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ABSTRACT
We investigate the effects of magnetic fields and radiative protostellar feedback on the star
formation process using self-gravitating radiation magnetohydrodynamical calculations. We
present results from a series of calculations of the collapse of 50 M⊙ molecular clouds with
various magnetic field strengths and with and without radiative transfer.

We find that both magnetic fields and radiation have a dramaticimpact on star formation,
though the two effects are in many ways complementary. Magnetic fields primarily provide
support on large scales to low density gas, whereas radiation is found to strongly suppress
small-scale fragmentation by increasing the temperature in the high-density material near the
protostars. With strong magnetic fields and radiative feedback the net result is an inefficient
star formation process with a star formation rate of. 10% per free-fall time that approaches
the observed rate, although we have only been able to follow the calculations for 1/3 of a
free-fall time beyond the onset of star formation.

Key words: (magnetohydrodynamics)MHD – magnetic fields – star formation – star clusters

1 INTRODUCTION

Star formation is a remarkably inefficient process. This inefficiency
in itself is a very good thing for the universe as a whole, since with-
out it galaxies such as the Milky Way would very quickly exhaust
their supplies of gas by converting it into stars. Recent estimates
from the c2dSpitzerlegacy survey of five nearby molecular clouds
suggest that around3−6% of the available gas in a molecular cloud
is converted into stars in the local region of our Galaxy (Evans
et al. 2009). Previous observational results suggest similarly low
efficiencies: e.g.,≈ 1− 6% in Taurus (Evans & Lada 1991; Onishi
et al. 1998);< 13% in the clouds in Chamaeleon (Mizuno et al.
1999), though some dispersion in these results arises from the use
of differing measures, whereas Evans et al. use a uniform definition
of efficiency for all clouds.

The source of such uniformly low efficiency is poorly under-
stood, and it remains unclear as to what the “rate-limiting step”
in star formation really is, since inefficiency is apparently present
at all levels, from the formation of molecular clouds in galax-
ies (Dobbs et al. 2008; Leroy et al. 2008) to the fact that only
small, clustered regions of molecular clouds with mass fractions of

∼< 20 percent (Lada 1992; Johnstone, Di Francesco & Kirk 2004;
Hatchell et al. 2005) participate in star formation, to the observa-
tion that only a fraction of the mass in dense molecular cloudcores
ends up as stars (Benson & Myers 1989; Alves et al. 2007). Inspite
of this, it is clear that a large part of the inefficiency lies within
molecular clouds themselves.

From a theoretical perspective, we have a very good idea of
the basic ingredients of the star formation process - namelygrav-
ity, gas dynamics, turbulence, magnetic fields, radiative and me-
chanical feedback, though their relative importance (particularly
with respect to magnetic fields and turbulence) remains vigourously
debated (e.g. Crutcher et al. 2009; Mouschovias & Tassis 2008;
Crutcher et al. 2008). By definition star formation involvesthe con-
version of gas into stars under self-gravity, the basics of which were
elucidated by Jeans (1902). The complication to the gas dynamics
is the highly turbulent (and supersonic) nature of molecular clouds
and the wide range of length and time scales over which star forma-
tion takes place, presenting a formidable challenge for numerical
simulations even before considering other relevant physics. Never-
theless, simulations including just self-gravity and hydrodynamics
(Klessen, Burkert & Bate 1998; Bate, Bonnell & Bromm 2002a,b,
2003; Bonnell, Bate & Vine 2003; Bate & Bonnell 2005; Bate
2005) have been surprisingly successful in predicting manyproper-
ties of clustered star formation, including the initial mass function
(though with an overproduction of brown dwarfs), multiplicity as a
function of primary mass, the frequency of very low mass binaries,
general trends for the separation and mass ratio distributions of bi-
naries and the relative orbital orientations of triple systems (Bate
2009a).

However, the efficiency of star formation in these calculations
would be∼> 50% were the simulations left to run, since in the ab-
sence of stellar feedback there can be nothing to prevent allof the
(bound) gas from eventually accreting onto the stars. Whiletidal
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forces from the underlying galactic potential may be a contribut-
ing factor in some cases (Ballesteros-Paredes et al. 2009),many
suggestions in the literature are related to the turbulencepresent in
the cloud. Star formation in initially unbound clouds, where star
formation will nevertheless occur in the presence of a turbulent
velocity field (Clark & Bonnell 2004; Clark et al. 2005), is one
extreme. But sources of turbulent driving (e.g. Matzner & McKee
2000; Krumholz, Matzner & McKee 2006; Nakamura & Li 2007),
whilst not strictly changing the overall efficiency in a bound cloud,
can dramatically alter the fraction of a cloud which is unstable to
gravitational collapse in a given dynamical time, decreasing the ef-
ficiency per free-fall time (e.g. Padoan 1995; Klessen et al.2000;
Krumholz & McKee 2005). This occurs naturally in turbulent mod-
els because there is a spectrum of density fluctuations, of which
only a small fraction is in sub-regions dense enough to be Jeans-
unstable. Star formation is thus made inefficient, in a per free-fall
time sense, because turbulence produces in a given dynamical time
a range of clumps (or “cores”), only some of which are bound and
will collapse (Klessen et al. 2000). There is still a difficulty, how-
ever, which is that if this is to work for dense, globally bound re-
gions, one has to keep driving the turbulent motions (eitherfrom
outside or within) otherwise the turbulence will quickly decay and
the gas from the whole dense globally bound clump will eventually
be used up in star formation.

Magnetic fields have long been recognised as a key ingredient
in star formation (Mestel & Spitzer 1956; Shu et al. 1987; Mestel
1999), given that observations robustly measure fields at sufficient
strengths that they are close to preventing star formation altogether
(Mac Low & Klessen 2004), and robustly in the regime where
magnetic pressure is dominant over gas pressure (Crutcher 1999;
Bourke et al. 2001; Heiles & Troland 2005). The importance ofthe
latter point is easily overlooked and implies that, even if magnetic
fields do not prevent global gravitational collapse in a molecular
cloud, they can nevertheless act as the dominant source of pressure
(Price & Bate 2008), supporting large fractions of the cloudand
perhaps regulating star formation (Nakamura & Li 2005). Magnetic
fields, may also have important effects on the statistics of molecu-
lar cloud turbulence, even in the regime where the Alfvén speed
is small compared to the turbulent velocities (Padoan et al.2007).
Importantly, magnetic fields are not usually included in determina-
tions of whether or not a molecular cloud core is “gravitationally
bound”.

Radiation presents a complementary method for regulating
star formation and the need for star formation simulations to in-
corporate the effects of radiative transfer has also long been un-
derstood (e.g. Larson 1969; Black & Bodenheimer 1975; Boss &
Myhill 1992; Masunaga & Inutsuka 2000). Radiative feedbackaf-
fects star formation as soon as the gas becomes optically thick, set-
ting the “opacity limit” beyond which fragmentation can proceed
no further (Low & Lynden-Bell 1976; Rees 1976). From thereon
the newborn protostar can continue to radiate into the surrounding
gas, increasing the Jeans mass and thus inhibiting further star for-
mation (Whitehouse & Bate 2006; Krumholz 2006; Bate 2009b).
In the case of massive stars, radiation may be sufficient to halt ac-
cretion from the cloud (Kahn 1974; Wolfire & Cassinelli 1987)al-
though various non-spherical and time-dependent effects mitigate
this effect (Nakano 1989; Nakano, Hasegawa & Norman 1995; Ji-
jina & Adams 1996; Yorke & Sonnhalter 2002; Krumholz, McKee
& Klein 2005; Krumholz, Klein & McKee 2007).

