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ABSTRACT

In this paper we show how a Lagrangian variational principle can be used to derive the
Smoothed Particle Magnetohydrodynamics (SPMHD) equations for ideal Magnetohydrody-
namics (MHD). We also consider the effect of a variable smoothing length in the Smoothed
Particle Hydrodynamics (SPH) kernels, after which we demonstrate by numerical tests that the
consistent treatment of terms relating to the gradient of the smoothing length in the SPMHD
equations significantly improves the accuracy of the algorithm. Our results complement those
obtained in the companion paper for non-ideal MHD where artificial dissipative terms were
included to handle shocks.

Key words: magnetic fields – MHD – methods: numerical.

1 I N T RO D U C T I O N

An advantage of deriving numerical algorithms from a variational principle is that conservation laws can be guaranteed. Another advantage
is that the algorithms derived from a variational principle are often more stable than other algorithms. For example, in the case of Smoothed
Particle Hydrodynamics (SPH, for a review see Monaghan 1992), the density may be determined from the continuity equation, and it proves
important for stability to combine the SPH continuity equation with the variational principle to deduce equations of motion. We call such a
procedure consistent.

Bonet & Lok (1999) have derived consistent SPH equations for fluids even when non-standard forms of the continuity equation are used.
They include the continuity equation as a constraint on Lagrangian density variations. The resulting equations possess very good stability
properties when two fluids with very different densities, for example air and water, are in contact. Other, non-consistent, forms of the SPH
algorithm, for example with a standard acceleration equation but non-standard continuity equation, exhibit instabilities.

In this paper we show how a Lagrangian variational principle can be used to derive the Smoothed Particle Magnetohydrodynamics
(SPMHD) equations for ideal MHD. Variational equations for continuum MHD have been derived by Newcomb (1962) for both the Lagrangian
and the Eulerian form of the equations (see also Henyey 1982; Oppeneer 1984; Field 1986). In the Lagrangian form of the equations Newcomb
makes use of flux conservation to relate changes in the magnetic field to changes in surface elements. In the present case, where we consider
SPH particles, it is not clear how to prescribe such surface elements in a unique way from the particle coordinates. Instead we make
use of the induction equation in its Lagrangian form and treat this as a constraint. An alternative, which we do not explore here, is to
begin with plasma physics and prescribe the fields in terms of currents. Such an approach would be natural for particle methods [e.g.
Particle-In-Cell (PIC)] which have been so effective for plasma physics where the electrons would be treated as one fluid and the ions as
another.

The plan of this paper is derive the equations of motion from a standard Lagrangian for SPH particles with either, or both, the continuity
and induction equations treated as constraints (Section 3). We then consider the effect of variable smoothing-length in the SPH kernels
(Section 4) after which we demonstrate by numerical tests that consistent treatment of the variable smoothing length in the SPH equations
significantly improves the accuracy of SPMHD shocks and of wave propagation (Section 6). Our results complement those obtained in the
companion paper (Price & Monaghan 2003, hereafter paper I) for non-ideal MHD where artificial dissipative terms were included to handle
shocks.

�E-mail: dprice@ast.cam.ac.uk
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2 T H E L AG R A N G I A N

Variational principles for MHD have been discussed by many authors (e.g. Newcomb 1962; Henyey 1982; Oppeneer 1984; Field 1986) and
the Lagrangian is given by

L =
∫ (

1

2
ρv2 − ρu − 1

2µ0
B2

)
dV , (1)

which is simply the kinetic minus the potential and magnetic energies. The SPH Lagrangian is therefore

L sph =
∑

b

mb

[
1

2
v2

b − ub(ρb, sb) − 1

2µ0

B2
b

ρb

]
. (2)

where we have replaced the integral with a summation and the volume element ρ dV with the mass per SPH particle m. Variational principles
for SPH in relativistic and non-relativistic fluid dynamics have been given by Monaghan & Price (2001).

3 S P M H D E QUAT I O N S

3.1 Equations of motion

3.1.1 Standard formulation

Ideally we would wish to express all the terms in the Lagrangian (2) in terms of the particle coordinates, which would automatically guarantee
the conservation of momentum and energy since the equations of motion result from the Euler–Lagrange equations (e.g. Monaghan & Price
2001). The density can be written as a function of the particle coordinates using the usual SPH summation, that is

ρa =
∑

b

mbWab, (3)

where Wab = W (ra − rb, h) is the SPH interpolation kernel. Taking the time derivative of this expression, we have the SPH version of the
continuity equation

dρa

dt
=

∑
b

mb(va − vb) · ∇a Wab. (4)

The internal energy is regarded as a function of the density, where from the first law of thermodynamics we have

du

dρ

∣∣∣∣
s

= P

ρ2
. (5)

The magnetic field is evolved in SPH according to

dBa

dt
= 1

ρa

∑
b

mb[Ba(vab · ∇a Wab) − vab(Ba · ∇a Wab)], (6)

or equivalently

d

dt

(
B
ρ

)
a

= − 1

ρ2
a

∑
b

mbvab(Ba · ∇a Wab) (7)

(e.g. Phillips & Monaghan 1985; Monaghan 1992; paper I). We note that these equations represent the correct formulation of the induction
equation even in the presence of magnetic monopoles (Janhunen 2000; Dellar 2001).

