is worth pointing out that
many authors use MDL as a generic term for any MDL-like or MML-like coding
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scheme based on some similar method. People should take as much care as they
are able to here — [Comley and Dowe, 2005, sec. 11.4.3] gives plenty of examples
of poor MDL-like coding schemes whose performances vastly improved when they
were re-visited using MML [Wallace and Patrick, 1991; 1993, Viswanathan et al.,
1999; Needham and Dowe, 2001]. (See also sec. 4.) One can make bad wine from
good grapes, and a poor coding scheme will not do justice to the likes of MDL and
MML.

Despite the above challenges to and/or criticisms of much MDL work to date as
it compares with earlier MML work, considering the issues which Rissanen raises
— as he attempts to maintain all the niceties (of MML) while also attempting to
avoid being Bayesian — and contemplating responses can certainly yield insights
at the very least, and of course possibly much more. One such purported insight is
described in part of sec. 7.1, a section in which objective Bayesianism is discussed.
(Also worth mentioning here in passing is a way in which MDL could be re-visited
stating parameter estimates “using whatever ‘code’ or representation was used in
the presentation of the raw data” [Wallace and Dowe, 1999b, sec. 3, p. 336, col.
2].) And, finally, re comparing MDL and MML, as per the final sentence of this
section, I refer the reader to [Wallace and Dowe, 1999c, abstract].

Given that when we take logarithms base 2 (log2) we typically refer to the unit
as a bit, for some historical context on what to call the units when we take natural
logarithms (base e, loge), see (e.g.) [Hodges, 1983, pp. 196–197] for early names
(e.g., ‘ban’), see (e.g.) [Boulton and Wallace, 1970, p. 63; Comley and Dowe, 2005,
p. 271, sec. 11.4.1] re ‘nit’, and see (e.g.) much later MDL writings for the term
‘nat’.

Other treatments of this topic of contrasting MDL and MML are given in (e.g.)
[Wallace, 1999; Wallace and Dowe, 1999b, sec. 3; Wallace, 2005, sec. 10.2; Comley
and Dowe, 2005, sec. 11.4.3, pp. 272–273; Baxter and Oliver, 1995] and — perhaps
most especially in summary — [Wallace and Dowe, 1999c, abstract].

6.8 Comparing “Right”/“Wrong” and Probabilistic scores

The original idea behind the notion of boosting was to more heavily (penalise or)
weight incorrect answers in a decision tree (or classification tree) so as to grow the
tree and ultimately have less errors — that is, right/wrong errors. Sec. 3.1 showed
us that “right”/“wrong” scoring is not invariant to re-framing of questions, and
sec. 3.2 re-iterated some recent results on the uniqueness of log(arithm)-loss scoring
in being invariant to the re-framing of questions. This said, before we examine
boosting more closely in sec. 6.9, we might ask what a good “right”/“wrong” score
tells us about the log(arithm)-loss score and vice versa.

By rights, in a multiple-choice question of c choices, even if c >> 2, giving the
correct answer a probability of just less than 0.5 can still result in a higher proba-
bility of at least 0.5 being given to an incorrect answer and so a “right”/“wrong”
score of “wrong” (or 0). So, regardless of the number of choices, c, an incorrect an-
swer guarantees a score of at least 1 bit. Correspondingly, a score of less than 1 bit
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guarantees a “right” answer. At the other extreme, it is possible that a probability
of just over 1/c allocated to the correct answer will give us a ‘right”/“wrong” score
of “right” (or 1). Correspondingly, a score of more than log(c) will surely give us
a “right”/“wrong” score of “wrong” (or 0). So, if we have n multiple-choice ques-
tions of c1, ..., ci, ..., cn options each, then a “right”/“wrong” score of 0 corresponds
to a log(arithm)-loss cost of at least log(2n) = n bits, and a “right”/“wrong”
score of (all correct) n correct corresponds to a log(arithm)-loss cost of at most
∑n

i=1 log(ci) = log(
∏n

i=1 ci).

So, slightly paradoxically, on a quiz of 1 ternary (3-valued) question, someone
(with probabilities {0.498, 0.501, 0.001}) might get a wrong answer for a minimum
total of 0 “right” with a log-loss penalty score of just over log(2) whereas some-
one else (with probabilities {0.334, 0.333, 0.333}) might get a correct answer for a
maximum total of 1 “right” but with a worse log-loss penalty score of just under
log(3). I put it to the reader that the person with the better log-loss score actually
has a better claim to having been correct on this question than the person given
a score of 1 “right”.

And, of course, more emphatically, on a quiz of n questions, someone with a
“right”/“wrong” score of 0 “right” might have a log(arithm)-loss penalty score
of little over log(2n) whereas someone who got (n − 1) out of n correct might
have an arbitrarily large (or infinite) log(arithm)-loss penalty score by assigning
an arbitrarily small (or zero) probability to the correct answer in the one question
that this person got “wrong”. (And, similarly, as at least implicitly pointed out
in sec. 3.2, one can use boosting to make all sorts of guesses and predictions in
data which is just random noise, and although much damage could be done to
the log(arithm)-loss penalty score, no damage will be done to the “right”/wrong”
score.) We address this issue of getting good “right”/wrong” scores without unduly
damaging the log(arithm)-loss penalty score again in sec. 6.9.

6.9 Boosting

One suggestion of Chris Wallace’s (in private communication) was that the right/
wrong predictive accuracy of MML decision trees could be improved by going
to each leaf in turn and doing one additional split beyond the MML split. I
understand that this was the motivation behind the subsequent [Oliver and Hand,
1994]. Of course, as per sec. 4.1, optimal prediction is given not just by using
the MML tree, but by combining several trees — ideally as many as possible —
together [Oliver and Hand, 1996; Tan and Dowe, 2006].

However, given our new apparent uniqueness results for probabilistic log(arithm)-
loss scoring from [Dowe, 2008a, footnote 175 (and 176); 2008b, pp. 437–438] and
sec. 3.2, it perhaps makes more sense to carefully focus on improving the proba-
bilistic log(arithm)-loss score.

One option is to do MML inference but with the “boosting priors” from [Dowe,
2008a, sec. 0.2.6]. The idea behind these “boosting priors” is that, rather than
fix our Beta/Dirichlet prior [Wallace, 2005, p. 47 and sec. 5.4] to have α = 1, we
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can try “boosting priors”, whose rough form [Tan and Dowe, 2006, sec. 3.4, p.
598; Dowe, 2008a, sec. 0.2.6] on α could be, e.g., 3/(2

√
α(1 +

√
α)4) or

(e−α/π)/(π
√

α). The idea is simply to retain a mean of (approximately) 1 but to
have a large spike near α = 0, which in turn increases our propensity to have pure
classes.