However, neither magnetic fields nor radiation are easy to in-
corporate into three-dimensional numerical simulations of the star
formation process. The development of algorithms for magneto-

hydrodynamics (MHD) (Price & Monaghan 2004a,b, 2005; Price
& Bate 2007) and radiative transfer in the flux-limited diffusion
approximation (Whitehouse & Bate 2004; Whitehouse, Bate &
Monaghan 2005; Whitehouse & Bate 2006) in the context of the
smoothed particle hydrodynamics (SPH) method has nevertheless
paved the way for such effects to be included. Thus we have re-
cently been able to incorporate, though separately, the effects of
magnetic fields (Price & Bate 2008) and radiative feedback (Bate
2009b) into simulations of star cluster formation. In this paper we
study, for the first time, the combined effects of both.

We thus present a ‘recipe’ for inefficient star formation in even
relatively dense molecular clouds. The ingredients (i.e.,the equa-
tions of self-gravitating radiation MHD and our numerical formu-
lation of them) are presented in Section 2. The initial conditions for
our simulations are discussed in Section 3. We present our results
in Section 4 and discuss their wider implications in Section5.

2 NUMERICAL METHOD

In this paper we solve the equations of self-gravitating radiation
magnetohydrodynamics, using a two-temperature flux-limited dif-
fusion scheme for the radiation, coupled with the equationsof ideal
MHD (that is, assuming infinite conductivity and without consider-
ing ambipolar (ion-neutral) diffusion or the Hall effect).Whilst we
have previously published star cluster formation calculations us-
ing separately either the MHD (Price & Bate 2007, 2008) or using
the flux-limited diffusion (Whitehouse & Bate 2006; Bate 2009b)
schemes, this is the first time which we have combined the two.
Thus, whilst the MHD formulation is identical to that used inPrice
& Bate (2007) and Price & Bate (2008) and the radiation scheme
is based on that used in Bate (2009b), some minor changes have
been made to the radiation terms in order to combine them withthe
MHD part of the code.

2.1 Equations of Radiation Magnetohydrodynamics

The equations of self-gravitating radiation MHD are solvedin the
form
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B = ∇αE ×∇βE , (5)
dαE

dt
= 0;

dβE

dt
= 0. (6)

∇2Φ = 4πGρ, (7)

whereρ is the density,v is the velocity,P is the hydrodynamic
pressure,B is the magnetic field,u is the specific thermal energy
of the gas,Φ is the gravitational potential,ξ and Prad are the
frequency-integrated specific radiation energy and radiation pres-
sure tensor respectively;a, c, χ, κ andcv are the radiation constant,
the speed of light, the total and absorption opacities and the ratio of
specific heats respectively andF is the radiative flux, which in the
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flux-limited diffusion approximation is given by:

F =
cλ

κρ
∇(ρξ), (8)

whereλ is the dimensionless flux limiter which is designed to en-
sure that the radiation propagates no faster than the speed of light
(see Whitehouse et al. 2005 for details). The above expression for
F means that the first term in equation (4) becomes a diffusion term
for the radiation energy (hence “flux-limited diffusion”).

Equation (1) is an exact solution to the continuity equation
which is represented in SPH form by the density summation (see
Price 2008 for the difference between integral and differential for-
mulations in an SPH context). Equation (2) is the equation ofmo-
tion for the gas which contains force terms from the hydrodynamic
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tion (F, ie.∇(ρξ)) pressure gradients and from the gradient in the
gravitational potential (∇Φ). Equations (3) and (4) are the energy
equations for the gas and radiation respectively. Equation(5) is an
expression of the magnetic field in terms of the Euler (or Clebsch)
potentialsαE andβE which maintains the divergence constraint
(∇ · B = 0) by construction and for which the induction equa-
tion for the magnetic field takes the particularly simple form given
by equation (6) (Stern 1970; Rosswog & Price 2007). It should
be noted that use of the Euler potentials approach also introduces
limitations on the topology of fields that can evolve during the cal-
culation. Whilst these are discussed in more detail in Price& Bate
(2008) and Price & Bate (2007), the main physical process notcap-
tured is the winding up of magnetic fields on smaller scales, since
the Euler potentials rely on a well defined mapping from the initial
particle positions to those at a later time. This means that,whilst we
are able to study the influence of magnetic fields on the large scale
structure of the cloud, field growth on smaller scales is not well cap-
tured. On the other hand the ideal MHD approximation also breaks
down at these scales, so an improved formulation would also need
to correctly account for non-ideal MHD effects such as resistivity
and ambipolar diffusion. Finally, Poisson’s equation (Equation 7)
is solved in order to determine the gravitational force.

The equation set is closed by equations of state for the gas and
the radiation field. For the gas, the equation of state is given by the
ideal gas law

P =
ρRT

µ
, (9)

whereT is the gas temperature,R is the gas constant andµ is the
mean molecular weight. The equation of state takes into account
the translational, rotational and vibrational degrees of freedom of
molecular hydrogen (assuming a 3:1 mix of ortho- and para- hy-
drogen that remains fixed throughout the calculations; see Boley
et al. 2007). It also includes the dissociation of molecularhydrogen
and the ionisations of hydrogen and helium (which are assumed to
have mass fractions ofX = 0.7 andY = 0.28 respectively). The
contributions of metals to the equation of state is neglected.

For the radiation, the equation of state is given by the Edding-
ton approximation

Prad = fρξ, (10)

wheref is the Eddington tensor which has both an isotropic term
and an anisotropic term related to the gradient in radiationenergy
density (see Whitehouse & Bate 2006 for details).

For comparison with previous results, we have also performed
a set of calculations without radiative transfer, but whichuse a
barotropic equation of state for the gas (i.e. replacing equations 3,

4 and 9) of the form

P = Kργ . (11)

where the polytropic exponentγ is given by

γ = 1, ρ ≤ 10−13g cm−3,

γ = 7/5, ρ > 10−13g cm−3. (12)

The simulations using the barotropic equation of state are thus
identical to those performed by Price & Bate (2008) except for a
factor-of-ten decrease in the sink particle radii (see below) and also
the MPI-parallelisation of the tree-code, both of which change the
overall fragmentation pattern slightly due to the chaotic nature of
star formation.

2.2 Numerical method

We solve equations (1)–(7) using the Smoothed Particle Hydro-
dynamics (SPH) method (for reviews see Monaghan 1992; Price
2004; Monaghan 2005). The SPH formulations of various partsof
these equations, as currently implemented in our code, havebeen
separately described and tested in a number of papers (mostly in-
volving the authors), as summarised below.

2.2.1 SPH formulation

The self-gravitating part of the algorithm (i.e. equation (7) and the
gravitational force term in equation (2)) is identical to the energy-
conserving formulation described and tested in Price & Monaghan
(2007). The gravitational force is softened using a softening length
that is equal to the SPH smoothing length and formulated suchthat
taking the Laplacian of the gravitational potential results in pre-
cisely the right hand side of Poisson’s equation (7) with thedensity
ρ equal to that calculated in the hydrodynamics via the SPH sum-
mation (ie. the SPH expression of equation 1) (Price & Monaghan
2007). Furthermore – despite the softening length being a variable
function of position – momentum, energy and angular momentum
are conserved exactly using this formalism. However, in practice,
a nearest-neighbour binary tree algorithm is used to efficiently cal-
culate the long-range part of the gravitational force (and also return
the list of SPH neighbours), which does not conserve momentum,
angular momentum or energy exactly. The tree code formed the
original core of the SPH code and remains essentially as originally
implemented by Benz et al. (1990).

