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On the Bardeen-Petterson effect in black hole accretion discs
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ABSTRACT
We investigate the effect of black hole spin on warped or misaligned accretion discs — in par-
ticular i) whether or not the inner disc edge aligns with the black hole spin and ii) whether the
disc can maintain a smooth transition between an aligned inner disc and a misaligned outer
disc, known as the Bardeen-Petterson effect. We employ high resolution 3D smoothed parti-
cle hydrodynamics simulations of α-discs subject to Lense-Thirring precession, focussing on
the bending wave regime where the disc viscosity is smaller than the aspect ratio α . H/R.
We first address the controversy in the literature regarding possible steady-state oscillations of
the tilt close to the black hole. We successfully recover such oscillations in 3D at both small
and moderate inclinations (. 15◦), provided both Lense-Thirring and Einstein precession are
present, sufficient resolution is employed, and provided the disc is not so thick so as to simply
accrete misaligned. Second, we find that discs inclined by more than a few degrees in general
steepen and break rather than maintain a smooth transition, again in contrast to previous find-
ings, but only once the disc scale height is adequately resolved. Finally, we find that when the
disc plane is misaligned to the black hole spin by a large angle, the disc ‘tears’ into discrete
rings which precess effectively independently and cause rapid accretion, consistent with pre-
vious findings in the diffusive regime (α & H/R). Thus misalignment between the disc and
the spin axis of the black hole provides a robust mechanism for growing black holes quickly,
regardless of whether the disc is thick or thin.

Key words: accretion, accretion discs — black hole physics — hydrodynamics — galaxies:
jets — (galaxies:) quasars: supermassive black holes

1 INTRODUCTION

Bardeen & Petterson (1975) first computed the evolution of a
warped accretion disc subjected to Lense-Thirring precession
(Lense & Thirring 1918) caused by frame-dragging from the spin
of a central black hole. Although their original equations were later
shown to be incorrect (Papaloizou & Pringle 1983), their qualita-
tive findings of an aligned inner disc smoothly connected to a mis-
aligned outer disc — the ‘Bardeen-Petterson effect’ — has been
confirmed both from subsequent 1D calculations with corrected
equations (Kumar & Pringle 1985; Pringle 1992) and in three di-
mensional smoothed particle hydrodynamics (SPH) simulations by
Nelson & Papaloizou (2000).

Papaloizou & Pringle (1983) showed that there were two
regimes for warp propagation in discs depending on the ratio of
the effective viscosity α to the aspect ratio H/R. For α & H/R,
warps can be described with a diffusion equation, whereas for
α . H/R they propagate as bending waves at half the sound speed
(Papaloizou & Lin 1995). Previous studies by Kumar & Pringle
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(1985) and Pringle (1992) were performed in the diffusive regime.
The first studies performed in the bending wave regime (Ivanov &
Illarionov 1997; Lubow, Ogilvie & Pringle 2002, hereafter LOP02)
suggested a conflict with the Bardeen-Petterson picture — finding
that the black hole spin could drive the disc tilt into a steady state
that is oscillatory and non-zero. This implies that the inner edge
of the disc may be misaligned with respect to the black hole spin.
As simple pictures of gas accretion favour alignment of the outer
accretion disc with the galaxy disc, this has been suggested as an
explanation for the observed random orientation of jets with respect
to their host galaxies (Kinney et al. 2000; LOP02). However, unlike
the diffusive regime for which there now exists a full non-linear the-
ory describing warps of arbitrary amplitude and α (Ogilvie 1999,
2000) only linear theory exists for the bending wave regime (Pa-
paloizou & Lin 1995; Lubow & Ogilvie 2000; LOP02; though see
Ogilvie 2006); hence these studies apply only to small amplitude
warps and could not account for non-linear effects.

The first 3D numerical simulations of the Bardeen-Petterson
effect were performed by Nelson & Papaloizou (2000), using a
post-Newtonian description of the central potential. Their simu-
lations in both the wavelike and diffusive regimes largely con-
firmed the Bardeen-Petterson effect, namely an aligned inner edge,
a smooth transition to the outer disc and importantly, no evidence of

c© 2014 RAS



2 Nealon, Price & Nixon

oscillations in the tilt. The reason for the discrepancy with LOP02 is
unclear, with Nelson & Papaloizou (2000) claiming that ‘non-linear
effects lead to the damping of these short wavelength features’
whilst LOP02 show that these features are not small compared
to the local disc scale height. Further complicating matters, recent
simulations that included a full general relativistic (GR) treatment
may have found these oscillations and a non-zero tilt at the inner
edge (Fragile et al. 2007; Zhuravlev et al. 2014).

A further challenge to the Bardeen-Petterson description has
arisen from recent simulations of warped discs in the diffusive
regime (α & H/R). 3D simulations of warps in isolated discs
have demonstrated close agreement with the non-linear theory of
Ogilvie (1999) (see Lodato & Price 2010). However, in simulations
of warps driven by Lense-Thirring precession it was found that in-
stead of maintaining a smooth transition (as described by the linear
Bardeen-Petterson effect), discs break when the angle between the
disc and the black hole spin is more than a few degrees (Nixon
et al. 2012b). Rings of gas were found to be torn off the disc, pre-
cessing effectively independently before being accreted. The net
effect was a much higher accretion rate on to the black hole. Thus
the Bardeen-Petterson idea of a smooth transition does not appear
to hold in the diffusive regime for an arbitrary choice of parame-
ters. It is not clear whether or not misaligned discs in the wavelike
regime will also break.

Here we reexamine the Bardeen-Petterson effect in black hole
accretion discs. Building on the success of earlier studies we use
the SPH code PHANTOM to model warped discs in 3D (Lodato &
Price 2010; Nixon 2012; Nixon, King & Price 2012a; Nixon et al.
2012b; Facchini, Lodato & Price 2013; Nixon, King & Price 2013;
Martin et al. 2014a, Martin et al. 2014b). Here we focus on the
wavelike propagation regime (α . H/R). We start by considering
the possible reasons for the discrepancy between LOP02 and Nel-
son & Papaloizou (2000), as well as two possible complications
to the Bardeen-Petterson picture of an aligned inner disc smoothly
joined to a misaligned outer disc in Section 2. We present the nu-
merical method and tests of wavelike warp propagation with SPH
in Section 3. In Section 4 we present a suite of 3D simulations de-
signed to confirm under what circumstances the Bardeen-Petterson
description holds. In Section 5 we discuss the implications of these
and in Section 6 we outline our conclusions.

An obvious caveat is that we do not consider magnetic fields,
even though it is widely accepted that magnetorotational instabil-
ity (MRI) is the controlling mechanism for viscosity in the disc
(Balbus & Hawley 1991). However, we can still capture the dom-
inant behaviour in the disc as magnetic fields have been shown to
have little effect on the geometrical evolution (Sorathia, Krolik &
Hawley 2013). We also follow Nelson & Papaloizou (2000) in us-
ing using a post-Newtonian approach instead of general relativity
(GR). As we will see, one of the findings of this paper is that this
approximation must be considered carefully in order to capture the
combination of relativistic effects that lead to tilt oscillations.