Another option is to re-visit boosting and to think of it not as in its original
form of minimising the number of right/wrong errors but rather instead in the
similar form of trying to optimise the expected predictive score. This modifica-
tion to boosting is related to the original form of boosting in that each individual
(right/wrong) mistake will typically correspond to a poor right/wrong (yes/no)
score. The predictive score should not be done using the log-likelihood, but rather
should be done using the minimum expected Kullback-Leibler (minEKL) probabil-
ity estimate [Dowe et al., 1998; Wallace, 2005, secs. 4.7–4.9; Dowe et al., 2007, secs.
4 and 6.1.4; Dowe, 2008a, sec. 0.2.2, 2008b, p. 444] from sec. 4.1. In other words,
if there are m classes and a given leaf has counts c1, ..., ci, ..., cm for the m classes
and C =

∑m
i=1 ci, Maximum Likelihood would advocate a probability estimate of

p̂i MaxLhood = ci/C for each class. However, if we think of αi from a Dirichlet prior
as denoting a “pre-count” in class i (before any data is actually counted), then
the probability in each class can be regarded as p̂i = (ci + αi)/(C + (

∑m
j=1 αi)).

Of course, we can set αi = α for each class and then use the so-called “boosting
priors” on α as per [Tan and Dowe, 2006, sec. 3.4, p. 598; Dowe, 2008a, sec. 0.2.6].

Let us finish with three further comments. First, by way of digression, an
attempt to give “objective” ways of choosing α is given in sec. 7.1. Second, for
those who wish to boost to improve the right/wrong score or simply wish to get a
good to excellent right/wrong score, given the (apparent uniqueness of) invariance
of the log-loss score, we make the simple recommendation that predictors that give
good right/wrong scores be checked so that they also give a good log-loss score —
this might involve moving extreme probabilities away from the extremities of 0 and
1 (such as can arise from using Maximum Likelihood). (Some possible estimators
for doing this are given in, e.g., [Wallace, 2005, secs. 4.8 and 5.4]. A prediction
method which is good enough to genuinely get a good “right”/“wrong” score can
surely be gently modified or toned down to give a good log-loss score.) As a third
comment, for those not wishing to sacrifice statistical consistency in their efforts
to improve predictive accuracy, it might be worth considering comments [Dowe,
2008a, footnote 130] about potential dangers of placing too much weight on the
likelihood of the data.

7 MML AND SOME APPLICATIONS IN PHILOSOPHY AND ELSEWHERE

MML has been applied to a variety of problems in philosophy — including (e.g.)
the philosophy of science [Dowe and Oppy, 2001], the philosophy of statistics
and inference [Dowe et al., 2007], the philosophy of mind (see, e.g., sec. 7.3), the
philosophy of language and the philosophy of religion. We mention these and some
other — mainly philosophical — issues here.
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7.1 Objective Bayesianism (and Bertrand’s paradox) and some new
invariant “objective priors”

Bertrand’s paradox is essentially concerned with the issue that we can not choose
a uniform Bayesian prior in all parameterisations. Certainly, many authors would
like an objective form of Bayesianism — or, equivalently, a parameterisation in
which our Bayesian prior can be uniform.

Recalling the notion of Universal Turing Machine (UTM) from sec. 2.4, one can
claim that a simplest UTM is one with the smallest product of its number of states
and its number of symbols (as this is the number of rows in the instruction table)
[Dowe et al., to appear (b)].

Simplest UTMs have been used in inference [Wallace, 2005, sec. 2.3.12; Gam-
merman and Vovk, 2007a; 2007b; Martin-Löf, 1966; Dowe, 2007], and they are
one way of attempting to be objective (while still being Bayesian) and — as a
consequence — side-stepping Bertrand’s paradox. Of course, such objectivity —
where possible — will potentially be useful in places such as legal battles [Dowe,
2008a, pp. 438–439].

Much good and interesting work has been done in the area of objective Bayesian-
ism by (e.g.) J. M. Bernardo [Bernardo and Smith, 1994] and others. Above, we
follow Wallace in offering simplest UTMs as objective priors. Below, as per the
end of sec. 6.7, we now change tack and re-visit the Jeffreys “prior” (whose use,
incidentally, was not advocated by Jeffreys [1946]) as an objective invariant prior.

Some things that we know to be invariant upon re-parameterisation include
the likelihood function, Maximum Likelihood, the marginal probability r(xi) =
∫

h(θ)f(xi|θ) dθ of datum xi (from sec. 6.1), the message length and many of its
variants (from secs. 6 — 6.3), Minimum Message Length (when using an invariant
form), the Fisher information and (recalling secs. 4.1 and 6.9) the minimum
Expected Kullback-Leibler divergence (minEKL) estimator.

Given these invariant building blocks, we now take the Jeffreys “prior” (which
we recall from sec. 6.7 and pointers therein does not always normalise), and con-
struct a family of other invariant priors. To kick off with an example, let us take a
(m-state, (M − 1)-dimensional, M ≥ 2) multinomial distribution — as per [Wal-
lace, 2005, sec. 5.4] — with prior of the form Const p1

α1 ...pM
αM (where we use αi

where Wallace [2005, sec. 5.4] writes αi − 1). We will have counts si (i = 1, ...,M)

and we let N =
∑M

i=1 si and A =
∑M

i=1 αi. The Wallace-Freeman (1987) MML es-
timate from equation (20) is (p̂i)MMLWF1987 = (si+αi+1/2)/(N+A+M/2). And,
recalling sec. 6.7, the minEKL (or Laplace) estimate (equivalently here, the poste-
rior mean [Boulton and Wallace, 1969]) is (p̂i)MinEKL = (si+αi+1)/(N +A+M).
As such, we observe that the Wallace-Freeman [1987] MML estimate from equa-
tion (20) with the Jeffreys “prior” (αi = −1/2) gives the Maximum Likelihood
estimate. We similarly observe that the Wallace-Freeman estimate with the uni-
form prior (αi = 0) is equivalent to getting the minEKL estimate with the Jeffreys
“prior” (αi = −1/2).

In this particular case of the multinomial distribution, we note that we can trans-
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form from the (invariant) Wallace-Freeman [1987] MML estimate to (invariant)
minEKL by adding 1/2 to the αi. As such, if the Jeffreys prior h0 = hJeffreys =
hFisherInfo (with αi = −1/2) is to be called objective, then a case can be made
that so, too, is the uniform prior h1 (with αi = 0). We can iterate again to get
further invariant priors: h2 (with αi = 1/2), h3 (with αi = 1), etc. One could also
iterate in the opposite direction: h−1 (with αi = −1), h−2 (with αi = −3/2), etc.
All such priors — or at least those which normalise — are invariant (by construc-
tion) and can be regarded in some sense as “objective”. One could then choose
the prior hj for the smallest value of j for which hj normalises.