All of the evolution equations are integrated using a second
order Runge-Kutta-Fehlberg method with a timestep relatedto the
convergence of each variable with timestep (that is, determined by
comparing the error using half of the current timestep to that over
the full timestep). Given the rich array of physics in our current
calculations, we have found this to be substantially more accurate
than a standard leapfrog method where the timestep is based only
on stability considerations (rather than accuracy). Individual par-
ticle timesteps were implemented by Bate (1995) in order to ef-
ficiently follow calculations where the timestep is constrained by
only a small fraction of particles in a simulation.

The hydrodynamics and MHD parts of the code (i.e., the
numerical formulation of equations (1)-(3) apart from the radia-
tion terms and equations (5)-(6)) are based on the smoothed parti-
cle magnetohydrodynamics algorithm developed by Price & Mon-
aghan (2004a,b, 2005) and applied to star formation using the Eu-
ler potentials formulation by Price & Bate (2007, 2008) (seealso
Rosswog & Price 2007). Special attention has been paid to the
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formulation of terms relating to the gradient of smoothing length
(Price & Monaghan 2004b, 2007) which ensures that total energy
and entropy are conserved exactly by the hydrodynamic partsof the
equations. Energy and momentum conservation is not maintained
exactly for the magnetic parts of the equations in order to avoid the
well-known instability relating to exactly momentum-conserving
formulations of the SPMHD force term (see Price & Monaghan
2005). Furthermore, using the Euler potentials, the force equation
is not directly derived from the numerical form of the induction
equations leading to a very small error in energy conservation. In
practice, however, these errors are much smaller than thoseintro-
duced by the treecode for the gravitational force and individual par-
ticle timesteps.

Dissipative terms corresponding to artificial viscosity and ar-
tificial resitivity are added in order to capture shocks and magnetic
reconnection, respectively. These are applied as described in Price
& Monaghan (2005) and for the Euler potentials by Price & Bate
(2007) and Rosswog & Price (2007). For the calculations withra-
diative transfer, the energy associated with this dissipation is added
to the thermal energy, though obviously such energy is discarded
for the calculations employing a barotropic equation of state and
thus also during the initial period (t < 1tff ) for all the calcula-
tions during which the barotropic equation of state has beenused
(see below). We are, therefore, not able to realistically assess the
effect of any heating that may arise due to magnetic reconnection
since any heat created by reconnection in the early phases islost
and at later times, whilst the energy is captured, the field structure
is effectively lost because of the limitations to the Euler potentials
approach on smaller scales (see above). Thus, the contribution of
magnetic dissipation to heating in the present calculations is very
small.

The radiative transfer parts of equations (2) and (3) and the
radiative energy equation (4) are solved implicitly using the for-
mulation developed by Whitehouse & Bate (2004), accelerated by
Whitehouse et al. (2005) and applied to star formation by White-
house & Bate (2006) and Bate (2009b). We use the same opacities
as Whitehouse & Bate (2006). In order to combine the radiative
transfer parts of the code (developed by Whitehouse et al. 2005 and
based on a traditional “number of neighbours” approach to variable
smoothing lengths in SPH) with the MHD (developed by Price &
Monaghan 2004b, which is formulated taking account of variable
smoothing length gradient terms), minor modifications havebeen
made to the manner in which the radiative transfer equationsare
expressed in SPH form. The main change is that the radiation dif-
fusion term in equation (4) is calculated using an average ofthe
kernels rather than an average smoothing length as in Whitehouse
& Bate (2006), so that the diffusion term in the energy equation
becomes

„

dξi
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where the average of the SPH kernel gradients is
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[∇Wij(hi) + ∇Wij(hj)] , (14)
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λi
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. (15)

Note that in the variable smoothing length formulation of SPH, the
smoothing lengthh is an analytic function of the densityρ, which
is in turn a function of smoothing length via the SPH density sum-

mation. A solution to the density summation must therefore be ob-
tained iteratively as described in Price & Monaghan (2007).

2.3 Sink particles

Sink particles were introduced into SPH by Bate, Bonnell & Price
(1995) in order to follow star formation calculations beyond the
formation of the first star.

For the calculations presented here that do not include radia-
tive transfer, the criterion used for sink particle creation is identical
to that described in Price & Bate (2008) and we therefore refer the
reader to that paper for details. The major difference between the
calculations of Price & Bate and the similar calculations inthis pa-
per is that we have used sink particles with an accretion radius of
only 0.5 AU, compared to5 AU in Price & Bate (2008) (and sim-
ilarly in BBB03). This adds considerable computational expense
to the calculations because the closest gas orbits around the sinks
(and the smallest length scale∼ h) are reduced by a factor of 10,
resulting in an increase in the maximum acceleration by a factor
of 1/r2 = 100 and therefore a decrease in the minimum timestep
in the calculations∆t ∝

p

h/|a| by a factor of∼30. Whilst such
expense is unnecessary when using a barotropic equation of state
(in Section 4 we compare our results to previous results obtained
by Price & Bate 2008 using 5 AU sink radii and find essentially
no difference to the fragmentation), it is important for theradiative
transfer calculations.

With the exception of the addition of magnetic fields, the ra-
diative transfer calculations presented here are very similar to those
recently published by Bate (2009b). In both, the gas is followed be-
yond the first hydrostatic core phase (Larson 1969) and the onset
of molecular hydrogen dissociation (T ≈ 2000 K). Sink particles
are inserted during the second collapse phase, just before astellar
core would be formed in the calculations. Bate (2009b) inserted
sink particles at a density of10−5 g cm−3 while in the calculations
presented here they are inserted slightly earlier at10−6 g cm−3.
In terms of the real star formation process, this is just a couple of
weeks before the stellar core is formed. As in Bate (2009b), no ra-
diative feedback is provided by the sink particle. The radiative feed-
back provided by the protostars is limited to the radiation emitted
from the gas as it falls into the sink particles. Thus, it is important to
make the sink particle accretion radii as small as is computationally
practical (0.5 AU in both the calculations of Bate 2009b and the cal-
culations presented here). As noted by Bate (2009b), because not
all of the protostellar luminosity is fed back into the calculations,
the effects of radiative feedback seen in the calculations presented
here must be viewed as a lower limit.

An estimate of the energy input that we are missing from ac-
cretion within the sink particle radius can be made by comparing
the accretion luminosity from within this region to that available
from infinity. The accretion energy expected from within oursink
particle radius of 0.5 AU is given by

Lacc = GMṀ

„

1

R∗

−
1

0.5AU

«

. (16)

This may be compared to the accretion luminosity thatis captured
in our calculations by accretion to the sink radius from infinity,
which is given byLacc = GMṀ/(0.5 AU). Therefore, if we as-
sume a protostellar radius of∼ 3Rsun there is potentially a factor
of up to∼ 30 in further energy input that is missing from the cur-
rent calculations. Bate (2009b) investigated the effect ofthis miss-
ing radiation on his similar calculations that did not include mag-
netic fields by repeating a calculation with a larger accretion radius
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of 5 AU (i.e. reducing the accretion luminosity by a further order
of magnitude). He found only a small difference in the amountof
fragmentation that occurred between the 0.5 AU and 5 AU calcula-
tions because even the heating present in the calculation with 5-AU
accretion radii was enough to inhibit fragmentation near toexisting
protostars. Thus, while we again emphasize that the radiative feed-
back incorporated into the current calculations is only a lower limit,
we believe that using accretion radii of 0.5 AU captures the essence
of the effects of radiative feedback, at least in terms of fragmenta-
tion. This is in stark contrast to the situation encounteredusing a
barotropic equation of state.