2 DOES THE BARDEEN-PETTERSON EFFECT HOLD
IN THE WAVELIKE REGIME?

We consider three possible ways that the Bardeen-Petterson effect
may be violated in wavelike discs. Firstly, radial oscillations in the
tilt of the disc may prevent the disc from aligning at the inner edge.
Secondly, the smooth transition between aligned and misaligned
material may be broken if the disc tears, as has been observed in the
diffusive regime (Nixon & King 2012; Nixon et al. 2012b). Finally,

it may not be possible for the disc to find a steady state if the disc
is relatively thick and the viscous time is short.

2.1 Is the inner disc aligned?

LOP02 considered warps in geometrically thin, almost Keplerian
discs described by a surface density Σ(R) and angular velocity
Ω(R). The scale-height of the disc is given by H(R) ≡ cs/Ω,
where cs(R) is the sound speed in the disc. Their description is
one dimensional in the sense that the total angular momentum in
the disc L is a function only of the cylindrical radial coordinate,
R. The disc is then discretised into a series of rings, each de-
scribed by the orientation of its tilt and twist angle. The tilt an-
gle β is measured from the z-axis, and if this angle varies with
radius the disc is considered to be warped. The twist angle γ is
measured from an axis that is perpendicular to the z-axis, and sim-
ilarly, if the twist angle varies with radius the disc is twisted. These
two angles can be related to the unit angular momentum vector by
l = L/L = (cos γ sinβ, sin γ sinβ, cosβ) (Pringle 1996).

We assume an α disc viscosity where ν = αcsH (Shakura
& Sunyaev 1973). For accretion discs with α . H/R, the warp
propagates as a dispersive wave (Papaloizou & Pringle 1983; Pa-
paloizou & Lin 1995). Assuming that the disc is nearly Keple-
rian and not self-gravitating, the equations of motion describing the
wave propagation are (Lubow & Ogilvie 2000; Lubow et al. 2002)

ΣR2Ω
∂l
∂t

=
1

R

∂G
∂R

+ T, (1)

∂G
∂t
−
(

Ω2 − κ2

2Ω

)
l× G + αΩG = ΣR3Ω

c2s
4

∂l
∂R

. (2)

Here κ is the epicyclic frequency, G represents the internal
horizontal torque in the disc and T is the external torque per unit
area. LOP02 chose a complex representation where the warp is
given by W = lx + ily and the internal torque as G = Gx + iGy .
This allows Equations 1 and 2 to be rewritten as

ΣR2Ω

[
∂W

∂t
− i
(

Ω2 − Ω2
z
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=

1
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2Ω

)
G+ αΩG =

PR3Ω

4

∂W

∂R
. (4)

These equations describe the propagation of a warp in the linear
regime, and were solved numerically by LOP02 to find the steady
state shape of the disc around a Kerr black hole. In this case the
apsidal and nodal precession frequencies in the disc (scaled by Ω)
can be approximated to first order from the Kerr metric as (Kato
1990)

ηLOP =
κ2 − Ω2

2Ω2
= −3

2

Rs

R
, (5)

ζLOP =
Ω2
z − Ω2

2Ω2
= − a√

2

(
Rs

R

)3/2

, (6)

where Rs = 2GM/c2 and a is the black hole spin. These fre-
quencies are used in the solution by inserting them directly into
Equations 3 and 4. An example of the solution by LOP02 is shown
in the left of Figure 1, with the same parameters used in their work.
The steady state solution is formed from the interaction of the ingo-
ing and the outgoing bending waves, where the outgoing waves are
created by the reflection of the ingoing waves at the inner boundary
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Figure 1. The steady state tilt profile found by LOP02, as in their Figure 3 and shown to the same time (at eight equally spaced times). The original apsidal
and nodal frequencies are used in the left panel (Equations 5 and 6) with the same sign. In the right panel we have reversed the sign of the nodal frequency so
the precession frequencies have different signs, and there are no oscillations present in this steady state (similar to LOP02, Figure 6). Here the tilt is shown as
a fraction of the maximum tilt, the initial condition is shown with the dashed line and Rin = 4Rg.

(LOP02). Here the oscillatory behaviour of the steady state near the
inner edge is clear, as is the non-zero tilt at the inner edge.

It is known that the relative signs of the apsidal and nodal
frequencies determines whether the solution is oscillatory or not
(Ivanov & Illarionov 1997). The frequencies used by LOP02 have
the same sign, leading to radial oscillations in the steady state tilt
profile. We confirm that the oscillatory profile is dependent only on
the signs of the frequencies by changing the sign of ζLOP (equiva-
lent to modelling a retrograde black hole, see LOP02, Figure 6) in
the right hand panel of Figure 1. The two solutions evolve in the
same manner with the exception of the oscillations near the inner
edge.

While one is free to set the precession frequencies directly
when solving Equations 3 and 4, in 3D the nodal precession can
be induced directly (e.g. using the post-Newtonian description of
Lense-Thirring precession from a spinning black hole) and the ap-
sidal precession (i.e. Einstein precession) arises indirectly from the
central potential. Hence, it is possible for the choice of potential
to preclude oscillations from the steady state solution in 3D sim-
ulations. It is then not surprising that simulations that do not take
the apsidal precession into account as above also do not report tilt
oscillations (Sorathia et al. 2013). However, simulations by Nelson
& Papaloizou (2000) did make use of a potential that resulted in
apsidal and nodal precession frequencies with the same sign but
did not find oscillations. Here we use high resolution simulations
along with a potential that leads to precession frequencies of the
same sign to investigate this discrepancy.

2.2 When does the disc break?

The derivation of Equations 1 and 2 assumes that the inclination of
the disc is linear. From previous results in the non-linear regime we
would anticipate that the disc may break when the external torque
applied to the disc is stronger than the internal torque. Here the
internal disc communication is governed by a combination of pres-
sure and viscosity. The viscous torque that acts between successive,
discrete rings in the disc is given by (Lynden-Bell & Pringle 1974)

G = 3πνΣ(GMR)1/2. (7)

Lense-Thirring precession causes the rings that make up the disc to
precess. Per unit area on the disc, this torque is given by (e.g. Nixon
et al. 2012b)

T =
GM

2a
ΣR2Ω| sin θ|

(
Rg

R

)3

, (8)

whereRg = GM/c2, a is the black hole spin and θ is the angle be-
tween the plane of the disc and the direction of the black hole spin.
If the external torque applied to the disc is greater than the internal
torque maintaining the disc, the rings will precess independently
faster than the disc is able to communicate the precession (Nixon
et al. 2012b). This will result in the disc being separated and break-
ing, perhaps into differentially precessing rings. Assuming that the
disc has no initial warp and that internal communication is dom-
inated by viscosity, a comparison of the above torques predicts a
maximum radius that it is possible for this to occur (Nixon et al.
2013)

Rbreak .