This method of using the Jeffreys “prior” to generate further invariant objec-
tive priors (via invariant transformations) and then taking the “first” to normalise
certainly generalises — well beyond the above example of the multinomial dis-
tribution — to other distributions. In general, for some given distribution, start
again with h0 = hJeffreys = hFisherInfo and then, given prior hi, let hi+1 be the
prior such that (some invariant form of) the MML estimate with prior hi+1 is as
close as possible in Kullback-Leibler distance (and ideally equal) to the minEKL
estimate with prior hi. With however much ease or difficulty, we can then gener-
ate this sequence of invariant priors h0 = hJeffreys = hFisherInfo, h1, h2, ... and
perhaps also h−1, h−2, etc. (As a general rule, because of MML’s tendency to fit
just right and minEKL’s tendency to under-fit as per sec. 4.1, we expect to see
a corresponding progression in this sequence of priors — as is perhaps best seen
from the above example with the multinomial distribution. In that case, hi has
αi = (i − 1)/2, meaning that, as i increases, it takes increasingly much data to
move the estimate away from the centroid where for all i, p̂i = 1/M .) If there does
exist some smallest j for which hj normalises, a case could be made that this is an
objective invariant prior which might be more suitable than the Jeffreys “prior”,
h0.

Penultimately, cases could be made for investigating combining two such priors,
as in considering (e.g.) hhybrid =

√

hj1hj2 . Cases could also be made for attempt-
ing to allow j not to be an integer but rather somehow to be fractional. We will
not investigate these here.

And, finally, returning to issues from sec. 6.7, it would perhaps be nice if Nor-
malised Maximum Likelihood (NML) could be re-visited but with use of one of
these alternative invariant priors to the Jeffreys “prior”, h0. This should retain
the statistical invariance but might reduce some of the vulnerabilities (such as
over-fitting and statistical inconsistency, both mentioned earlier) associated with
Maximum Likelihood.

7.2 Goodman’s “Grue” paradox (and choice of language)

Nelson Goodman’s “grue” paradox raises the issue of why notions like “green”
and “blue” should be more natural than notions of “grue” (green before time t0
[say year 3000] and blue thereafter) and “bleen” (blue before time t0 [say year
3000] and green thereafter). This has been discussed in the Solomonoff predictive
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and Wallace MML inductive frameworks, with relevant writings being [Solomonoff,
1996; 1997b, sec. 5; Comley and Dowe, 2005, sec. 11.4.4; Dowe, 2008a, footnotes
128, 184 and 227]. Among other things, an adequate solution of when to arrive
at a notion like “grue” and when to arrive at a notion like “green” (which is,
after all, grue before time t0 and bleen thereafter) is presumably necessary when
trying to evolve language (for those beings not yet with language) or when trying
to communicate with non-human terrestrials or extra-terrestrials [Dowe, 2008a,
footnote 184]. Wallace’s approach from [Dowe, 2008a, footnote 128], elaborating
upon [Comley and Dowe, 2005, sec. 11.4.4], was summarised as follows: “Suppose
someone is growing and harvesting crops, commencing (much) before t0 and fin-
ishing (much) after t0. We expect the grass and certain moulds to be green, and
we expect the sky and certain weeds to be blue. The notions of grue and bleen
here offer at most little in return other than sometimes to require (time-based)
qualification and to make the language sometimes unnecessarily cumbersome.”
This said, there are times of event changes which can be of interest. If t0 were
the time of the next expected reversal of the earth’s magnetic field, then in talk-
ing on such a time-scale we have reason to disambiguate between magnetic north
and geographic north in our language — as these notions are approximately equal
before t0 and approximately antipodal (for at least some time) after t0 [Dowe,
2008a, footnote 128]. But the terms ‘grue’ and ‘bleen’ cost us but seem to gain us
nothing. By and large, languages will develop, import, qualify and/or abbreviate
terms when these terms warrant (sufficient) use.

And, while on that very issue of abbreviation, the reader will note at least one
place in this article where we have written “Minimum Message Length (MML)”.
This convention of putting an acronym or other abbreviation in brackets immedi-
ately after the term it abbreviates enables us to use the abbreviation (rather than
the full term) elsewhere — thus enabling us to shorten the length of our message.

And, digressing, while on the earlier issue of languages, MML has been used
to model evolution of languages [Ooi and Dowe, 2005; Dowe, 2008a, sec. 0.2.4;
2008b, p. 455] (not to mention finite state automata [Wallace and Georgeff, 1983]

and DNA string alignment [Allison et al., 1990a; 1990b; 1990; 1991; 1992a; 1992b;
Allison and Wallace, 1993, 1994a, 1994b]).

An able philosopher colleague, Toby Handfield, has told me in private commu-
nication — while discussing Lewis [1976] and the “laws of nature” — that if MML
were able to recognise a number constructed as (say) the sum without carries of
e (the base of natural logarithms) expanded in hexadecimal (base 16) and π ex-
panded in decimal (base 10), then this would go a long way towards convincing
him that MML can solve Goodman’s grue paradox. Using the relationship between
MML and (algorithmic information theory or) Kolmogorov complexity [Wallace
and Dowe, 1999a; Wallace, 2005, chaps. 2–3] discussed in sec. 6, we outline the ar-
gument below. In short, MML will have no difficulty with doing this (in principle)
— the caveat being that the search might take quite some time.

We can specify e as
∑∞

i=0 1/i! in a (Turing machine) program of length Pe, and
we can specify the hth hex(adecimal) digit of e in a program of length Pe+C1+l(h)
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for some constant C1, where l(h) is the length of some prefix code (recall sec. 2.2)
over the positive integers (e.g., the unary code from sec. 2.4). We could use a code
of length 1 for h = 1 and of length ≤ 1 + ⌈1 + log2(h) + 2 log2(log2(h))⌉ < 2 +
1 + log2(h) + 2 log2(log2(h)) for h ≥ 2. Similarly, we can specify π as (e.g.)
∑∞

i=0(4(−1)i)/(2i + 1) in a (Turing machine) program of length Pπ, and we can
specify the hth hex(adecimal) digit of π in a program of length Pπ + C2 + l(h) for
some constant C2, where l(h) is as above.

The program for addition without carry/ies simply entails addition without
carry (or modulo addition) in each place, h, for h = 1, 2, 3, 4, .... So, for the
hth hex(adecimal) digit, we can say that the hth hex digit, compositeh, of our
composite number is given as follows:

if (e_{h, 16} + pi_{h, 10} < 15)

then composite_h = e_{h, 16} + pi_{h, 10}

else composite_h = e_{h, 16} + pi_{h, 10} - 16;

Given that this is how the composite number is being generated, given sufficiently
many hex digits of this number, the Minimum Message Length (MML) inference
will be the algorithm for generating this composite number. Again, the search
might be slow, but this will be found.

We can actually take this further by randomly adding noise. Let us suppose
that, with probability p, hex digit h comes from some probability distribution
(q1, q2, ..., q14, q15, q16 = 1 − ∑15

i=1 qi) and with probability 1− p this hth hex digit
will be compositeh. So, Pr(CompositeWithNoiseh = compositeh) = pqcompositeh

+
(1 − p). For each i 6= compositeh, Pr(CompositeWithNoiseh = i) = pqi. In the
case that p = 0, this reduces to the noiseless case. Here, the search will be even
slower, but with sufficiently many digits and with sufficient search time, we will
converge upon the noiseless program above generating the digits in addition to
having an increasingly good quantification of the noise.