3 INITIAL CONDITIONS

The initial conditions for the simulations are identical tothose pre-
sented by Price & Bate (2008) and similar to the original calcula-
tion of Bate et al. (2003) and the first of the calculations performed
by Bate (2009b). We briefly recap the initial conditions below.

3.1 Density, temperature and velocity field

We set up an initially uniform, spherical cloud with a diameter of
0.375 pc (77,400 AU) that contains a total of 50M⊙ of molecular
gas, giving an initial density ofρ0 = 1.2 × 10−19g cm−3 (nH2

=
3 × 104) and a global free-fall time oftff =

p

3π/(32ρ0G) =
1.90 × 105 yrs.

The cloud is constructed using 3.5 million SPH particles (de-
termined by the resolution requirement for resolving the Jeans mass
by Bate & Burkert 1997, see Bate et al. 2003) placed in a uniform
random distribution cropped to the cloud radius (i.e. no particles
are placed exterior to the cloud). This results in a significant expan-
sion of the outer layers as the calculation proceeds (equivalent to
the assumption of open boundary conditions in a grid-based sim-
ulation). The initial sound speed was set to1.84 × 104 cm s−1,
corresponding to a temperature of10 K given the mean molecular
weight of µ = 4.0/(2 × 0.7 + 0.28) = 2.38 amu. The resultant
ratio of thermal to gravitational energy wasαgrav = 0.074.

A supersonic ‘turbulent’ velocity field with power spectrum
P (k) ∝ k−4 (i.e. consistent with Larson’s scaling relations, Larson
1981) was imposed upon the initially uniform density cloud as in
Bate et al. (2003), with the initial velocity field normalised such
that the kinetic energy is initially equal to the gravitational potential
energy of the cloud. This gives an initial root mean square (RMS)
Mach number of 6.4 and an initial RMS velocity of1.17 × 105

cm/s.
The computational challenge of star formation is well illus-

trated by the fact that during the calculations, we find that the dens-
est regions can contain particles moving on a timestep up to219

times smaller than the largest timestep bin (which is constrained
by the time between output dumps), so that the shortest timestep
is around1.5 hours compared to a total evolution time of several
hundred thousand years.

3.2 Magnetic fields

We quantify the relative strength of the magnetic field in terms of
the mass-to-flux ratio (M/Φ) of the cloud, compared to the critical
value for the onset of collapse in a spherical cloud given by (e.g.
Mouschovias & Spitzer 1976; Mestel 1999; Mac Low & Klessen

2004)
„

M

Φ

«
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=
2c1

3
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5

πGµ0

, (17)

whereG andµ0 are the gravitational constant and the permeability
of free space respectively andc1 is a constant determined numeri-
cally by Mouschovias & Spitzer (1976) to bec1 ≈ 0.53.

In this paper, we have performed calculations starting withan
initially uniform magnetic field with mass-to-flux ratios inunits
of the critical value ofM/Φ = ∞ (i.e. no magnetic field), 10, 5
and 3. All of our calculations are ‘supercritical’ (that is,unstable to
collapse) as under our assumption of ideal MHD (i.e. no ambipolar
diffusion or resistivity), subcritical clouds would not (and do not)
collapse.

The corresponding physical field strength for a given mass-to-
flux ratio and cloud dimensions is

B0 = 194 µG
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whereM/Φ is the mass to flux ratio in units of the critical value.
Thus, a simulation with a critical mass-to-flux ratio would have
B0 = 194µG and for the calculations with mass-to-flux ratios of
∞, 10, 5 and3 the corresponding field strengths are given byB0 =
0, 19, 39 and65µG, respectively.

The magnetic field may also be parametrised in terms of the
plasmaβ, the ratio of gas to magnetic pressure, according to

β = 0.028
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(19)
The simulations presented here thus have initialβ’s of ∞, 2.8, 0.7
and0.25 respectively. Note that the magnetic pressure is dominant
over gas pressure in the cloud for mass-to-flux ratios< 6 which is
the case for the two strongest-field calculations. Indeed, as in Price
& Bate (2008), we find that these two calculations show far more
significant differences compared to the weaker field and hydrody-
namic calculations.

Finally, the Alfvén speed in the initial cloud can be computed
using

vA = 1.6 × 105 cm s−1
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«−1„
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50 M⊙

« 1
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1

2

,

(20)
giving vA = 0, 1.6× 104, 3.1× 104 and5.2× 104 cm s−1 for the
calculations in this paper. Thus, the initial turbulent motions in the
cloud are super-Alfvénic in all cases with Alfvénic Mach numbers
of ∞, 7.3, 3.8 and2.3, respectively.

4 RESULTS

We have computed a total of eight calculations, that is, for four
different mass-to-flux ratios, both with and without radiative trans-
fer (where “without” means that we use the barotropic equation of
state given by equation (12) instead).

The evolution of the simulations can be divided into two
stages: i) the initial collapse of the cloud (i.e. up to≈ 1 free-fall
time) during which the cloud is optically thin, essentiallyisother-
mal, and the dynamics and large scale structure are primarily con-
trolled by the interaction of turbulence and magnetic fields; ii) the
subsequent evolution of the cloud after the formation of thefirst
star (i.e.& 1 free-fall time), where the cloud has optically thick
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6 Price & Bate

Figure 1. Global cloud structure at 1.0 initial cloud free-fall time,for progressively increasing magnetic field strength [mass-to-flux ratios of∞ (that is,
hydrodynamic),10, 5 and3 in units of the critical value], showing the dramatic influence of magnetic fields on the large-scale structure of the cloud. As
in Price & Bate (2008), the magnetic field has a dominant influence in the regime whereβ < 1 (third and fourth panels), producing large-scale magnetic-
pressure-supported voids and column density structures aligned with the magnetic field in the cloud envelope. Note thatradiative feedback plays no role at this
stage - the cloud structure is determined entirely by the interaction between turbulence, gravity and the large scale magnetic field.

regions embedded in the wider (optically thin) large scale struc-
ture, and where the small-scale fragmentation is regulatedby the
radiative feedback from existing protostars on the gas.

4.1 Large-scale cloud structure

During the first phase, the radiative transfer has little effect on the
overall dynamics compared to the use of a barotropic equation of
state because the cloud is optically thin, radiation can escape eas-
ily and there are no significant sources of radiation. Typical tem-
perature variations are of the order∆T/T ∼ 10%. However, it
is computationally very expensive to compute the evolutionof the
cloud with radiative transfer in the optically thin regime.We have
therefore computed only one set of calculations of the global cloud
structure during the first (isothermal) phase, the results of which are
shown at one free-fall time in Figure 1 (with magnetic field strength
increasing from left to right, as indicated). These are essentially the
same as those presented by Price & Bate (2008) are we therefore
discuss them only briefly here.

Figure 1, as in Price & Bate (2008) reveals the dramatic in-
fluence the global magnetic field has on the large scale structure of
the cloud, even though the field is much too weak to prevent global
gravitational collapse. In particular, for the two strong magnetic
field calculations (mass-to-flux ratios of5 and3 shown in the two
right hand panels) large-scale voids are visible in the cloud where
material has slipped down the field lines to leave behind evacuated
but magnetically-pressurised voids. These magnetic-pressure sup-
ported voids were discussed in detail in Price & Bate (2008) (see
also Price et al. 2008) and appear in the regime whereβ < 1 (i.e.
where the magnetic pressure is dominant over the gas pressure).
This regime is particularly interesting given that almost all mag-
netic field strength measurements in molecular clouds indicate that
β < 1 (Crutcher 1999; Bourke et al. 2001; Heiles & Troland 2004;
Heiles & Crutcher 2005). Also visible during the initial expansion
phase is a ‘stripy’ structure in the column density maps which is
aligned with the large scale magnetic field lines. This is a conse-
quence of the anisotropy of turbulent motions in the presence of a
magnetic field (e.g. Goldreich & Sridhar 1995) and, while notso
obvious in Figure 1, was discussed and clearly illustrated by Price
& Bate (2008).