(
4a

3α
| sin θ|

(
H

R

)−1
)2/3

Rg. (9)

This approximate relationship places an upper bound on the break-
ing radius of the disc at a given angle. For the typical parame-
ters used in this paper, we have H/R = 0.05, Rout = 40Rin,
α = 0.01 and a = 0.9. At the outer edge of the disc, the above
relation then reduces to

Rbreak . 45Rin (sin θ)2/3 Rg. (10)

This predicts that tearing may occur in the disc for inclina-
tions of more than 6◦. At this inclination or greater one would ex-
pect the discs to break rather than align. However, in the bending
wave regime that we consider here, the internal communication is
dominated by pressure. In this case we can estimate the radius at
which the disc will break by comparing the sound crossing and the
precession timescales in the disc. Following Nixon et al. (2013) and
assuming that the disc is inviscid (and hence not taking into account
any wave damping) we find that

Rbreak,t .

(
4a| sin θ|R

H

)2/3

Rg. (11)
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We therefore only expect the disc to break closer to the black hole
than Equation 10.

2.3 Can the disc accrete misaligned?

A further assumption made in developing Equations 1 and 2 was
that the viscous timescale in the disc is much larger than any other
timescale, equivalent to assuming that the disc is replenished from
radii outside the computational domain, or α � H/R (Lubow
et al. 2002). This implies that the surface density profile does not
change during the evolution of these equations, which is valid until
the warp reaches the outer boundary. We can quantify this approx-
imation during the evolution of the equations by considering the
ratio of the wave and viscous timescales (as in Lodato & Pringle
2006; Facchini et al. 2013)

twave

tν
=

2Rν

csR2
= 2α

H

R
. (12)

For α < H/R � 1, the above relation implies that the viscous
time is much greater than the sound crossing time that the warp
communicates, so we can neglect mass accretion. Indeed, LOP02
neglected the evolution of the surface density profile completely in
their solution, equivalent to assuming no mass is accreted at all.
However for their disc H/R = 0.1030, and so it is not clear that
this assumption holds. Additionally, the viscous time can be written
as

tν =
1

αΩ

(
H

R

)−2

. (13)

In this form, it is clear that increasing the aspect ratio of a disc re-
sults in a significant decrease in the viscous time. At a given radius
R, when the viscous timescale is comparable to (or smaller than)
the precession timescale at that same radius, accretion dominates.
In thick discs (or tori) it may then be possible for the material in
the outer disc to be accreted before it has a chance to align. The tilt
profile in this case will not reach a steady state but instead be deter-
mined by the inward flux of angular momentum. Thus in relatively
thick discs no tilt oscillations would be expected.

3 NUMERICAL METHOD

We use 3D simulations to investigate whether the Bardeen-
Petterson effect holds in accretion discs focussing on tilt oscilla-
tions, large inclinations and misaligned accretion in the limit where
α . H/R. We use PHANTOM, an efficient and low memory SPH
code (Lodato & Price 2010; Price & Federrath 2010; Price 2012).
This code has been widely used to model warped discs in the diffu-
sive regime and to investigate related problems with warped wave-
like discs (see Section 1). The physical disc viscosity in the disc is
represented in the code using the artificial viscosity (αAV) method
outlined in Lodato & Price (2010).

3.1 Modelling Lense-Thirring Precession

The Lense-Thirring precession exerted by the black hole is mod-
elled using a post-Newtonian approximation, represented as a first
order (in v/c) correction in the momentum equation. Taking this
into account, the momentum equation becomes (Nelson & Pa-
paloizou 2000)

dv
dt

= −1

ρ
∇P + v× h−∇Φ + Svisc. (14)

Here Svisc is the viscous force per unit mass and v×h is the gravo-
magnetic force per unit mass, with h given by

h =
2S
R3
− 6(S · r)r

R5
, (15)

and S = aG2M2k/c3, pointing in same direction as the black hole
spin.

Assuming a thin disc with linear disturbances, the quantity
v× h can be expressed as

v× h =
2S
(

v× k̂
)

R3
+

6S(zr× v)

R5
. (16)

This expression is mainly useful for setting up the initial orbital
velocities for the disc particles (Section 3.2).

3.1.1 Implementation in Leapfrog

A complication to the implementation in the code is that we use
a leapfrog integrator in the ‘Velocity-Verlet’ form, where the po-
sitions and velocities of the particles are updated from time tn to
tn+1 according to

vn+ 1
2 = vn +

1

2
∆tan, (17)

xn+1 = xn + ∆tvn+ 1
2 , (18)

vn+1 = vn+ 1
2 +

1

2
∆tan+1. (19)

However, the acceleration caused by Lense-Thirring precession de-
pends on velocity. Thus (19) becomes implicit. This can be easily
solved by writing the corrector step in the form

vn+1 = vn+ 1
2 +

1

2
∆tan+1

pos +
1

2
∆t
(
vn+1 × hn+1) , (20)

where an+1
pos contains the position-dependent terms. This forms a

set of three linear equations for each component of vn+1, that we
solve analytically by inverting the resulting 3 x 3 matrix.

3.1.2 Potentials

We make use of two gravitational potentials in this work. The first
was previously introduced by Nelson & Papaloizou (2000), referred
to as the Einstein potential (see their Equation 8). In our notation it
is given as

ΦE(R) = −GM
R

(
1 +

3Rg

R

)
. (21)

This potential was introduced because it prevents the gravitational
force tending to infinity as the radius decreases. However, it also
results in the correct apsidal precession frequency at large distances
from the black hole and has the same sign as the nodal frequency
(Nelson & Papaloizou 2000). This is in contrast to the standard
Keplerian potential

Φ(R) = −GM
R

. (22)

The standard potential (22) was used in all of the non-linear simu-
lations, except for Figures 4–7 where (21) was used.
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3.1.3 Precession Frequencies

We calculate the apsidal and nodal precession frequencies in our
disc using the standard (Newtonian) definitions for the epicyclic
and vertical frequencies,

κ2 = 4Ω2 +R
d

dR
(Ω2), (23)

Ω2
z ≡

∂2Φ(R)

∂z2

∣∣∣∣
z=0

. (24)

Following Nelson & Papaloizou (2000), we compute these using
an effective potential that takes in to account the second and third
terms of Equation 14,

Φeff(R) = Φ(R) +
4S
√
GM

5R5/2
− 6Sz2

√
GM

R9/2
. (25)

This potential accounts for both the normal Keplerian potential and
the correction due to the v × h term, where Φ(R) could be repre-
sented by either Equation 21 or 22. Firstly considering the Einstein
potential, using Equations 23 and 24 the post-Newtonian apsidal
and nodal precession frequencies (scaled by Ω) are given by

ηE =
−1

2Ω2

[
6GMRg
R4

− 3S
√
GM

R9/2

]
, (26)

ζE =
−2S
√
GM

R9/2Ω2
, (27)

where Ω2 is given by

Ω2
E =

GM

R3

(
1 +

6Rg

R

)
− 2S

√
GM

R9/2
. (28)

As the signs of the apsidal and nodal precession frequencies here
are the same throughout the disc, this potential will allow an
oscillatory profile to develop. Considering now a standard post-
Newtonian potential, given by Equation 22, we find the apsidal and
nodal precession frequencies to be (again scaled by Ω)

ηPN =
3S

2
√
GMR3/2 − 4S

, (29)

ζPN =
−4S

2
√
GMR3/2 − 4S

. (30)

Here we note an important difference with respect to the solution
used by LOP02. As the signs of the precession frequencies here are
opposite, the steady state tilt profile will not have oscillations if the
potential in Equation 22 is used.