7.3 MML, inductive inference, explanation and intelligence

As intimated in sec. 1, MML gives us the inductive inference (or induction, or
inference, or explanation) part of intelligence [Dowe and Hajek, 1997; 1998, es-
pecially sec. 2 (and its title) and sec. 4; Sanghi and Dowe, 2003, sec. 5.2]. And
Ockham’s razor tells us that we should expect to improve on Searle’s “Chinese
room” look-up table [Searle, 1980] by having a compressed representation — as
per our commonsense intuition and arguments in [Dowe and Hajek, 1997, sec. 5.1
and elsewhere; 1997, p. 105, sec. 5 and elsewhere; Dowe, 2008a, footnote 182 and
surrounding text] and sec. 4.

Let us consider an assertion by Hutter [Legg and Hutter, 2007] that compression
is equivalent to (artificial) intelligence (although subsequent work by Hutter now
seems instead to equate intelligence with a weighted sum of reward scores across
different environments). This assertion is later than a similar idea of Hernandez-
Orallo [Hernández-Orallo and Minaya-Collado, 1998; Hernández-Orallo, 2000]. It
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is also stronger than an earlier idea [Dowe and Hajek, 1997; 1998, especially sec.
2 (and its title) and sec. 4; Sanghi and Dowe, 2003, sec. 5.2 and elsewhere; Dowe,
2008a, sec. 0.2.5, p. 542, col. 2 and sec 0.2.7, p. 545, col. 1] that (the part of
intelligence which is) inductive inference (or inductive inference) is equivalent to
(two-part) compression. Let us look at the two issues separately of

• (i) first, whether all of (artificial) intelligence or perhaps just inductive in-
ference is equivalent to (two-part) compression, and

• (ii) second, whether it is satisfactory simply to talk about (one-part) com-
pression or whether we should insist upon two-part compression.

First, the components of intelligence would appear to include (at least) memory,
deductive inference, inductive inference and ability to receive direct instruction.
(By deductive inference, we mean and include mathematical calculations and log-
ical reasoning, such as modus ponens — Socrates is a man, all men are mortal,
therefore Socrates is mortal. To illustrate the distinction with an example, induc-
tive inference is more along the lines of all men are mortal, Socrates is mortal,
therefore we assert some probability that Socrates is a man.) We need memory to
store observations for making inductive inferences, for remembering inductive in-
ferences, for remembering our progress through mathematical calculations or other
(logical) deductions and for remembering those direct instructions (perhaps the
deductions or inferences of others) that we receive. For example, a good human
player of a game where the search space is too vast to be exhaustively searched
(like chess or Go) needs inductive inference and direct instruction to help with an
evaluation function (such as, in chess, the advantages of passed pawns, the weak-
nesses of isolated and backward pawns, and the approximate equivalence between
a queen and three minor pieces), memory to remember these, memory to remem-
ber the rules, and deduction (and memory again) to do the lookahead calculations
in the search tree. It is clear that all these aspects of intelligence are useful to
a human player of such a game. However, to the mathematician, the logician,
and especially a mathematician or a logician checking the validity of a proof (or
someone double-checking that a Sudoku solution is correct), the main forms of
intelligence required would surely appear to be deduction and memory. It is fair
to say that the harder aspects of inductive learning and (two-part) compression
also require memory and deductive inference. And we have argued elsewhere that
we are more likely to attribute intelligence to someone performing an act of great
memory if they have done this using a compressed representation [Dowe and Hajek,
1997; 1998]. But we ask the reader whether we should not attribute intelligence to
the chess player or the mathematician (or the person checking a Sudoku solution)
when performing (difficult) activities involving at most little inductive inference.

Second, in many cases, doing straight (one-part) compression rather than two-
part compression can lead to an incorrect model (as in the statistical inconsistency
of the minEKL estimator from sec. 4.1 for the “gappy” problem mentioned in
sec. 4.1 and for the Neyman-Scott problem in sec. 6.4) — and this remains true
asymptotically regardless of how much data we have.
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As per [Dowe, 2008a, sec. 0.2.7, p. 545, col. 1], I have discussed with J. Her-
nandez Orallo the notion of quantifying the intelligence of a system of agents and
endeavouring to quantify how much of this comes from the individual agents (in
isolation) and how much comes from their communication. Let us try to take
this further in a couple of different (related) ways. First, it would be good to
(artificially) evolve such a communal intelligence, including (perhaps inevitably)
evolving a language. (As a tiny step, one of my 4th year Honours project students
in 2009, Jeffrey R. Parsons, has made slight progress in evolving Mealy and/or
Moore machines with the message length as a guiding fitness function. I do not
wish to overplay his current progress, but it is in a useful direction.) And, second,
re the topics of swarm intelligence and ant colony optimisation, perhaps only a
very small range of parameter values (where the parameters describe the individ-
ual agents and/or their communication) permit the different parts to interact as
an “intelligent” whole. This raises a couple of further issues: the issue of using
MML to analyse data (as per sec. 7.6 and [Dowe, 2008a, sec. 0.2.7, p. 545]) and
infer the parameter values (or setting) giving the greatest communal intelligence,
and the additional issue(s) of whether or not greater prior weight should be given
to those systems giving the interesting outcome of intelligence, and (similarly) —
in the fine tuning argument of sec. 7.7 and [Dowe et al., to appear (b)] — whether
greater prior probability should be given to parameter settings in which interesting
universes (like our own) result.

Having mentioned here the issues of intelligence, non-human intelligence and
communication, it is worth mentioning some of Chris Wallace’s comments about
trying to communicate with an alien intelligence [Dowe, 2008a, sec. 0.2.5, p. 542,
col. 2, and also footnote 184 and perhaps text around footnote 200] (and possibly
also worth recalling Goodman’s notion of “grue” from sec. 7.2 and [Dowe, 2008a,
footnote 128]).

We conclude here by saying that further discussion on some of the topics in this
sub-section will appear in [Hernández-Orallo and Dowe, 2010].

7.4 (So-called) Causality

Chris Wallace did much work on “causal nets” using MML, including doing the
(MML) mathematics and writing the software behind several papers on this topic
[Wallace and Korb, 1994; Wallace, 1996b; Wallace et al., 1996a; 1996b; Dai et al.,
1996a; 1996b; 1997a; 1997b; Wallace and Korb, 1997; 1999; Korb and Wallace,
1997; 1999] (with the possible exception of [Neil et al., 1999a; 1999b]). I have
no objection to the quality of Wallace’s MML statistical inference — from the
available data — in this work. Indeed, I have (at most little or) nothing but the
highest praise for it. However, there are at least two or so matters about which
one should express caution when interpreting the results from such inference.