However, it is not intuitively obvious how the magnetic field B should be related to the particle coordinates, or even that it could be
expressed in such a manner [in the SPH context this would imply an expression for B such that taking the time derivative gives (6) or (7),
analogous to (3) for the density], though it could be done easily for a plasma with the electrons and ions described by separate sets of SPH
particles. We may, however, proceed by introducing constraints on B in a manner similar to that of Bonet & Lok (1999), that is we require

δ

∫
L dt =

∫
δL dt = 0, (8)

where we consider variations with respect to a small change in the particle coordinates δra. We therefore have

δL = mava · δva −
∑

b

mb

[
∂ub

∂ρb

∣∣∣∣
s

δρb + 1

2µ0

(
Bb

ρb

)2

δρb − 1

µ0
Bb · δ

(
Bb

ρb

)]
. (9)

The Lagrangian variations in density and magnetic field are given by

δρb =
∑

c

mc (δr b − δr c) · ∇bWbc (10)

δ

(
Bb

ρb

)
=

∑
c

mc(δr b − δr c)
Bb

ρ2
b

· ∇bWbc (11)
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where we have used (4) and (7) respectively [note that we also recover the following results if we use (6) instead of (7)]. Using (10), (11) and
(5) in (9) and rearranging, we find

δL

δra
= −

∑
b

mb

[
Pb

ρ2
b

∑
c

mc∇bWbc(δba − δca)

]
−

∑
b

mb

[
1

2µ0

(
Bb

ρb

)2

∇bWbc(δba − δca)

]

+
∑

b

mb

[
1

µ0

Bb

ρ2
b

∑
c

mc
Bb

ρb
· ∇bWbc(δba − δca)

]
, (12)

where δab refers to the Kronecker delta. Putting this back into (8), integrating the velocity term by parts and simplifying (using ∇ aWab =
− ∇ bWba), we obtain∫ {

−ma
dva

dt
−

∑
b

mb

(
Pa

ρ2
a

+ Pb

ρ2
b

)
∇a Wab −

∑
b

mb
1

2µ0

(
B2

a

ρ2
a

+ B2
b

ρ2
b

)
∇a Wab

+
∑

b

mb
1

µ0

[
Ba

ρ2
a

(Ba · ∇a Wab) + Bb

ρ2
b

(Bb · ∇a Wab)

]}
δra dt = 0. (13)

The SPH equations of motion are therefore given by

dvi
a

dt
=

∑
b

mb

[(
Si j

ρ2

)
a

+
(

Si j

ρ2

)
b

]
∇ j

a Wab, (14)

where the stress tensor Sij is defined as

Si j ≡ −Pδi j + 1

µ0

(
Bi B j − 1

2
B2δi j

)
. (15)

This form of the magnetic force term conserves linear momentum exactly (angular momentum is discussed in Section 5) but was shown
by Phillips & Monaghan (1985) to be unstable in certain regimes (low magnetic β). We resolve this instability by adding a short-range
repulsive force to prevent particles from clumping (Monaghan 2000), the implementation of which is described in paper I. We note that the
conservative form of the momentum equation was derived using a non-conservative induction equation, which agrees with the treatment of
magnetic monopoles suggested by Janhunen (2000) and Dellar (2001).

3.1.2 Alternative formulation

Consistent sets of SPMHD equations may also be derived using alternative forms of the continuity and induction equations. We give an
example below since alternative forms of the pressure terms in the momentum equation are often explored in the context of SPH, without
alteration of the other equations to make the formalisms self-consistent. We expect that a lack of consistency in the discrete equations will
inevitably lead to loss of accuracy in the resulting algorithm. For example, using the continuity equation

dρa

dt
= ρa

∑
b

mb
vab

ρb
· ∇a Wab, (16)

and the induction equation

d

dt

(
B
ρ

)
a

= − 1

ρa

∑
b

mb
vab

ρb
(Ba · ∇a Wab). (17)

results in the momentum equation

dvi
a

dt
=

∑
b

mb

[
Si j

a + Si j
b

ρaρb

]
∇ j

a Wab. (18)

This form of the SPMHD equations also conserves linear momentum exactly and in the hydrodynamic case has been found to give better
performance in situations where there are large jumps in density (for example at a water–air interface). The consistent form of the energy
equations is given in Section 3.2.3.