3.2 Initial Conditions and Scope

Unless otherwise stated, the discs presented all made use of 107

particles, and simulations with 106 and 105 were also conducted
to check convergence. We note that each time the resolution is
changed between simulations with otherwise the same parameters,
the artificial viscosity is altered according to the scaling described
in Lodato & Price (2010) so that the discs have the same α inde-
pendent of which resolution is used. The locally isothermal sound
speed in the disc was set to cs(R) = cs,in(R/Rin)−q and the sur-
face density profile Σ(R) = Σin(R/Rin)−p, where p = 3/2 and
q = 3/4 to give a constant α viscosity in the disc and uniform
resolution (Lodato & Pringle 2007). Each disc was initially set up
aligned to the black hole spin, with the particles arranged using a

Simulation θ (◦) a α αAV

PS1 30 0.1 0.01 0.395
PS2 30 0.1 0.03 1.186
PS3 30 0.3 0.01 0.395
PS4 30 0.3 0.03 1.186
PS5 30 0.5 0.01 0.395
PS6 30 0.5 0.03 1.186
PS7 30 0.7 0.01 0.395
PS8 30 0.7 0.03 1.186
PS9 30 0.9 0.01 0.395
PS10 30 0.9 0.03 0.186

A1 0 0.9 0.01 0.395
A2 15 0.9 0.01 0.395
A3 30 0.9 0.01 0.395
A4 45 0.9 0.01 0.395
A5 60 0.9 0.01 0.395
A6 90 0.9 0.01 0.395
A7 120 0.9 0.01 0.395
A8 150 0.9 0.01 0.395

Table 1. Simulation parameters, including the spin (a) and Shakura & Sun-
yaev (1973) viscosity (α) and artificial viscosity (αAV ). Unless otherwise
noted, the accretion discs also had H/R = 0.05, an outer radius of 40Rin

and made use of 107 particles.

Monte Carlo placement method. Each particle was then rotated by
the inclination angle and assigned a velocity according to the fol-
lowing expression derived from Equation 16,

vφ =
v4

k

c3

[√
a2 +

R3

R3
g

− a

]
cos(θ), (31)

where vk is the Keplerian orbital velocity. The discs were therefore
initially tilted to the black hole spin, but not warped. The results
presented below have time shown in orbits at the inner edge and
show the tilt as a function of radius only. This was found from the
simulations using the method outlined in Section 3.2.6 of Lodato
& Price (2010) where we used N = 300 spherical shells. For all
of the simulations the inner radius was set as Rin = 4Rg, in order
to compare to the LOP02 1D code. At small radii we note that the
absence of GR limits the validity of our results, and indeed the need
to carefully account for relativistic effects is one of our findings.

3.3 Test of wavelike warp propagation

To confirm that we can correctly describe the propagation of warps
in the wavelike regime, we use the test described by Fragner & Nel-
son (2010). They simulated a wavelike accretion disc with a point
mass potential and compared to a 1D calculation, finding agree-
ment at the∼ 10% level. We choose to compare to this 1D solution
instead of the solution from Equations 1 and 2 because the linear
solution from Fragner & Nelson (2010) allows the surface density
to evolve, as occurs in our 3D simulations.

We conduct a simulation using the same parameters as cited
in their Figure 1, with H/R = 0.03 and α = 0.001 and an initial
disturbance of 5◦. In this case we do not drive the evolution with
Lense-Thirring precession, so that we can isolate the behaviour due
to warp propagation only. Our results are shown in Figure 2 using
106 and 107 particles. As the disc evolves, the disturbance splits
into two waves travelling at half the sound speed (as predicted by
Papaloizou & Lin 1995); one inward and the other outward. By the
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Figure 2. Evolution of bending waves in a disc, not subject to Lense-
Thirring precession. The green (106) and red (107) lines show the results
from our 3D simulation. The black line shows the results from the 1D code
of Fragner & Nelson (Figure 1 2010), using the same initial parameters.
The agreement between these two solutions confirms that SPH can be used
to describe the evolution of warp propagation in the wavelike regime.

end of the simulation these have fully separated and are beginning
to interact with the boundaries.

The SPH solution shows the same behaviour as the 1D solu-
tion, and increasing the resolution reduces the discrepancy. How-
ever, at late times the inner edge of the disc there is increasing
disagreement, most likely due to differences in the inner bound-
ary condition. This test confirms that PHANTOM can be used to
describe the propagation of warps in the wavelike regime.

3.4 Test of Lense-Thirring precession

We also perform a simple test of the Lense-Thirring precession.
We simulate a disc consisting of test particles with no viscosity and
zero sound speed (i.e. α = cs = 0) subject to Lense-Thirring pre-
cession. The initial velocities are set using Equation 31 and the disc
is inclined at 30◦. We then calculate the precession in the disc as a
function of the radius using the procedure outlined in Appendix A.

Figure 3 shows the comparison between the precession mea-
sured from our disc and the predicted precession in the disc, given
by tp = R3/(2a). We find agreement to within measurement un-
certainties throughout the disc.
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Figure 3. Precession timescale measured from an inviscid and pressureless
3D disc as a function of radius (black circles), compared to the expected
Lense-Thirring precession (red line). Rin = 4Rg.

4 RESULTS

4.1 Tilt Oscillations

We first investigated whether or not the tilt oscillations predicted
by Lubow et al. (2002) are physical using 3D simulations. The disc
is initiated with a constant misalignment of 3◦, within the linear
regime required by Equations 1 and 2. We chose parameters for
our simulation similar to that of Lubow et al. (2002), with the ex-
ception of the surface density profile, the black hole spin and the
disc thickness. Additionally, we made use of the Einstein potential
outlined in Equation 21, in order to give precession frequencies of
the same sign (Equations 26 and 27). We set p = 1.5 and q = 0.75
so that the disc is uniformly resolved, as discussed in Section 3.2.
The disadvantage is that this results in lower amplitude oscillations
in the 1D code. To combat this we encourage larger amplitude os-
cillations by increasing the spin to a = 0.9 and decreasing the disc
thickness to H/R = 0.05. The evolution of the tilt as a function
of radius is shown in Figure 4 from a simulation employing 107

particles.
One of the main differences between this simulation and those

conducted by Nelson & Papaloizou (2000) is the angle of inclina-
tion. While our 3◦ initial tilt was well in the linear regime required
by the analytic description in Equations 1 and 2, the minimum in-
clination used by Nelson & Papaloizou (2000) was 10◦. We explore
the effect of non-linear inclinations in this potential by misaligning
the same disc at 15◦. Figure 5 shows a cross section of density in
the inner disc from this calculation. The tilt profile after ∼ 600 or-
bits is qualitatively similar to Figure 4, showing the same evolution.
The quantitative tilt evolution is resolution-dependent, but never-
theless a non-zero tilt and oscillations were found at both medium
(106 particles) and high (107 particles) resolution.