4.2 Fragmentation

From one free-fall time (tff), the cloud structures shown in Figure 1
were evolved both with and without radiative transfer (i.e.using
the barotropic equation of state in the former case and the full flux-
limited diffusion equations in the latter). The simulations were run
from this point to between 1.25 and1.54 tff (2.93 × 105 yrs) de-
pending on the computational expense (the calculations slow down
significantly once star formation initiates and the more protostars
are formed, the slower the calculations become). The barotropic
calculations with mass-to-flux ratios ofM/Φ = ∞, 10, 5 and 3
begin forming stars att ≈ 1.07, 1.03, 1.10 and 1.19tff , respec-
tively, with the star formation in the radiative transfer conterparts
typically being delayed by≈ 0.01 tff . A close-up of the fragmenta-
tion in all eight simulations is shown in Figure 2, showing column
density (left-hand panels) and mass-weighted temperature(right-
hand panels) at1.20 tff , after star formation has begun in all eight
clouds. The sink particles are shown as white filled circles.

The left-hand (column density) panels of Figure 2 dramati-
cally illustrates two main effects. The first is an overall decrease
in star formation rate with increasing magnetic field strength (rows
from top to bottom are in order of weakest to strongest magnetic
field). This is a result of the influence of the global magneticfield
on the large scale cloud structure, as already evident in Figure 1.
In particular, for the stronger field calculations (bottom two rows
of Figure 2, and the rightmost two panels of Figure 1), large parts
of the cloud are supported against collapse by the magnetic field
resulting in fewer collapsing sub-regions (or ‘cores’). For example,
where the hydrodynamic calculation (top row of Figure 2) hascol-
lections of protostars separated by a couple of thousand AU,only
one collapsing region is evident in the strongest field (M/Φ = 3)
case (bottom row), which shows no sub-fragmentation eitherwith
or without radiative transfer. The effect of the magnetic field in
slowing the infall from the global cloud is further quantified in Fig-
ure 3 and discussed in Section 4.3, below.

The second effect visible in Figure 2 is the dramatic suppres-
sion of small-scale fragmentation by the radiative feedback. This
is especially obvious in the hydrodynamic/weak field calculations
where the calculations using a barotropic equation of statehave
fragmented into multiple low-mass objects which interact violently,
causing ejections of very low mass objects from multiple systems.
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Figure 2. A comparison of the fragmentation that has occurred in the eight different calculations at 1.2 free fall times (tff ). The two left-hand columns show
column density for each calculation, with magnetic field strength increasing from top to bottom (as indicated by the mass-to-flux ratio in units of the critical
value for collapse, whereM/Φ = ∞ corresponds to hydrodynamics) using either a barotropic equation of state (first column) or with radiative transfer
(second column), as indicated. A strong decrease in protostar formation with increasing magnetic field strength may be observed (comparing rows from top to
bottom). The radiative feedback from the protostars is illustrated by plots of the mass-weighted temperature (

R

ρT dz/
R

ρ dz), shown in the corresponding
right-hand panels. The effect of the radiation heating the gas in the vicinity of the protostars (fourth column) can be seen to be poorly captured by the barotropic
equation of state approximation (third column) and leads toa dramatic suppression of small-scale fragmentation (comparing the first and second columns).
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8 Price & Bate

Figure 3. Total mass in stars (sink particles) as a function of time, show-
ing all eight calculations with (thick lines) and without (thin lines) radia-
tive transfer at four different magnetic field strengths: hydrodynamic (solid
black lines),M/Φ = 10 (dotted red lines),M/Φ = 5 (dashed blue lines),
and M/Φ = 3 (dot-dashed magenta lines). The star formation rate de-
creases with increasing magnetic field strength and with theaddition of ra-
diative feedback. Note how the two curves for each magnetic field strength
track each other for some time before diverging, indicatingthat radiative
feedback only plays a role in suppressing subsequent fragmentation rather
than changing the initial pattern of star formation.

This small-scale fragmentation occurs primarily in the massive pro-
tostellar discs. By contrast, in the calculations which include radia-
tive transfer, all of the subsequent disc fragmentation is suppressed
by the radiation from the existing protostar(s). A good example is
found in the lower-right of theM/Φ = 10 panels of Figure 2: with
radiative feedback a single object with a disc is formed, while with-
out radiative feedback this disc fragments into three objects, one
of which is ejected. The radiative feedback, in effect sets amin-
imum distance between protostars by substantially increasing the
temperature and therefore the Jeans length in the gas immediately
surrounding a protostar (Bate 2009b).

The differences between computing the radiative transfer and
using the barotropic equation of state approximation are best illus-
trated by plotting the temperature, given in the right-handpanels
of Figure 2. Each panel shows the integrated temperature map(i.e.
R

ρT dz/
R

ρ dz) for the corresponding column-density panel in
Figure 2. We have not plotted the sink particles on these panels so
that the temperature distribution very close to the protostars can
be seen for the barotropic calculations. For the barotropicequa-
tion of state (centre-right panels), the temperature is simply related
to the density, leading to very point-like sources of energycon-
centrated around the protostars themselves. In the radiative trans-
fer calculations (right-most panels), the radiation emitted from the
high-density optically-thick gas near the protostars heats a much
larger surrounding region to temperatures> 30 K, effectively shut-
ting off any further fragmentation in this material (as evident in the
left-hand column-density panels of Figure 2).

4.3 Star formation rate

The effects of both magnetic fields and the radiative feedback on
the star formation rate are quantified in Figure 3, which shows the

Figure 4. The total mass above certain density thresholds in each col-
lapsing cloud as a function of time. From top to bottom the panels show
M(ρ > 10−17g cm−3) (approximately two orders of magnitude denser
than the original cloud density),M(ρ > 10−14g cm−3), andM(ρ >
10−11g cm−3) (i.e. above which most material is in protostars). The dif-
ferent lines are as in Figure 3. Thick lines denote those calculations with ra-
diative feedback, while thin lines are using the barotropicequation of state.
The line types and colours denote the magnetic field strength(also ordered
from top to bottom in each panel with progressively increasing magnetic
field strength). Magnetic fields can be seen to affect the collapse rate at all
density thresholds (all panels), while radiative feedbackprimarily prevents
fragmentation in the highest density regions of the cloud (top panel, com-
paring thin and thick lines).

total mass in protostars (that is, the total mass of all sink parti-
cles in a simulation) as a function of time. Aftert = 1.2 tff ,
the eight simulations form a strict sequence of progressively de-
creasing star formation rate in the order: hydrodynamic, barotropic;
hydrodynamic, RT;M/Φ = 10, barotropic,M/Φ = 10, RT;
M/Φ = 5, barotropic,M/Φ = 5, RT; M/Φ = 3, barotropic,
M/Φ = 3, RT, i.e. with magnetic fields as the primary effect and
radiative feedback secondary. The rate at which gas is converted
into stars decreases due to the influence of both magnetic fields
and radiative feedback, though more strongly with the former. For
example, att = 1.2 tff , the hydrodynamic calculation contains
2.2 M⊙ in stars using a barotropic equation of state, compared to
1.3 M⊙ with radiative feedback, both of which are higher than the
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[0.83 M⊙, 0.44 M⊙] formed by the weak fieldM/Φ = 10 calcula-
tion at the same time [without,with] radiative transfer. These num-
bers decrease further to[0.42 M⊙, 0.33 M⊙] for the M/Φ = 5
simulation and further still to[0.055 M⊙, 0.0056 M⊙] for the
strongest magnetic field case (M/Φ = 3). This general trend is
continued as far as we have been able to run the calculations in
each case (Figure 3).