One issue is that getting the wrong statistical model (because we didn’t have
enough data, we hadn’t searched thoroughly enough and/or our statistical infer-
ence method was sub-optimal) can lead to having arrows pointing the wrong way.
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And even if we did have enough data, our statistical inference method was ideal
and we searched thoroughly, it could still be the case that the true (underlying)
model (from which the data has been generated) is outside the family of models
that we are considering — e.g., our model family might be restricted to linear
regressions (on the parent “explanatory” variables to the “target” child variable)
with Gaussian noise while the real data-generating process might be more com-
plicated. In such cases, slightly modifying the family of models being considered
might change the directions of arrows in the inference, suggesting that the direc-
tions of these arrows should not all be regarded as directly “causal” [Dowe, 2008a,
footnote 169].

As a related case in point, we might have data of (at least) two variables,
including (i) height/co-ordinates of (weather) (monitoring) station and (ii) (air)
pressure reading. Our best statistical model might have arrows from pressure
reading to height of monitoring station, but we surely shouldn’t interpret this
arrow as being in any way causal.

Of course, temporal knowledge (of the order in which things occur) is also
important for attributing causality.

Whether or not this is well-known and well-documented (and please pardon my
medical ignorance, as per sec. 3.2), there would appear to be a substantial overlap
between cancer patients and stroke patients. Let’s suppose that in many cases
the patient has a stroke and then cancer is detected some months later. It could
appear that the stroke caused the cancer, but it is perhaps more probable that
cancer-induced changes in the tissue and/or the bloodstream caused the stroke —
even if the primary cancer was not in the brain and the metastatic cancer did not
present in the brain until after the stroke. If this is all true, then it would suggest
that the actual mechanism is that the Cancer is causing the Stroke — despite the
possibility that an analysis of the data might easily lead one to conclude that the
Stroke is causing the (Brain) Cancer.

We also have to be careful about issues such as (e.g.) hidden (or unknown)
variables. As an example, a hidden latent variable might cause both A (which
takes place slightly before B) and B. B might do the same exam paper (of math-
ematical calculations) as A but starting and finishing slightly later. Or perhaps
B is a newspaper which goes to print after newspaper A goes to print but before
newspaper A appears on the stands. We expect B’s answers and stories to be very
similar to A’s, but this is because A and B have common (hidden) causes; and it
seems loose to say that A causes B.

As another example, standing on a podium of a Grand Prix tends to greatly
increase one’s chances of winning at a subsequent Grand Prix event. But this
wouldn’t be true of one of the scaffolding constructors who tested the podium
before the race ceremony, and nor would it be true of some overly exuberant
spectator who managed to somehow get access to the podium. Rather, there is a
(not very) hidden cause of ability causing someone to do well in two races, and
the result of doing well in the first of these races caused that racer to stand on the
podium at the end of the first of the two races.
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Lecturers (at university, college, or wherever), tutors, teachers and instructors
who are able to give lectures without notes (of whom Chris Wallace is but one
notable example) often give excellent lectures. Let us assume that this is the norm
for such people. The cause of the good lecturing is surely the excellent memory and
strong command of the subject of the lecturer rather than any supposed benefit
that the average person might supposedly gain by trying to lecture without notes.

As another example, if A causes B and B causes C and we only know about A
and C but have not yet even conceived of B (and, of course, we might be open to
the existence of B but simply don’t know), then I think we can say A “causations”
C but we have to be careful about saying that (e.g., supposedly) A causes C. A
specific case might be the old example of A being living alone, C being having
(few or) no rodents at home. B is the owning of a pet cat — the single person
keeps the pet for company (and has no flat-mate or house-mate to complain), and
the cat keeps the rodents at bay.

Possibly see also [Dowe, 2008a, sec. 0.2.7, pp. 543–544] re LNPPP and causality.

7.5 Elusive model paradox (and encryption)

Gödel’s incompleteness theorem consists of constructing a mathematical statement
which can be interpreted as saying that “This statement is not provable” [Gödel,
1931]. Clearly, this statement can’t be false, or it would be provable and hence
true, leading to a logical contradiction. Hence, the statement must be both true
(of the natural numbers) and not provable.

The original version of the elusive model paradox gives us a sequence where
the next number is one (or unity) more than what we would expect it to be
[Dowe, 2008a, footnote 211]. The subsequent version of the paradox essentially
takes modulo 2 (so that even numbers are transformed to 0 and odd numbers are
transformed to 1) and then gives us a binary sequence (or bit string) (of 0s and
1s) in which we can (paradoxically) be sure that the next bit is not the bit that
we expect (or would have predicted) based on what we have seen so far (before
it). This leads to a contradiction from which the only escape would appear to be
the undecidability of the Halting problem (or Entscheidungsproblem), the notion
that there are many calculations which will never terminate but for which we can
never know that they will not terminate [Turing, 1936].

Whether one takes the elusive model paradox as being over a sequence of (in-
creasing) positive integers (as per the original version [Dowe, 2008a, footnote 211])
or over a binary bit string sequence of 0s and 1s (as per the later version [Dowe,
2008b, p. 455]), each of these versions in turn can be thought of in two (essen-
tially) equivalent ways. One of these ways is to play this as a game, where we
have one agent (which can be represented by a Turing machine) generating the
sequence and a group of one or more agents (which can also be represented by a
Turing machine) trying to guess the next bit — while the (Turing machine) agent
generating the sequence is attempting to generate the opposite bit to what (the
Turing machine representing) those guessing will guess. (It might possibly help to
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think of the generating agent as a soccer player taking a penalty kick, trying to
kick the ball where the goalie won’t be — or as a tennis player trying to serve the
ball to where the receiver won’t be; and, in turn, the guessing agent as the goalie
trying to guess the location of the kick or the tennis receiver trying to anticipate
the serve.) To give both the generating Turing machine agent and the guessing
Turing machine agent the best chances to do their respective jobs properly, we
will assume that — recalling sec. 2.4 — these Turing machines are universal. As
such, among other things, there will be finite emulation programs (or translation
programs) causing one machine to emulate the other, and vice versa. As the gen-
erating program and the guessing program start out on small sequences being the
early short initial segments of the generated bits and the guess(ed) bits, the pro-
grams will quite possibly have different models of the data. But, as the sequences
get longer and longer, after they become at least kilobits, megabits, gigabits, ter-
abits, etc. long and vastly longer than the abovementioned translation programs,
the models that these two UTMs have of the available data will start to converge.
The guessing UTM will have had a very good look at the generating UTM and —
given that the generating UTM is a finite deterministic machine — the guessing
UTM would appear to be able at some stage to lock in on the behaviour of the
generating UTM, thereafter guessing all subsequent bits correctly. Similarly, at
some stage, the generating UTM would appear to be able at some stage to lock in
on the behaviour of the guessing UTM, thereafter anticipating all its guesses and
then flipping the bit before generating it. After both these stages have occurred,
we have the contradiction that the guessing UTM always guesses correctly and the
generating UTM anticipates the guess, flips the bit that it knows will be guessed
and ensures that all subsequent guesses are incorrect. The Halting problem gets us
out of this paradox (and seems like the only way out), as both the generating UTM
and the guessing UTM can and very often want more time before they are content
that they have modelled the other correctly. The second (essentially) equivalent
way of thinking of the elusive model paradox is simply that the generating UTM
agent and the guessing UTM agent are the same — as at the end of the previous
paragraph. After starting off the sequence, we guess which bit should most prob-
ably come next, and then generate the bit which is least probable to come next
— and then continue this indefinitely. We get (essentially) the same paradox, and
again the Halting problem seems like the only way out of the paradox.