Figure 6 shows a resolution study of the tilt and surface den-
sity profiles using 105, 106 and 107 particles. The main artefact of
low resolution is that accretion occurs faster and as a result there
is less mass at the inner edge in the lower resolution calculations.
Comparison of the surface density profiles indicates that Σ(R) is
not fully converged near the inner edge, which has a dramatic effect
on the tilt profiles. However, in all discs there is a non-zero tilt at
the inner edge and in the 106 and 107 discs radial oscillations are
observed. The wavelength of these oscillations is consistent with
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Figure 4. Time evolution of the angle between the disc plane and the black hole spin as a function of radius in a 3D disc subject to Lense-Thirring precession,
using similar parameters to Lubow et al. (2002) and the same times as in Figure 1. The shape of this profile depends sensitively on the surface density at the
inner edge and hence on resolution (see Figure 6). The right panel shows a zoom-in of the inner disc.

Figure 5. Cross-section view of the steady-state tilt oscillation formed in a disc initially inclined at 15◦ to the black hole spin (spin axis is vertical with respect
to the page, i.e. along the z axis). The colour scale shows density. Disc parameters are the same as in Figure 4, but with a larger initial inclination.

the criteria given by Lubow et al. (2002). Even using the preces-
sion frequencies and surface density profiles in the 1D code that
are appropriate to the 3D simulations (Equations 26 and 27) still
does not provide a close match with the 3D results. It is not clear if
this discrepancy is due to non-linear fluid effects, e.g. as discussed
by Nelson & Papaloizou (2000), or simply requires higher resolu-
tion calculations to obtain numerically converged results. However
it is clear that with the appropriate potential and system parameters,
the disc can display radial tilt oscillations as predicted by Ivanov &
Illarionov (1997) and LOP02.

Despite the resolution-dependence of our results, we were still
able to observe tilt oscillations at resolutions used by Nelson & Pa-
paloizou (2000) so long as Einstein precession was accounted for.
We further investigated whether this might be due to the differ-
ences in the artificial viscosity parameters used, as we set the Von
Neumann-Richtmyer viscosity coefficient βAV = 2.0 (see Price
2012) for all of our simulations whilst Nelson & Papaloizou (2000)
used βAV = 0. A nonzero βAV viscosity is required to prevent
particle penetration (Monaghan 1989) and the absence of bulk vis-
cosity is known to be problematic in disc simulations (Lodato &
Price 2010). Thus with βAV = 0, the simulations of Nelson &
Papaloizou (2000) might not have captured the wave interactions
that create the tilt oscillations and the absence of bulk viscosity.

To check this we conduct a low-resolution simulation equivalent to
simulation E1 of Nelson & Papaloizou (2000) and βAV = 0. Fig-
ure 7 shows the results (black solid line), compared to an equivalent
simulation with βAV = 2 (red dashed line) and also compared to a
higher resolution simulations. At high resolution we find tilt oscil-
lations regardless of the value of βAV (green solid and blue dotted
lines) but we find that using βAV = 0 can indeed erase the tilt
oscillations at low resolution. The lower panel of Figure 7 shows
that this is not simply due to the effect on Σ(R), since two of the
calculations show very similar surface density profiles but rather
different evolutions of the inner disc tilt.

4.2 When does the disc break?

4.2.1 Bardeen-Petterson Alignment

A second possible violation of the Bardeen-Petterson picture may
be that the disc breaks instead of maintaining a smooth transition
between an aligned inner disc and a misaligned outer disc. In or-
der to investigate this, we simulate a range of discs at 30◦ whilst
varying α and a according to the list PS1-10 in Table 3.1.3. Here,
for simplicity, we make use of a standard potential given by Equa-
tion 22, and hence do not expect any oscillatory behaviour.

Figure 8 shows a 3D rendering of density in one such simu-
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Figure 6. Resolution study showing the inclination (tilt angle) and surface
density as a function of radius at the final time of the disc shown in Figure 4,
using 105 (long dashed green), 106 (short dashed red) and 107 (solid black)
particles. Increasing the resolution better resolves the surface density profile
at the inner edge, which strongly affects the final tilt profile found.

lation with a = 0.9 and α = 0.03 at three different resolutions
(PS10). Except for the potential used, this disc has similar param-
eters to simulation E3 of Nelson & Papaloizou (2000) which made
use of 52, 000 particles across a larger radial extent than our sim-
ulations, representing a lower resolution than any of those shown
in Figure 8. At our lowest resolution (left panel of Figure 8), we
also observe the inner disc aligning and smoothly transitioning to
an outer, misaligned disc (see their Figure 12). However, at higher
resolutions this behaviour is no longer observed — the disc instead
breaks into two distinct sections, with the inner disc aligned with
the black hole spin and the outer disc remaining misaligned.

Figure 9 shows that resolving disc breaking is mainly a ques-
tion of resolving the disc scale height. For the lowest resolution
simulations the resolution length is greater than the scale height of
the disc and hence disc breaking (on a length scale smaller thanH)
cannot be resolved and a smooth transition is observed. By con-
trast, the two higher resolutions are able to resolve disc breaking.
Figure 10 shows the same resolution study performed in Figure 8
for all of our discs at 30◦, where the green line shows simulations
that made use of 105 particles, red shows 106 and black shows 107

particles. The discs are shown after 1500 orbits at the inner edge,
allowing the warp to propagate all the way to the outer radius. In-
creasing the spin of the black hole increases the rate at which the
innermost part of the disc aligns.

Across all of the parameters chosen here, increasing the reso-
lution changes the behaviour from the smooth tilt profile observed
by Nelson & Papaloizou (2000) to a steepening of the tilt profile
and ultimately a disc that is broken into distinct sections. The higher
resolution results show an aligned inner edge, a misaligned outer
edge and a sharp tilt profile connecting these, representing a break
in the disc. The discs simulated with lower spins appear to steepen
and tear faster than those with higher spin as the break occurs fur-
ther out (and hence a longer precession time). This is observed most
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Figure 7. The effect of bulk viscosity on the final tilt of the accretion disc.
The solid, black line uses the same parameters as simulation E1 of Nelson
& Papaloizou (2000), with 5.2 × 104 particles and has no bulk viscosity.
Bulk viscosity is used with both the red (short dashes, 5.2× 105 particles)
and green (long dashes, 5.2 × 106 particles) lines. At higher resolution
and with bulk viscosity tilt oscillations are resolved, but the innermost parts
of the disc remain unconverged. Here Rg = 0.04 and the disc has been
evolved until the warp has reached the outer edge.

clearly between the low viscosity, high spin cases. At a = 0.5, the
tilt steepened and the disc tore before the end of the simulation. For
the disc with a = 0.7, the tilt began steepening near the end of the
simulation but was not able to separate, whilst at a = 0.9 the disc
has not yet begun steepening. We have confirmed that this is the
case by extending the high resolution simulations of the a = 0.9
case, and indeed observed steepening to occur at later times.