The fact that the radiative feedback influencessubsequentstar
formation rather than the initial fragmentation is also evident from
Figure 3. In particular, the two curves corresponding to thesame
magnetic field strength but with and without radiative transfer in
each case track each other closely after first sink formation, before
diverging at later times. Taking theM/Φ = 3 case as an example
(i.e. the lower two curves in Figure 3), and comparing the time evo-
lution in Figure 3 to the fragmentation sequence shown in Figure 5,
it may be observed that the two curves diverge when secondarydisc
fragmentation occurs in the barotropic calculation (t ≈ 1.27 tff ),
leading to a burst of star formation (and subsequent ejection of low-
mass objects from the multiple system). In the radiative transfer
case, the disc does not fragment but instead continues to slowly
accrete onto the existing protostar.

Magnetic fields and radiation are also found to affect dif-
ferent densities in the cloud. Figure 4 shows the mass above a
given density threshold in the cloud as a function of time for
three different density thresholds,ρ > 10−17g cm−3 (bottom
panel),ρ > 10−14g cm−3 (middle panel), andρ > 10−11g cm−3

(top panel), where solid lines correspond to calculations using a
barotropic EOS and dashed lines refer to calculations usingradia-
tive transfer and, as in Figure 3, the lines form a sequence from
top to bottom with increasing magnetic field strength. At a den-
sity threshold of10−17g cm−3 (bottom panel), whilst there is a
strong decrease in the mass collapsing to higher densities with in-
creasing magnetic field strength, there is almost no difference be-
tween the barotropic simulations and those with full radiative trans-
fer (i.e. comparing the solid and dashed lines), indicatingthat radia-
tive feedback plays very little role at these densities. At athreshold
of ρ > 10−14g cm−3 (middle panel) the results are similar (al-
though the overall masses are lower) apart from some divergence at
t & 1.4tff in theM/Φ = 3 calculation. By contrast, at higher den-
sities (ρ > 10−11g cm−3, top panel), where the gas is optically-
thick to radiation, there are differences of up to∼ 50% in the mass
above this density between the barotropic and radiative transfer cal-
culations (the latter having systematically lower mass accumulation
rates) similar to the differences observed in Figure 3.

4.4 Dynamics

The effect of the reduced fragmentation on the dynamics of the
protostars due to the radiative feedback is illustrated in Figure 5,
showing a time sequence of the evolution in the strongest magnetic
field case (M/Φ = 3) in intervals of0.05 tff (9,500 yrs) from the
onset of star formation. As in Figure 2, the two left-hand columns
show column densities for the barotropic (first column) and radia-
tive transfer (second column) simulations, whilst the corresponding
right-hand panels show the mass-weighted temperature. Theover-
all picture is similar to that apparent from Figure 2, exceptthat the
time sequence shows that despite the fact that theM/Φ = 3 sim-
ulations each only produced a single object att = 1.2 tff collapse
and fragmentation continues to form binary and multiple systems
at later times (i.e.t & 1.3 tff ). However, whilst the larger scale dy-
namics is similar between the barotropic and RT calculations (e.g.
the merger of the two main collapsed regions att ≈ 1.4 tff), the

smaller scale disc fragmentation which results in a triple ejection
at t = 1.3tff in the barotropic calculation is completely absent
from the radiative transfer simulation, as a result of the higher tem-
peratures surrounding the first protostars to form (fourth column of
Figure 5).

The combined effects of stronger magnetic fields and radiative
feedback are, therefore, to decrease the star formation rate (Figure
3) and decrease the number of occurrences of dynamical interac-
tions and ejections between protostars.

4.5 Protostellar masses

The calculations presented here are of 50 M⊙ clouds that collapse
to form 3–23 protostars. With such small numbers of objects,and
the fact that the simulations have not all been followed for the same
amount of time, it does not make sense to attempt to plot stellar
mass functions. Rather, in Table 1, we give the amount of massthat
has been converted into protostars (sink particles), the number of
protostars, and the mean and median masses of the protostars. We
give these values att = 1.25 tff for all but one of the calculations,
and at the end of each calculation.

Generally, as found by Bate (2009b), the effect of radia-
tive feedback is to dramatically decrease the number of proto-
stars formed compared with the barotropic equation of state(Table
1, columns 3 and 8). Simultaneously, the protostars are generally
found to be more massive with radiative feedback because gasthat
would have formed other objects via the fragmentation of discs and
nearby filaments using a barotropic equation of state is hotter and
is able to be accreted by existing protostars instead (Table1, col-
umn 5 forM/Φ = 5, 10 and column 8 forM/Φ = ∞). In the
strongest magnetic field case, these statements are still true, but the
trends only become apparent fairly late in the calculationsbecause
of the delay of the star formation caused by the strong field (Table
1, column 8 forM/Φ = 3).

When investigating the effect of the magnetic field things be-
come more interesting. As already discussed, the rate at which gas
is converted into stars decreases strongly with increasingmagnetic
field strength for both the barotropic and radiative transfer calcula-
tions (Table 1, column 4). However, where this mass goes differs
significantly between the barotropic and radiative transfer calcula-
tions. For the barotropic calculations, the rate of protostar forma-
tion decreases strongly with increasing magnetic field strength, but
the typical masses of objects are independent of the magnetic field
strength (Table 1, columns 5, 6, 10, and 11). We also note thatif the
calculations are followed for a long periods of time all of the cal-
culations eventually produce large numbers of objects regardless
of the field strength (Table 1, column 8). However, with radiative
feedback there is no significant dependence of the rate of protostar
formation on the magnetic field strength (Table 1, columns 3 and
8), and there is an indication that the mean masses of the proto-
stars may increase with decreasing magnetic field strength (Table
1, columns 5 and 10). This latter effect is presumably because more
of the gas is supported with a stronger magnetic field and not able to
be accreted by the protostars. Although this needs to be confirmed
with larger calculations that form larger numbers of objects, this
implies that the characteristic stellar mass may decrease with in-
creasing magnetic field strength, a result that is somewhat counter-
intuitive since a naive calculation of a magnetic Jeans masswould
lead one to conclude that the characteristic stellar mass should in-
crease with increasing magnetic field strength.
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Figure 5. Time sequence of fragmentation in the strongest magnetic field calculation (M/Φ = 3), shown from the comparison time oft = 1.2 tff in Figure 2
(top row, where the panels here are shifted in position relative to Figure 2 to follow the subsequent fragmentation) up tot = 1.45ff (bottom row) at intervals
of 0.05tff . The two left-hand columns show column density for the calculation using a barotropic equation of state (first column) and with radiative transfer
(second column). Corresponding mass-weighted temperatures for the two calculations are shown in the two right-hand columns, highlighting the heating of
the gas due to the radiative feedback in the regions immediately surrounding the protostars. Although the radiative feedback suppresses fragmentation on the
smallest scales, dynamical interactions nevertheless occur over larger length scales, as evident from the merger of the two star-forming cores which occurs at
t = 1.4tff in each of the calculations.
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Calculation Time: 1.25tff End of Calculation