3.2 Energy equation

3.2.1 Internal energy

The internal energy equation follows from the use of the first law of thermodynamics, that is

dua

dt
= Pa

ρ2
a

dρa

dt
. (19)
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Using the standard continuity equation (4) therefore gives

dua

dt
= Pa

ρ2
a

∑
b

mbvab · ∇a Wab. (20)

3.2.2 Total energy

The Hamiltonian is given by

H =
∑

a

va · ∂L

∂va
− L. (21)

which represents the conserved total energy of the SPH particles since the Lagrangian does not explicitly depend on the time coordinate.
Using (2) we have

H = E =
∑

a

ma

(
1

2
v2

a + ua + 1

2

B2
a

ρa

)
. (22)

Taking the (comoving) time derivative, we have

dE

dt
=

∑
a

ma

[
va · dva

dt
+ dua

dρa

dρa

dt
+ 1

2

B2
a

ρ2
a

dρa

dt
+ Ba · d

dt

(
Ba

ρa

)]
, (23)

where the first term is specified by use of the momentum equation (14), the second term using the first law of thermodynamics (5) and the
continuity equation (4), the third term by the continuity equation (4) and the fourth term by the induction equation (7). Using these equations
and simplifying we find

dE

dt
=

∑
a

ma

∑
b

mb

[(
Si j

ρ2

)
a

vi
b +

(
Si j

ρ2

)
b

vi
a

]
∇ j

a Wab, (24)

such that the total energy per particle is evolved according to

dε̂a

dt
=

∑
b

mb

[(
Si j

ρ2

)
a

vi
b +

(
Si j

ρ2

)
b

vi
a

]
∇ j

a Wab, (25)

where

ε̂a = 1

2
v2

a + ua + 1

2

B2
a

ρa
(26)

is the energy per unit mass.

3.2.3 Alternative formulation

For the alternative formulation given in Section 3.1.2 the internal energy equation is given by

dua

dt
= Pa

ρa

∑
b

mb
vab

ρb
· ∇a Wab, (27)

and the total energy equation by

dε̂a

dt
=

∑
b

mb

[
Si j

a vi
b + Si j

b vi
a

ρaρb

]
∇ j

a Wab. (28)

4 VA R I A B L E S M O OT H I N G - L E N G T H T E R M S

The smoothing length h determines the radius of interaction for each SPH particle. Early SPH simulations used a fixed smoothing length for
all particles; however, allowing each particle to have its own associated smoothing length which varies according to local conditions increases
the spatial resolution substantially (Hernquist & Katz 1989; Benz 1990). The usual rule is to take

ha ∝
(

1

ρa

)(1/ν)

, (29)

where ν is the number of spatial dimensions, although others are possible (Monaghan 2000). Implementing this rule self-consistently is more
complicated in SPH since the density ρ a is itself a function of the smoothing length ha via the relation (3). The usual rule is to take the time
derivative of (29), giving (e.g. Benz 1990)

dha

dt
= − ha

νρa

dρ

dt
, (30)

which can then be evolved alongside the other particle quantities.
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This rule works well for most practical purposes, and maintains the relation (29) particularly well when the density is updated using the
continuity equation (4). However, it has been known for some time that, in order to be fully self-consistent, extra terms involving the derivative
of h should be included in the momentum and energy equations (e.g. Nelson 1994; Nelson & Papaloizou 1994; Serna, Alimi & Chieze 1996).
Attempts to do this were, however, complicated to implement (Nelson & Papaloizou 1994) and therefore were not generally adopted by
the SPH community. Recently Springel & Hernquist (2002) have shown that the so-called ∇h terms can be self-consistently included in the
equations of motion and energy using a variational approach. Springel & Hernquist (2002) included the variation of the smoothing length
in their variational principle by use of Lagrange multipliers; however, in the context of the discussion given in Section 3 we note that by
expressing the smoothing length as a function of ρ we can therefore specify h as a function of the particle coordinates (Monaghan 2002); that
is, we have h = h(ρ) where ρ is given by

ρa =
∑

b

mbW (rab, ha). (31)

Taking the time derivative, we obtain

dρa

dt
= 1

a

∑
b

mbvab · ∇a Wab(ha), (32)

where

a =
[

1 + ∂ha

∂ρa

∑
c

mc
∂Wab(ha)

∂ha

]−1

. (33)

The equations of motion in the hydrodynamic case may then be found using the Euler–Lagrange equations and will automatically
conserve linear and angular momentum. The resulting equations are given by (Monaghan 2002; Springel & Hernquist 2002)

dva

dt
= −

∑
b

mb

[
Pa

aρ2
a

∇a Wab(ha) + Pb

bρ
2
b

∇a Wab(hb)