As with the previous simulations, Figure 10 demonstrates that
the simulations are not fully converged, especially when consid-
ering the low spin cases (a < 0.5). For these discs, the discrep-
ancy in the inner tilt is again due to the mass accreted at the inner
edge of the disc. At low resolutions the inner part of the disc is ac-
creted faster, resulting in less mass near the inner edge. The same
Lense-Thirring torque then acts on less mass, and is thus not able
to align the disc to the same extent. At increasing spins this effect
is observed less, as the higher spin provides a larger torque and so
even the lowest resolution discs are able to align. In the discs with
a < 0.5, increasing the resolution leads to a more distinct tear in
the disc suggesting that our results are consistent. Hence we can
be confident that these discs do tear, and present an upper limit on
the radius at which this occurs. As the tearing occurs outside of the
radius where oscillations were found in Section 4.1, using similar
parameters, this behaviour should not be affected by our choice of
potential.

4.2.2 Disc Tearing

To investigate the dependence of disc tearing on the misalignment
between the disc and the black hole spin in the wavelike regime

c© 2014 RAS, MNRAS 000, 1–15
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Figure 8. Structure of the disc with a = 0.9 and α = 0.03 at increasing numerical resolution (left to right). At low resolution the Bardeen-Petterson Effect is
observed, similar to the results of Nelson & Papaloizou (2000), but at high resolution the disc distinctly tears into two separate sections. The colour indicates
density, with white being highest.

we simulated a suite of discs at different inclinations. We again
make use of the traditional post-Newtonian approximation given
by Equation 25. We held α = 0.01 and a = 0.9 constant and
varied the inclination of the disc between 0◦ (aligned) and 150◦,
noted in Table 3.1.3 with A1-8. Figure 11 shows these simulations
after more than 1500 orbits measured at the inner edge. Each disc
was initially tilted but not warped. As the simulation progressed, a
warp evolved in response to the Lense-Thirring torque and in the
higher inclination cases resulted in the disc breaking.

At 15◦ (top right of Figure 11) the disc was observed to
smoothly align to the spin of the black hole. At the end of the simu-
lation, the tilt of the disc was consistent with the Bardeen-Petterson
effect and is similar to results seen in previous simulations at 10◦ by
Nelson & Papaloizou (2000). Extending the lower resolution ver-
sion of this simulation (with 106 particles) for twice as long shows
that the disc continues to align with the black hole spin, implying
that the steady state for this disc is full alignment. Inclining the disc
at 30◦ also did not yet result in disc tearing, however this is because
for this particular choice of viscosity and spin this simulation has
not been run long enough (see Section 4.2.1)

For discs at higher inclinations (& 45◦; second, third and
fourth rows of Figure 11), the inner section of the disc was found to
align within 50 orbits and a smooth transition was formed between
this and the outer region of the disc. This transition then steepened
until the disc broke into two sections that were connected by pre-
cessing rings of material. Multiple rings of material were torn off
from the outer, misaligned disc and each was observed to precess
effectively independently. Towards the end of the simulations, up to
two rings were precessing at the same time (for example, 120◦ disc
of Figure 11) and were present for up to ∼ 400 orbits. Eventually
each of these rings settled with and increased the inner, aligned re-
gion of the disc. The disc inclined at 90◦ (right hand panel in third
row of Figure 11) also developed precessing rings of material that
were accreted. However, for this inclination no inner aligned disc
was observed and the rings of material were accreted directly onto
the black hole.

Figure 12 shows the instantaneous mass accretion rate by the
discs at different angles. It can be seen that inclining the disc to the
spin of the black hole increases the rate of accretion by more than
an order of magnitude when compared to an aligned disc, similar to
previous findings (Nixon et al. 2012b). The discs that form an inner
aligned disc and precessing rings have even higher accretion rates,
as the inner disc is continually fed by the rings as they align. When
taken in context with the results in the diffusive regime (Nixon et al.
2012b), this implies that regardless of whether the disc is thin or
thick, mass accretion is faster when the disc is inclined.
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Figure 9. Resolution length as a fraction of the disc scale height (〈h〉/H)
for the three resolutions (105 in green long dashes, 106 in short red dashes
and 107 in solid black) shown in Figure 8. As disc breaking occurs on length
scales smaller than the scale height of the disc, the lowest resolution simu-
lations here cannot resolve breaking behaviour (as the resolution length is
greater than the scale height throughout the disc). The two higher resolution
simulations are able to resolve this behaviour.

Disc tearing has also been observed in the wavelike disc
regime for circumbinary discs inclined at high angles (Facchini
et al. 2013). In a simulation of a circumbinary disc inclined at 60◦,
their disc separates into two sections and the inner one precessed
effectively independently of the outer disc. As their disc is thicker
than ours (H/R = 0.1) and has a higher viscosity (α = 0.05), we
would anticipate that a strong external torque would be required to
tear the disc, and we observe their disc does tear at a smaller radius
than any of ours.

4.2.3 Location of tearing radius

The disc is expected to tear when the Lense-Thirring torque is
larger than the internal communication in the disc. If the internal
communication in the disc is governed by viscosity, the torques
given in Section 2.2 can be used to estimate the upper breaking
radius given in Equation 9. However in our simulations the disc
internal dynamics are dominated by pressure rather than viscosity,
hence Equation 11 may be more appropriate.

As the Lense-Thirring torque has a radial dependence, it is
largest in the inner most parts of the disc and it is reasonable that
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Figure 10. Disc tearing for different spin and viscosity combinations, with the same initial tilt of 30◦ and 105 particles shown in green (wide dashes), 106

particles shown in red (dashes) and 107 particles shown in black (solid). At the lowest resolution we observe the Bardeen-Petterson effect complete with a
smooth transition for most discs. Increasing the resolution results in disc tearing (Bardeen-Petterson alignment) independent of our choice of viscosity or spin.
As we do not include the affect of Einstein precession, we do not observe radial tilt oscillations in these discs.

these discs will break at a radius smaller than predicted by Equa-
tion 9. Figure 13 shows a comparison of the estimated break radius
for the simulations inclined at 30◦ compared to the prediction from
Equation 9 (upper line; assuming that α = 0.02, the average for
our simulations) and from Equation 11 (lower line). We find that
the disc does break at radii lower than our prediction from the vis-
cous torques alone, and that the breaking radius is intermediate be-
tween the predictions from Equations 9 and 11, indicating that the
torques in our discs lie between these two extremes. The increasing
uncertainties at low spin correspond to the decreasing convergence
of our simulations due to mass accretion at the inner edge, seen in
Figure 10.

The discrepancy between the predicted and the observed
breaking radius appears to occur at all inclinations. Using Equa-
tion 9, the breaking radius for the 60◦ disc is found to be Rbreak ∼
41Rin which is greater than Rout. However this disc is observed to
break (at R . 18Rin), in line with the results of Figure 13. If we
now consider the 15◦ disc, it is predicted to break at Rbreak ∼
18Rin but from the simulation we do not observe tearing. This
could occur if the actual tearing radius is less than Rin, consistent
with the previous results.