Barotropic or M/Φ Number Mass Mean Mass Median Mass Time Number Mass Mean Mass Median Mass
Radiative Transfer M⊙ M⊙ M⊙ tff M⊙ M⊙ M⊙

Barotropic ∞ 17 2.93 0.17 0.11 1.274 17 3.11 0.18 0.13
10 10 1.41 0.14 0.04 1.361 21 2.82 0.13 0.06
5 6 0.64 0.11 0.12 1.531 23 3.77 0.16 0.12
3 1 0.22 0.22 0.22 1.525 18 1.96 0.11 0.06

RT ∞ – – – – 1.235 10 2.09 0.70 0.78
10 2 0.75 0.38 0.38 1.362 5 1.92 0.38 0.14
5 4 0.50 0.13 0.13 1.437 10 2.34 0.23 0.21
3 1 0.21 0.21 0.21 1.541 7 1.80 0.26 0.18

Table 1.The statistical properties of the protostars formed in the eight calculations. For each of the four mass-to-flux ratios,barotropic and radiative transfer
calculations were performed. Due to computational expense, the calculations were followed for a different amounts of time. All but one calculation was
evolved until 1.25tff , so we give the statistical properties of the simulations atthis time. We also give the statistical properties at the endof each calculation.
In each case, we give the number of protostars (sink particles) formed, the total mass in protostars, and the mean and median masses of the protostars. It is
clear that using a barotropic equation of state produces many more objects than are obtained with radiative transfer. Itis also clear that the rate of protostar
production decreases strongly with magnetic field strengthin the barotropic calculations (column 3), although the typical mass of the protostars is independent
of field strength. Conversely, with radiative transfer there is no significant dependence of the rate of protostar production with magnetic field strength, and
there is an indication that the mean masses of the protostarsmay decrease with decreasing field strength (columns 5 and 10).

5 DISCUSSION

In this paper we have studied, for the first time, the combinedef-
fects of magnetic fields and radiative feedback on the formation of
stellar clusters from turbulent molecular clouds. We find that the
two effects are complementary in the sense that they affect the star
formation process at very different scales. Magnetic fieldsaffect
the large-scale cloud structure (Figure 1), influencing alldensities
in the cloud (Figure 4). Stronger fields decrease the overallstar
formation rate (Figure 3). By contrast, radiative feedbackaffects
small-scale fragmentation (Figure 2) and influences only the high-
est densities in the cloud (Figure 4). It influences the star formation
rate primarily by inhibiting small-scale fragmentation incores once
the first protostar has been formed (Figures 2, 3 and 5). However,
multiple systems are still common, formed from well-separated but
mutually bound condensations (Figure 5).

The primary effect of the magnetic field is to lower the accre-
tion rate onto the star-forming cores by providing large-scale sup-
port to low-density regions of the cloud, thus preventing this ma-
terial from subsequently being accreted. There is no clear shift in
theonsetof star formation with magnetic field strength (Figure 3),
except perhaps in the strongest magnetic calculation wherestar for-
mation (ie. sink particle creation) does not initiate untilt ≈ 1.20tff
(Figures 5 and 3) compared tot ≈ 1.03 − 1.11tff in the moder-
ate/weak/zero field simulations. Since the simulations do not pro-
duce large numbers of protostars and they are not followed very
far any conclusions regarding the masses of the protostars must
be treated with caution. However, we find that using a barotropic
equation of state the typical masses of the protostars do notdepend
significantly on the magnetic field strength but the number ofpro-
tostars formed increases with weaker fields (Table 1). Conversely,
with radiative feedback, the numbers of protostars formed in the
clouds does not vary greatly with the magnetic field strengthbut
the masses of the protostars tend to be lower with stronger magnetic
fields. Generally, radiative feedback results in a larger characteristic
protostellar mass than using the barotropic approximation.

The general effect of radiation on the fragmentation is eas-
ily understood in terms of the increase in the Jeans length ofthe
heated gas surrounding existing protostars. An increase intemper-
ature (e.g. from10K to & 30K as in Figure 2) leads to an increase

in the Jeans length sinceλJ ∝ T 1/2. Because radiative feedback
acts mainly on small scales, it takes longer for this to affect the
overall star formation rate substantially (e.g. note the reduction in
the figures ofM(> ρ) propagating slowly to higher densities in
the M/Φ = 3 run in Figure 4 due to the progressive heating of
wider regions of the cloud visible in Figure 5). However, it has a
dramatic influence on the initial mass function (IMF) by suppress-
ing fragmentation in discs (and nearby filaments) and decreasing
the likelihood of forming multiple systems from which low-mass
members can be ejected (e.g. Figure 5). The effect of the radia-
tive feedback is also more pronounced when the potential well in
which the protostars form is deeper, partially offsetting the inherent
decrease of the Jeans mass with increasing density, which inturn
leads to a reduced dependence of the IMF on the initial density of
the cloud which, as discussed in detail by Bate (2009b), may ex-
plain why the IMF appears to be so universal across very different
star-forming environments.

5.1 Comparison with observations

With a cloud of only 50 solar masses it is difficult to make a
statistically meaningful comparison with observed star-forming
molecular clouds as a whole since nearby clouds typically contain
103 − 105 M⊙ of material over areas as large as74 pc2 (Evans
et al. 2009). Rather our simulated clouds fall within the definition
of a ‘millimeter core’, ie.nH2

& 2×104 cm−3, and sizes similar to
the typically measured core sizes of1.5×104 AU in Ophiuchus and
3× 104AU in Perseus and Serpens (Enoch et al. 2007). As pointed
out by Bate et al. (2003), the dense cores formed in simulations of
the size presented here are similar to the Ophiuchus-F core which
measures≈ 0.1 pc across and has a mass of≈ 8 M⊙ (Motte, An-
dre & Neri 1998). In Figure 6 we show simulated extinction maps
of the four runs with radiative feedback, at the simulation resolu-
tion (left) and at the resolution of the Evans et al. (2009) extinction
maps for Ophiuchus (right), with extinction on a linear greyscale
map fromAV = 1 to AV = 25 which may be directly compared
to the Evans et al. (2009) maps. To produce the extinction maps we
have simply used the inverse of the conversion from extinction to
hydrogen column density of1.37 × 1021cm−2mag−1 adopted by
Evans et al. (2009). The resolution of the right hand panels is cal-
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Figure 6. Extinction maps of the four calculations with radiative transfer and varying initial magnetic field strength (M/Φ as indicated) at the simulation
resolution (left) and at the resolution of the Evans et al. (2009) extinction maps for Ophiuchus (right). TheAV = 2 contour is shown, the mass inside of
which was used to calculate the mass in thec2dsurvey. We have converted hydrogen column density toAV using the inverse of the conversion factor adopted
for thec2d observations by Evans et al. (2009), i.e. a conversion from extinction to hydrogen column density of1.37 × 1021cm−2mag−1. The scale from
AV = 1 to AV = 25 is the same as that used for thec2dmaps.

culated from thec2d extinction map resolution of270′′, which at
the assumed distance of125pc for Ophiuchus gives a resolution of
0.16 pc. We have simulated this resolution in our maps by enforc-
ing a minimum smoothing length of0.08pc on the SPH particles
when calculating the column density (i.e., approximating the point
spread function for the extinction maps by the SPH kernel smooth-
ing function).