The above all said by way of introduction, we now present some variations on
the elusive model paradox [Dowe, 2008a, footnote 211; 2008b, p. 455], including
— recalling sec. 4.1 — one using inference and one using prediction. (Recall that
inference uses the single best model whereas prediction weights over all available
models.) One variation is that we can restrict ourselves to multinomial Markov
models where the nth order Markov model has (a maximum of) 2n binomial dis-
tributions.

Let j = jm = jm(i) ≤ i be some unbounded non-decreasing computable function
of i. At step i, having bits b1, b2, ..., bi, we choose bi+1 as follows, from the following
two similar but (slightly) different methods — noting that both these constructions
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are computable.

Method 1 (inference — using restricted “memory”): We infer the best (MML)
Markov model of order ≤ jm based on b1, b2, ..., bi. We then use the predictive
distribution from this MML inference to give a probability distribution for bi+1.
We then choose bi+1 to be the bit with the least predicted probability.

Method 2 (prediction — using restricted “memory”): We use Bayesian model
averaging over all the Markov models of order ≤ i to get a predictive probability
distribution over bi+1. Again, we choose bi+1 to be the bit which has the lowest
predicted probability.

With both of these methods — method 1 (inference) and method 2 (prediction)
— the resultant sequence is “random” in the sense that no Markov model of finite
order is going to be able to compress it And this is so because the construction of
the sequence is to destroy any such structure at the first viable opportunity upon
its detection.

Recall that both these constructions immediately above based on restricting
“memory” are computable. Two (or more) alternative computable constructions
— based on restricting computation time rather than “memory” — are given
below. Let j = jt = jt(i) > i be some strictly increasing computable function of i.

Method 3 (inference — with restricted computation time): We infer the best
(Minimum Message Length [MML]) inference from all computable functions (that
we search over) within a search time of ≤ jt based on b1, b2, ..., bi. As in method
1, we then use the predictive distribution from this MML inference to give a
probability distribution for bi+1. We then choose bi+1 to be the bit with the least
predicted probability.

Method(s) 4 (prediction — with restricted computation time): We use Bayesian
model averaging. There are two ways of proceeding further in restricted finite
computation time — method 4(a) and (with tighter restriction) method 4(b).

Method 4(a): We use Bayesian model averaging over all the Markov models
of order ≤ i to get a predictive probability distribution over bi+1. Here, time
restriction of ≤ jt is applied to each of the individual Markov models in turn.
They are then averaged as per Method 2. Again, we choose bi+1 to be the bit
which has the lowest predicted probability.

Method 4(b): We use Bayesian model averaging over all the Markov models of
order ≤ i to get a predictive probability distribution over bi+1. But, here, the time
restriction of ≤ jt is tighter in that it is applied to the entire calculation, including
the final Bayesian model averaging. And, yet again, we choose bi+1 to be the bit
which has the lowest predicted probability.

We might refer to these various sequences emerging from variations of our elusive
model paradox as “red herring” sequences. Among other things, these (red herring
sequences) have the potential to be used in encryption. If various people or agents
studying the sequence have varying computational resources (e.g., different lag
lengths in the Markov models they can consider), a variant of the sequence can
be constructed in such a way as to guide some sub-population (perhaps those
from whom we wish to conceal some data) to believe in the presence or absence
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of a particular pattern while guiding a different sub-population (perhaps those to
whom we wish to divulge the data) to be aware of the presence (or absence) of
some (particular) pattern.

Finally, let us return to the notes at the start of this subsection about how one
(apparently) needs the Halting problem (or Entscheidungsproblem) [Turing, 1936]

to resolve the elusive model paradox [Dowe, 2008a, footnote 211; 2008b, p. 455].
The Halting problem is something which people do not normally encounter before
their undergraduate university years. I put it to the reader that the elusive model
paradox is something from which we can deduce the halting problem yet which
should be accessible to school students.

7.6 Some of many other issues which MML can address

• In numerical integration (or numerical quadrature), we see a variety of ap-
proaches such as the rectangular rule, the trapezoidal rule and Simpson’s
rule, etc. Of course, where the function we are trying to integrate is not gen-
erated from a polynomial and especially when it is generated from a noisy
process, then it will typically be better to use MML or a related method
to guide the fitting process rather than use arbitrarily complicated polyno-
mials and suffer from the over-fitting problems that come with Maximum
Likelihood and similar methods;

• generalized hybrid Bayesian network graphical models [Dowe and Wallace,
1998; Comley and Dowe, 2003; Tan and Dowe, 2004, sec. 5; Comley and
Dowe, 2005] deal with the issue of “discriminative vs generative” studied by
Jebara [2003] and others (e.g., [Long and Servedio, 2006]). Many authors
have claimed that discriminative learning can often outperform generative
learning. However, if one follows the ideas in [Dowe and Wallace, 1998;
Comley and Dowe, 2003; Tan and Dowe, 2004, sec. 5; Comley and Dowe,
2005] and carefully uses MML — recalling the discussion of poor coding
schemes in sec. 6.7, taking care with the coding scheme — to construct one’s
generalized hybrid Bayesian network graphical model (of which inference of a
logic program via Inductive Logic Programming [ILP] [Dowe et al., to appear
(a)] is one possible outcome, as can be SVMs from sec. 6.6 or also, e.g., the
sort of model from [Oliver and Dowe, 1995]), then the statistical consistency
results of MML from [Dowe, 2008a, sec. 0.2.5] and discussed in sec. 6 should
guarantee that “generative” learning (when done like this) works fine.

Some properties of these generalized hybrid Bayesian network graphical mod-
els (which can include both continuous and discrete variables [Comley and
Dowe, 2003; 2005]) are discussed in secs. 2.3 (where it is mentioned in pass-
ing that entropy can be defined on such hybrid structures) and 3.6 (where
we mention that there is no difficulty in defining Kullback-Leibler divergence
over such structures);

• following this point, where an unnormalised database is sufficiently large,
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then MML inference will lead to database normalisation [Dowe, 2008a, sec.
0.2.6, footnote 187; 2008b, pp. 454–455; Dowe and Zaidi, 2010], often result-
ing in several tables, conveying a generalised Bayesian net. We can adjust
our priors to require this process to be noise-free;

• experimental design [Dowe, 2008a, sec. 0.2.7, p. 544; 2008b, pp. 445–446];