4.2.4 Width of the rings

The rings that are torn off during the simulations appear to be
much wider than those found in the diffusive regime (Nixon et al.
2012b), some up to ∆R/H(R) ∼ 25 (where ∆R represents the
ring width). It is possible for rings to form when the disc is able
to break and differential precession is present, such as when the
disc is subjected to Lense-Thirring precession. We therefore expect
the width of the ring to be determined by a relative comparison be-
tween the sound crossing and precessional timescales in the disc.
We can approximate this by letting ∆R be the distance that a wave
can travel in a precession time such that∫

2

cs
dR ∝ tp, (32)

across the ring. If we assume that the inner edge of the ring is at
Rin = R −∆R/2, the outer edge at Rout = R + ∆R/2 and use
the expression for the sound speed, we get

R3 ∝ a

(q + 1)

[
1−

(
Rin

Rout

)q+1
]

Rout

cs(Rout)
, (33)
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Figure 11. 3D renderings of discs that were initially misaligned with the black hole spin at various angles, with each simulation using 107 particles and shown
after ∼ 1500 orbits. The inability of the discs inclined by more than θ & 45◦ to communicate the Lense-Thirring precession causes the formation of discrete
rings which ‘tear’ and precess effectively independently before undergoing direct cancellation of angular momentum and rapid accretion. The black hole spin
in each of these images is vertical with respect to the page (i.e. along the z axis). The same density scale is used as in Figure 8.
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Figure 12. Instantaneous mass accretion of the 0◦, 15◦, 30◦, 60◦, 90◦,
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Figure 13. Comparison of the breaking radius measured from the discs in-
clined at 30◦ with our prediction of Rbreak (upper) found by considering
the torques in the disc (Equation 9) and Rbreak,t (lower) by comparing the
sound crossing and precession timescales (Equation 11).

where R is the radius that a ring of thickness ∆R occurs at. Fig-
ure 14 compares the width of the rings measured from the simu-
lations to this prediction. Although there are large uncertainties in
the measurements the general trend of increasing ring width with
R is reproduced.

4.3 Can the disc accrete misaligned?

Previous simulations of tilted accretion discs in the wavelike
regime have not identified disc tearing when the disc is subjected to
Lense-Thirring precession. The results of these thicker discs have
found that the disc warps in the inner region, with a non-zero tilt
at the inner edge, and then precesses as a solid body (Fragile &
Anninos 2005; Fragile et al. 2007). To examine this behaviour, we
conduct a single simulation of a thick disc. We use the same param-
eters as PS9, but with an aspect ratio four times the initial value,

log R/Rin

lo
g

 W
id

th
 o

f 
th

e 
ri

n
g

/R
in

0.4 0.6 0.8 1

0

0.5

1

Figure 14. The solid line shows the expected width of each ring of gas torn
off in our simulations, calculated by comparing the precession timescale to
the distance that the wave can travel (Equation 33). The circles show the
measured ring widths from the simulations, where black circles indicate
short lived rings and red circles rings that are stable for more than ∼ 20
orbits.

such that H/R = 0.2 at the inner edge. This disc is similar to the
simulation of Fragile et al. (2007), except that it has twice the initial
tilt (and does not include magnetic fields).

The timescales for this disc are shown in the right of Fig-
ure 15. Comparison with the timescales from PS9 (left) shows
that although the precession timescale has not changed appreciably,
the viscous and sound crossing timescales have decreased substan-
tially. In the outer half of the disc we note that the viscous timescale
is the shortest, allowing the material located there to be accreted to
the inner regions faster than it can align. This leads to material be-
ing accreted before it can align with the spin of the black hole,
causing a non-zero tilt at the inner edge of the disc. A comparison
between the mass accretion of this disc and our thinner PS9 simu-
lation shows that there is more mass accreted by the thicker disc.

Simulating to approximately the same time as quoted by Frag-
ile et al. (2007), we observe the thick disc to warp in the inner re-
gions but not to tear. At this time in our thin disc simulations we
also do not observe tearing, so we continue the simulation until
approximately 200 orbits according to the time units specified by
Fragile et al. (2007) (10 times longer than their lower resolution
simulation). The results at this time are shown in Figure 16 and 17.
We do not observe the large increase in the disc tilt at the inner
edge that was found by Fragile et al. (2007) (see their Figure 12),
however in their paper this is attributed to plunging streams which
we also do not observe. Presumably this is due to our use of the
post-Newtonian approximation in Equation 25 and consistent with
the discussion in Section 3.1.3.

As the disc is four times thicker than our simulation PS9, ν
increases by a factor of 16 (even though α does not change). This
increases the internal torque in the disc by the same factor (see
Equation 7), but the external torque applied is the same as for our
disc. This should make it much harder to tear the disc, and when we
calculate the breaking radius using Equation 9 we find that it would
be R/Rin ∼ 3, inside the region where misaligned accretion is
occurring. Indeed, from our results in Section 4.2.4, we would not
expect this disc to tear at all.
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Figure 15. The timescales in our PS9 simulation (left) and a disc that is four times thicker (right). The precession timescale does not change much between
the thin and thick discs, however the sound crossing and viscous timescales decrease as the disc becomes thicker. The decrease in viscous time means that the
thicker disc is able to accrete misaligned material, preventing the development of a steady state.

5 DISCUSSION

Despite using up to 107 particles, the simulations that have been
presented are not yet converged. As shown in Figure 8 and compar-
ison of our results with Nelson & Papaloizou (2000), increasing the
resolution strongly affects the behaviour the disc displays. How-
ever, features like disc tearing and radial oscillations are present
in both the medium and high resolution simulations and so we
can draw conclusions about the qualitative behaviour. Additionally,
whilst increasing the resolution decreases the breaking radius, it
does so by a smaller amount each time, so we are confident that the
measured tearing radii for our non-linear simulations is an upper
limit and that our results are close to being converged.

The main point of discussion is why our results differ to those
found by Nelson & Papaloizou (2000). The two main factors are the
numerical resolution and the viscosity parameter βAV . Simulations
we performed at comparable resolution to Nelson & Papaloizou
(2000) showed similar behaviour — namely a smooth transition
between the aligned and misaligned regions. However, when we
increased the resolution we found that the behaviour changes and
these discs tear into two disconnected sections (the main criterion
being to adequately resolve the disc scale height). This implies that
low resolution prevented Nelson & Papaloizou (2000) from observ-
ing disc tearing. However, we also showed that the inclusion of a
β viscosity, even at low resolution, recovers steady-state oscilla-
tions in the tilt of the disc midplane with respect to the black hole
spin axis similar to those predicted by the linear theory of Ivanov
& Illarionov (1997) and LOP02. This is in contrast to the findings
in Nelson & Papaloizou (2000), where it was suggested that the tilt
oscillations were short wavelength features which could be damped
out by non-linear effects. As shown by our 15◦ simulation and in
agreement with LOP02, we found that the wavelength of the radial
oscillation is of the order of the radius and is not damped out by
such effects.