Star formation efficiencies are calculated by Evans et al.
(2009) by dividing the mass in Young Stellar Objects (YSOs, de-
fined as objects with infrared excesses assumed to correspond to
the presence of a disc) by the total mass of the cloud plus YSOs.
That is,

SFE =
M∗

M∗ + M(cloud)
, (21)

whereM(cloud) is derived by integrating the extinction maps,
converted to column density, over area. Despite the low resolu-
tion of the observations compared to our simulated cloud, the cloud
masses measured from the clouds on the right hand side of Figure 6,
by integrating column density over the area within theAV = 2
contour, are remarkably accurate. For example, the measured mass
for the zero magnetic fields case (M/Φ = ∞) at the observational
resolution is44.1 M⊙, which may be compared with the total cloud
mass in our simulations of 50 M⊙, of which∼ 44 M⊙ lies within
the sphere with the approximate radius of theAV = 2 contour.
The caveat to this for the observations is that the conversion from
extinction to column density relies on a model for the dust, changes
to which can have a significant impact on cloud masses (e.g. Evans
et al. 2009 discuss the fact that their cloud masses are revised down
by a factor of1.4 from previous estimates due to revision of the
dust model).

Efficiencies thus derived by Evans et al. (2009) range from
3 − 6%, which is assumed to represent an average over the last
2 Myr given that this is the estimated lifetime of YSOs with infrared
excesses. The comparison between observations and our simula-
tions is made more difficult by the fact that we are not able to
follow the cloud collapse for longer than around1.5tff with cur-
rent computational resources1. Nevertheless, one can make tenta-
tive estimates based on the star formation rates we find in Figure 3
and the masses in Table 1. For the four clouds shown on the right
hand side of Figure 6 (the four runs with radiative feedback in-
cluded), cloud masses measured by integrating the column density
within theAV = 2 contour are44.1, 44.0, 43.6 and43.9 for the
M/Φ = ∞, 10, 5 and 3 clouds respectively. A straightforward
application of (21) at the end point of each of our calculations indi-
cates that of order3 − 5% of the gas has been converted into stars
over the time for which the simulations have been run. Whilstthese
values are in agreement with the observational results (though not
for dense gas), they are not very meaningful given that they repre-
sent evolution over fractions of a freefall time beyond initial star
formation (the end time for each of the calculations is givenin Ta-
ble 1 and can be inferred from Figure 3) and will increase withtime
as more mass is converted into stars.

More useful are estimates which take into account the
timescale over which star formation has proceeded. The depletion
time for the cloud is given by

tdep = M(cloud)/Ṁ∗. (22)

1 The key limitation being that for only a few collapsed objects, good load
balancing is very difficult to achieve, limiting the usefulness of simply run-
ning on a higher number of processors.
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Calculating the average star formation rate from the onset of star
formation using Figure 3 and assuming that these rates will con-
tinue indefinitely (a dubious assumption), we obtain depletion
times of 0.8, 1.6, 1.3 and 1.8 Myr for the clouds in the above
four calculations respectively. Whilst these are very short com-
pared to the global depletion times for the clouds in Evans etal.
(2009) of30 to 66 Myr, they are in agreement with the depletion
timescale derived for dense cores within such clouds (i.e.,gas with
n & 2 × 104cm−3, which our initial cloud density lies above)
which are in the range of0.6-2.9 Myr with an average of1.8Myr.

Finally, Evans et al. (2009) quantify the observed inefficiency
in terms of the star formation rate per free-fall time, defined as
(Krumholz & Tan 2007)

SFRff = Ṁ∗tff/Mcloud, (23)

wheretff is defined as the free-fall time for the mean density of the
cloud and which here we take as the initial free-fall time forour
initially uniform density clouds.

Using this measure we find star formation rates ofSFRff =
0.23, 0.12, 0.15 and0.10 for the four runs (M/Φ = ∞, 10, 5 and
3 respectively) that include radiative feedback andSFRff = 0.32,
0.18, 0.17 and0.12 for the four runs using a barotropic equation of
state, that is, neglecting radiative feedback. Thus, only the strong
magnetic field calculations (β < 1, corresponding toM/Φ . 7)
that include radiative feedback approach the observed range of
SFRff = 0.03 − 0.06 measured by Evans et al. (2009). All of the
calculations with weaker field strengths and/or neglectingradiative
feedback have star formation rates that are much higher thanob-
servations suggest. From the point of view of matching theory to
observation, this is reassuring, since, as discussed in Price & Bate
(2008), the most realistic of our calculations in terms of magnetic
field strength is the strongest field case,M/Φ = 3, since molecu-
lar cloud cores are typically observed with mass-to-flux ratios that
are marginally supercritical (i.e.M/Φ ∼ 2−3) and with magnetic
pressure smaller than gas pressure by a factor of∼ 3 (i.e.,β ∼ 0.3)
(Crutcher 1999; Heiles & Troland 2004). However we caution that
any conclusions regarding the star formation efficiency from these
calculations are necessarily limited by the relatively short period
over which we have been able to follow the calculations beyond
the free-fall time.

Furthermore our results present only a lower limit on the effect
of feedback since we have neglected feedback from within 0.5AU
of a star including the driving of stellar winds and collimated out-
flows which may act to further reduce the star formation efficiency
(Matzner & McKee 2000), perhaps explaining the remaining dis-
crepancy between the efficiencies we find and the observed range
of 3 − 6%.

5.2 Implications for theory

The reduction in star formation rate is primarily a result ofthe sup-
port provided to the cloud by the magnetic field. The global mag-
netic field, whilst not sufficient to prevent collapse altogether, is
nevertheless able to affect the binding energy.

Clark et al. (2008) point out that the star formation rate can
be made arbitrarily low in globally unbound clouds by increasing
the ratio of kinetic to gravitational potential energyEkin/|Egrav|
(set to unity in the initial conditions for the calculationswe present
here). The fact that increasing the turbulent velocity dispersion
can decrease the efficiency of star formation in the sense of low-
ering the star formation rate has also been discussed previously

(e.g. Padoan 1995; Klessen et al. 2000). However, the kinetic en-
ergy cannot be increased indefinitely for a cloud of this sizewith-
out violating the observational constraints on the turbulent veloc-
ity field. Observationally, the velocity line width scales with cloud
size approximately asv ∝ L0.5 (Larson 1981; Solomon et al.
1987; Brunt & Heyer 2002; Heyer & Brunt 2004) with a mag-
nitude of v ≈ 1 km s−1 on 1 pc scales and a scatter of a fac-
tor of two (Heyer & Brunt 2004). For a cloud the size of those
modelled here (0.375 pc), this gives a typical velocity dispersion
of v ≈ 0.6 km s−1 (Mach 3.3) which is almost a factor of two
less than the velocity dispersion of our initial conditions. Thus, our
initial conditions are already at the upper end of the observed ve-
locity dispersion in molecular clouds so there would appearto be
little scope for achieving a lower star formation rate by boosting
the level of turbulence.

By contrast, as we have shown through the simulations pre-
sented here, a low star formation rate requires only a magnetic field
of similar strength to observational estimates (i.e. a mass-to-flux
ratio of & 3, Crutcher 1999) and the effects of radiative feedback
which has no large free parameters (once the metallicity is set).
Similar results with regards to the reduction in star formation rate
with magnetic field strength are found by Vázquez-Semadeniet al.
(2005) in the context of (scale-free) driven turbulence simulations.

It therefore appears that both strong magnetic fields and radia-
tive feedback from protostars are crucial ingredients in regulating
star formation to a slow and inefficient level, which cannot be ne-
glected from numerical simulations of the star formation process.
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