• MML can be applied to statistical hypothesis testing [Dowe, 2008a, sec.
0.2.5, p. 539 and sec. 0.2.2, p. 528, col. 1; 2008b, p. 433 (Abstract), p.
435, p. 445 and pp. 455–456; Musgrave and Dowe, 2010], as can also MDL
[Rissanen, 1999a, sec. 3]. (Perhaps see also [Dowe, 2008a, sec. 1].) Daniel
F. Schmidt and Enes Makalic have recently presented work in front of an
audience including me showing their desire to take this further. As per sec.
7.1, I harbour some concerns about associating the Maximum Likelihood
estimate with Normalised Maximum Likelihood;

• association rules (from “data mining” and machine learning) can be incor-
porated within a generalised Bayesian network structure;

• re-visiting A. Elo’s Elo system and M. Glickman’s Glicko system for chess
ratings. Whether for chess players with the advantage of the white pieces and
the first move or whether for sports teams with a home ground advantage,
MML can both select the relevant model and do the parameter estimation.
Of interest would be a Neyman-Scott-like situation in which many games
are being played but there are relatively few games per player. If similar
interest would be a situation with several groups of players where there are
many games played within each of the groups but very games played between
members of different groups;

• directional angular data, such as the von Mises circular distribution [Wallace
and Dowe, 1993; 1994a; Dowe et al., 1995a; 1995b] and the von Mises-Fisher
spherical distribution [Dowe et al., 1996e; 1996f];

• inference of megalithic stone circle (or non-circle) geometries [Patrick and
Wallace, 1977; Patrick, 1978; Patrick and Wallace, 1982];

• polynomial regression [Wallace, 1997; Wallace, 1998c; Viswanathan and Wal-
lace, 1999; Rumantir and Wallace, 2001; Fitzgibbon et al., 2002a; Rumantir
and Wallace, 2003] (and perhaps also [Schmidt and Makalic, 2009c]);

• inference of MML neural nets [Makalic et al., 2003];

• inference of MML decision trees (or classification trees) and decision graphs
(or classification graphs) [Oliver and Wallace, 1991; Oliver et al., 1992; Oliver
and Wallace, 1992; Oliver, 1993; Uther and Veloso, 2000; Tan and Dowe,
2002; Tan and Dowe, 2003; Tan and Dowe, 2004], including (as per sec. 6.6)
decision trees with support vector machines (SVMs) in their leaves [Tan and



MML, Hybrid Bayesian Network Graphical Models, ... 965

Dowe, 2004] — with applications of MML decision trees and graphs in a
variety of areas including (e.g.) protein folding [Dowe et al., 1992; 1992a;
1993] and medical diagnosis [McKenzie et al., 1993];

• MML clustering, mixture modelling and intrinsic classification via the Snob

program [Wallace and Boulton, 1968; Wallace, 1984b; 1986; 1990b; 1990c;
Wallace and Dowe, 1994b; 1996; 1997a; 1997b; 2000] was originally for the
multinomial and Gaussian distributions, but this was extended to also in-
clude the Poisson and von Mises circular distributions [Wallace and Dowe,
1994b; 1996; 1997a; 1997b; 2000] — with applications in a variety of ar-
eas including (e.g.) spectral modelling [Papp et al., 1993], protein fold-
ing [Zakis et al., 1994], psychology and psychiatry [Kissane et al., 1994;
1996; 1996a; Prior et al., 1998]. Also of interest is determining whether
our data appears to contain one line segment or a mixture of more than
one line segment [Georgeff and Wallace, 1984a; 1984b; 1985] (and much
later work on engineering bridge deterioration using a mixture of a Pois-
son distribution and a uniform distribution with total assignment [Mah-
eswaran et al., 2006]). (After the MML mixture modelling of multinomial,
Gaussian, Poisson and von Mises circular distributions from 1994 [Wal-
lace and Dowe, 1994b; 1996] came a slightly different paper doing only
MML Gaussian mixture modelling [Oliver et al., 1996] but emphasising the
success of MML in empirical comparisons.) The MML single linear fac-
tor analysis from [Wallace and Freeman, 1992] was incorporate into [Ed-
wards and Dowe, 1998] — although [Edwards and Dowe, 1998] did total
(rather than partial) assignment and only did single rather than multi-
ple [Wallace, 1995a; 1998b] factor analysis. This has also been extended
to a variety of forms of sequential clustering [Edgoose and Allison, 1999;
Molloy et al., 2006], with an extension of [Edgoose and Allison, 1999] being
(as in the next item) to MML spatial clustering. See also [Boulton and Wal-
lace, 1973b; Dowe, 2008a, sec. 0.2.3, p. 531, col. 1 and sec. 0.2.4, p. 537, col.
2] for a discussion of MML hierarchical clustering. As well as the abovemen-
tioned multinomial, Gaussian, Poisson and von Mises circular distributions
[Wallace and Dowe, 1994b; 1996; 1997a; 1997b; 2000], this work — without
sequential and spatial clustering (following in the next item) has been ex-
tended to other distributions [Agusta and Dowe, 2002a, 2002b; 2003a; 2003b;
Bouguila and Ziou, 2007];

• extensions of MML spatial clustering [Wallace, 1998a; Visser and Dowe, 2007]

to tomographic [Visser et al., 2009a] and climate [Visser et al., 2009b] mod-
els. Variations on this work (and possibly other MML image analysis work
[Torsello and Dowe, 2008a; 2008b]) should lend themselves both to training
a robot to learn a model for and then recognise a particular class of object
(such as a coloured shape, like a particular type of fruit) for robotic hand-eye
co-ordination and also to analysing data in constructing a bionic eye;

• inference of systems of one or more probabilistic/stochastic (partial or) or-
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dinary (difference or) differential equations (plus at least one noise term)
from (presumably noisy) data (as per wishes from [Dowe, 2008a, sec. 0.2.7,
p. 545]). Uses for this should include the likes of (e.g.) inferring parame-
ter settings for ant colonies and other swarms so as to model them and/or
suggesting settings giving better “intelligence” (as per sec. 7.3) and medical
applications such as (e.g.) cardiac modelling or modelling stem cells;

• MML, particle physics and the analysis of the data in the search for the
Higgs boson [Dowe, 2008a, sec. 0.2.7, p. 544, col. 2];

• etc.

Also of interest here might be

• the relationship between MML and the likelihood principle of statistics [Wal-
lace, 2005, sec 5.8; Wallace and Dowe, 1999b, sec. 2.3.5], for which MML’s
violation is “innocent enough — a misdemeanour rather than a crime” [Wal-
lace, 2005, sec. 5.8, p. 254; Dowe, 2008a, sec. 0.2.4, p. 535, col. 2];

• the relationship between MML and Ed Jaynes’s notion of maximum entropy
(or MaxEnt) priors [Jaynes, 2003; Wallace, 2005, secs. 1.15.5 and 2.1.11;
Dowe, 2008a, sec. 0.2.4, p. 535, col. 1]. While MML and MaxEnt are dif-
ferent, while still on the topic of entropy and MML, it turns out that —
within the MML mixture modelling literature — the term used to shorten
the message length when going from (the inefficient coding scheme of) total
assignment to (the efficient coding scheme of) partial assignment equates to
the entropy of the posterior probability distribution of the class assignment
probabilities [Visser et al., 2009b; Wallace, 1998a; Visser and Dowe, 2007];

• etc.