The tilt oscillations that were found at linear inclinations do
not match to the description of the 1D code by LOP02, and increas-
ing the resolution does not reduce the discrepancy. The difference
is likely due to the 1D code assuming that the viscous timescale is
negligibly large. In Section 4.3 it is found that the mass accretion is
not necessarily negligible, as for discs with a larger aspect ratio we
found it is possible for the material to accrete to the inner regions

of the disc faster than it is able to align. This causes the disc to ac-
crete misaligned material, which prevents a steady state from being
formed and confirms that it is not possible to produce a tilt profile
such as that described by the Bardeen-Petterson effect if the viscous
time is too short (as predicted by Lodato & Pringle 2006). Recently
the thinnest discs in relativistic simulations have been completed by
Morales Teixeira et al. (2014), with H/R = 0.08. Their retrograde
simulation showed partial alignment at the inner edge, but their pro-
grade simulations displayed an inner edge tilt that was greater than
the initial condition. It is also noted that the strength of the tilt oscil-
lations depends on the disc thickness, and so thick discs (and tori)
would display weak oscillations.

Perhaps the main caveat of our simulations is that we use an α
viscosity to model the discs. Whilst a comparison between a purely
hydrodynamical disc (with no explicit viscosity) and one where the
viscosity is controlled by the MRI has shown that the behaviour of
the disc is largely controlled by the hydrodynamic evolution (So-
rathia et al. 2013), for a complete picture of the disc evolution we
should include magnetic fields to self-consistently generate a turbu-
lent viscosity through the MRI. However it is not yet clear how the
MRI will respond in the presence of a warp, especially at large an-
gles. Additionally, we assume that our discs are vertically isother-
mal. Heating of the disc due to warping may further complicate this
picture (Ogilvie 2003).

For tilt oscillations and efficient wave transport to occur we
require H/R > α (Papaloizou & Lin 1995; Ivanov & Illarionov
1997). Black hole accretion discs are often expected to be geomet-
rically thin and have α ∼ 0.1 (King et al. 2007). However, for discs
which are accreting either at very sub-Eddington (. 0.1LEdd) or
near-Eddington (& LEdd) rates, the disc may become geometri-
cally thick (Narayan & Quataert 2005). So the simulations pre-
sented here may be most relevant to the low luminosity state of
X-ray binaries where the disc can be thick and α may be signifi-
cantly smaller than its usual outburst value (Smak 1984; Meyer &
Meyer-Hofmeister 1984). They are also relevant to AGN accreting
at rates greater than Eddington and to the discs formed in tidal dis-
ruption events where the initial star orbit can be highly misaligned
and the disrupted material infalling at super-Eddington rates.

c© 2014 RAS, MNRAS 000, 1–15
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Figure 16. Our thick disc simulation, similar to that of Fragile et al. (2007)
except that it is initialised at 30◦ and run for ten times longer. This disc
is not observed to tear, as expected, but warping is observed in the inner
regions and higher mass accretion than our thin disc. This figure is shown
with the same density scale as Figures 8 and 11.
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Figure 17. The final tilt profile of our thick disc simulation. Misaligned
accretion occurs at the inner edge, causing a non-zero tilt and preventing a
steady state from being formed. The inner edge features are not steady like
the results of Figure 5.

6 CONCLUSION

In this work we have re-examined the Bardeen-Petterson effect in
3D using hydrodynamical simulations of accretion discs subject to
Lense-Thirring precession, in the regime where warps propagate in
a wavelike manner (α . H/R). Our detailed conclusions are as
follows:

(i) The Bardeen-Petterson picture of an aligned inner disc
smoothly connected to a misaligned outer disc occurs only at low
inclinations and only when Einstein precession is not accounted
for. Using high resolution calculations, we find both steady state
oscillations in the disc tilt (when Einstein precession is included)
and that discs break when they are relatively thin and highly mis-
aligned to the black hole spin.

(ii) We recover steady tilt oscillations for the first time in a 3D
hydrodynamics code, as predicted by LOP02. However, as the 1D
code developed by LOP02 assumes that mass accretion is negligi-
ble, discrepancies remain between the predicted tilt profile and our
3D results.

(iii) Tilt oscillations are also present at higher inclinations (15◦),

showing that non-linear effects do not necessarily damp this be-
haviour.

(iv) Disc ‘tearing’ or ‘breaking’, rather than a smooth transition
between spin-aligned and spin-misaligned parts of the disc, appears
to be an inevitable outcome for accretion discs inclined to the black
hole spin by more than a few degrees. This occurs regardless of
whether the propagation of bending waves is governed by pressure
forces or viscous stresses.

(v) Tearing of the disc leads to rings that precess effectively
independently. As in the diffusive regime, this can lead to direct
cancellation of angular momentum and hence faster accretion. The
main difference in the wavelike regime is that the rings are wider,
with the width determined by the ratio of precession to sound cross-
ing time rather than the disc scale-height.

(vi) The Bardeen-Petterson effect cannot occur in discs where
the viscous time is comparable to the alignment time. In this case
the disc material is accreted misaligned. Hence it is possible to have
discs that are misaligned with respect to the black hole spin even
in the absence of tilt oscillations, but this can only occur at high Ṁ
(i.e. for thick discs).

(vii) Mass accretion rates can be enhanced by an order of mag-
nitude or more when the disc is inclined with respect to the black
hole spin. This occurs regardless of whether the disc is thick or thin.
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APPENDIX A: MEASURING THE DISC PRECESSION

Here we outline how the precession in the disc was measured from
the simulations and show some example results. In order to analyse
the properties of the discs from the simulations, we discretise the
disc into a set of thin spherical annuli and average the properties
of interest across the particles in each of these bins. This process is
described in detail in Section 3.2.6 of Lodato & Price (2010). The
twist, γ(R), in our disc at a given radius is found by considering
the unit angular momentum vectors at each radius bin in the disc.
With lx(R), ly(R) and lz(R) being the unit vectors in the Cartesian
coordinate system, we assign

γ(R) = tan−1

(
ly(R)

lx(R)

)
, (A1)

for each radial annulus. This is repeated at every time step, so that
we have a description of the twist as a function of time at each
radial bin in our simulations. An example of the twist in this format
is in Figure A1. Here the twist is increasing in the disc when the
gradient is positive. As the disc twists through a full 2π radians,
the twist then jumps back to zero because Equation A1 does not
take into account the cumulative twist angle.
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Figure A1. An example of the description of twist in the disc as a function
of time at a given radius. Here the time is plotted in orbits measured at the
inner edge.

The precession time can be measured from Figure A1 directly
by recording how long it takes for the disc to twist all the way
around, equivalent to finding when the twist drops back to zero.
This can be approximated by working out the gradient of the twist
as a function of time and then using it to calculate the precession
time in the disc. This is equivalent to calculating

tp = 2π

(
dγ

dt

)−1

. (A2)

Because this calculation has been done at each radial annulus, we
now have the precession time as a function of the radius in the disc,
averaged over the length of the simulation. An example of this was
shown in Figure 3.

The above analysis does not take the inclination of the disc
into account. This disc was inclined at 30◦, but this angle did not
come into our expression for tp or explicitly in our analysis from
the twist. As outlined in the derivation by Larwood et al. (1996),
the Lense-Thirring precession is independent of the inclination be-
tween the disc and the black hole spin. Repeating the above analysis
with discs at other angles confirms this.
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