7.7 MML and other philosophical issues

When time next permits, here are some of the many other philosophical issues to
which MML pertains

• entropy is not time’s arrow [Wallace, 2005, chap. 8 (and p. vii); Dowe, 2008a,
sec. 0.2.5; 2008b, p. 455], and note the ability of MML to detect thermal fluc-
tuations and not over-fit them where some other statistical methods might
be tempted to regard the standard noisy fluctuations as being something
more [Wallace, 2005, chap. 8]. (One wonders whether the formation of these
ideas might be evident in [Wallace, 1973a].) Recalling sec. 4.1 on inference
(or explanation) and prediction, one interesting thing here is Wallace’s take
on why it is that we wish to predict the future but (only) infer (or explain)
the past [Wallace, 2005, chap. 8];
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• being able to accord something the title of a “miracle” [Wallace, 2005, sec.
1.2, p. 7; Dowe, 2008a, sec. 0.2.7, p. 545, col. 1; 2008b, p. 455], the fine

tuning argument in intelligent design [Dowe et al., to appear (b)] (possibly
see also sec. 7.3) and evidence that there is an intelligent supervisor/shepherd
listening to our prayers and overseeing — and sometimes intervening in —
our lives. Just as we can use MML to decide whether or not to accord
something the title of a miracle, so, too, we can set about being objective and
using MML to quantify the probability of certain coincidences and whether
or not there could be an intelligent supervisor/shepherd intervening in our
lives. Of course, such a shepherd might be able to make discrete minor
changes effectively impossible to notice in one place which lead to substantial
changes in other places. (I am not offering my opinion one way or another
here, but rather merely raising how this issue might be addressed in an MML
framework);

• Efficient Markets [Dowe and Korb, 1996; Dowe, 2008a, sec. 0.2.5; 2008b,
p. 455] — due to the Halting problem, MML and Kolmogorov complexity
essentially say (in short) that financial markets are very unlikely to be effi-
cient and next to impossible to be proved efficient. Attempts to make this
point more accessible by showing the effects of having a variety of trading
approaches equal in all ways but one where one trader is better in terms of
(e.g.) inference method, speed or memory, are given in [Collie et al., 2005;
2005a];

• redundant Turing Machines (unlike those of sec. 2.4), for which pre- and post-
processing can be used to effectively emulate a (Universal) Turing Machine
by non-conventional means [Dowe, 2008a, sec. 0.2.7, p. 544];

• undecidability in (optimal) engineering tuning and design (ultimately due to
the Halting problem);

• probabilities of conditionals and conditional probabilities [Dowe, 2008a, sec.
0.2.7, p. 546];

• information and MML re originality of an idea, degree of creativity of an
act or design — or humour [Dowe, 2008a, sec. 0.2.7, p. 545] (the reader is
welcome to inspect not unrelated ideas in [Solomonoff, 1995; Schmidhuber,
2007] in order to determine the originality of this idea). Puns typically
entail finding commonality between at least two different subject matters.
The finding of such commonality is crucial to the creation of the pun, and the
recognising of such commonality is crucial to the understanding of the pun.
A similar comment applies to the creation and solving of (cryptic) clues from
a (cryptic) crossword. This said, in my experience, creating puns seems to be
more difficult than understanding them — whereas solving cryptic crossword
clues seems to be more difficult than creating them;
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• mnemonics (or memory aids), whether or not this should be regarded as
a philosophical issue. Certain mnemonics are compressions or contractions
from which we can re-construct that “data” that we ultimately wish to recall.
However, there is a seemingly slightly curious phenomenon here. People
might recall (e.g.) the periodic table of elements or (e.g.) the base 10 decimal
expansion of π by recalling a mnemonic sequence of words which tells a story.
In the case of the periodic table, these words (can) start with the first one
or so letters of the chemical elements in sequence. In the case of π, these
words in sequence (can) have lengths corresponding to the relevant digit: so,
the length of the ith word is the ith digit of π — e.g., “How I want a drink,
alcoholic of course, after the heavy chapters involving quantum mechanics”
(for 3.14159265358979). These little stories are fairly easily remembered —
one might say that they are compressible, so one can re-construct them fairly
easily, from where one can go on to re-construct what one was really trying
to recall. However, the slight curiousity is that for all the easy compressible
niceties of the mnemonic sequence, it is actually longer than the original.
Perhaps the resolution is that whatever slight redundancies there are in the
mnemonics serve as error corrections. So, perhaps such mnemonics are quite
compressible in their own right so that they can easily be re-constructed but
have sufficiently much redundancy to reduce errors. I think there is room
for further discussion on this topic;

• fictionalism is an area of philosophy which (according to my understanding
of it) is concerned about the sense in which we can talk about some fictional
character (e.g., Elizabeth Bennett from “Pride and Prejudice”) as though
they were real — and then go on to discuss how said character(s) might
behave in some scenario not presented in the story in which said character(s)
appear(s). This seems very much to be an MML matter. We form a model
of the character(s) based on what we know about the(se) character(s). We
have a model of how various types of real-world character behave in certain
scenarios, and we go from there. In similar vein, MML has much to say about
the philosophical notion of counterfactuals and possible worlds, although here
there is a minor issue of (recall sec. 4.1) whether we are interested in inference
as to how things would most probably be in the nearest possible world or
instead a weighted prediction of how things might be — obtained by doing
a weighted combination of predictions over a variety of possible worlds;

• etc.

Having made the above list, I now mention some issues to which I would like to
be able to apply MML.

• virtue — Confucius (the Chinese philosopher) [Confucius, 1938] and (about
500 years later) Jesus (from whom we have the Christian religion) are well-
known for their comments on consideration, and Confucius further for his
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other comments on virtue. In game theory (e.g., prisoners’ dilemma), per-
haps virtue is being/doing as all would need to do to give the best all-round
solution (in similar vein to the merits of co-operation described in, e.g.,
[Wallace, 1998d]), perhaps it is doing the optimum by the others on the pre-
sumption that the others will all act out of self-interest. Perhaps MML can
offer some insight here; and

• the Peter principle — I hear of and sometimes see far too many shocking
appointments of the undeserving, of a candidate who “peaked in the inter-
view”. Perhaps in terms of some sort of experimental design or more properly
knowing how to analyse the available data on candidates, it would be nice
to put MML to use here.
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2008a; Brennan, 2008; Solomonoff, 2008; Jorgensen and McLachlan, 2008; Brent,
2008; Colon-Bonet and Winterrowd, 2008; Castro et al., 2008] it was an honour
to be guest editor. (For other mention and examples of the range and importance
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al., 1998; Viswanathan et al., 1999; Fitzgibbon et al., 2002b] — for teasers) might
have one day earned him the Nobel prize in Economics. (Meanwhile, it would be
good to re-visit both ARCH [Autoregressive Conditional Heteroskedasticity] and
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