]
. (34)

Calculation of the quantities  involve a summation over the particles and can be computed alongside the density summation (31). To
be fully self-consistent (31) should be solved iteratively to determine both h and ρ self-consistently. In practice this means that an extra pass
over the density summation only occurs when the density changes significantly between time-steps. Springel & Hernquist (2002) also suggest
using the continuity equation (32) to obtain a better starting approximation for ρ and consequently h. We perform simple fixed-point iterations
of the density, using a predicted smoothing length from (30). Having calculated the density by summation, we then compute a new value of
the smoothing length hnew using (29). The convergence of each particle is then determined according to the criterion

|hnew − h|
h

< 1.0 × 10−2. (35)

We then iterate until all particles are converged, although for efficiency we do not allow the scheme to continue iterating on the same
particle(s). Note that the smoothing length of a particle is only set equal to hnew if the density is to be recalculated (this is to ensure that the
same smoothing length that was used to calculate the density is used to compute the terms in the other SPMHD equations). The calculated
gradient terms (33) may also be used to implement an iteration scheme such as the Newton–Raphson method which converges faster than our
simple fixed-point iteration. We also note that in principle only the density on particles which have not converged needs to be recomputed,
since the density of each particle is independent of the smoothing length of neighbouring particles. These considerations will be discussed
further in the multidimensional context since the cost of iteration is of greater importance in this case.

Since we cannot explicitly write the Lagrangian (2) as a function of the particle coordinates, we cannot explicitly derive the SPMHD
equations incorporating a variable smoothing length. We may, however, deduce the form of the terms which should be included by consistency
arguments. We start with the SPH induction equation in the form

d

dt

(
B
ρ

)
a

= − 1

ρ2
a

∑
b

mbvab(Ba · ∇a Wab). (36)

Expanding the left-hand side, we have

dBa

dt
= − 1

ρa

∑
b

mbvab(Ba · ∇a Wab) − Ba

ρa

dρa

dt
. (37)

If the smoothing length is a given function of the density, then the SPH continuity equation is given by (32), and (37) becomes

dBa

dt
= − 1

ρa

∑
b

mb

{
vab(Ba · ∇a Wab) − 1

a
Ba[vab · ∇a Wab(ha)]

}
. (38)

In one dimension, however, these terms must cancel to give Bx = const., and thus we deduce that the correct form of the induction equation
is therefore
dBa

dt
= − 1

aρa

∑
b

mb{vab[Ba · ∇a Wab(ha)]. − Ba[vab · ∇a Wab(ha)]}, (39)
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or in the form (36) we would have

d

dt

(
B
ρ

)
a

= − 1

aρ2
a

∑
b

mbvab[Ba · ∇a Wab(ha)]. (40)

Using (39) or (40) and (32) as constraints we may then derive the equations of motion using the variational principle described in Section 3
to give

dva

dt
=

∑
b

mb

[(
Si j

ρ2

)
a

∇ j
a Wab(ha) +

(
Si j

ρ2

)
b

∇ j
a Wab(hb)

]
. (41)

The total energy equation is given by

dε̂a

dt
=

∑
b

mb

[(
Si j

ρ2

)
a

vi
b∇ j

a Wab(ha) +
(

Si j

ρ2

)
b

vi
a∇ j

a Wab(hb)

]
, (42)

whilst the internal energy equation is found using the first law of thermodynamics and (32), that is

dua

dt
= Pa

aρ2
a

∑
b

mbvab · ∇a Wab(ha). (43)

We show in Section 6.1 that including the correction terms for a variable smoothing length in this manner significantly improves the
numerical wave speed in the propagation of MHD waves and enables the shock tube problems considered in paper I to be computed with no
smoothing of the initial conditions.

5 M O M E N T U M C O N S E RVAT I O N

The equations of motion conserve linear momentum exactly. However, angular momentum is not conserved exactly because the stress force
between a pair of particles is not along the line joining them. Returning to (41), and considering motion in two dimensions x and y, the change
in angular momentum of the system is given by

d

dt

∑
a

(ra × va)z =
∑

a

∑
b

mamb

([
σ̄ xx

ab − σ̄
yy

ab

]
yabxab + σ̄

xy
ab

[
y2

ab − x2
ab

])
Fab, (44)

where yab = ya − yb, xab = xa − xb, σ ij = Sij/ρ2 and σ̃
i j
ab = σ i j

a + σ
i j
b . We have replaced ∇Wab by rabFab. It can be seen from (44) that if the

stress is isotropic, and proportional to the identity tensor, as is the case for isotropic fluids, the rate of change of angular momentum vanishes.
If, however, the stress is not proportional to the identity tensor then the total angular momentum of the system will change. It can be shown
that when the summations can be converted to integrals the angular momentum is conserved exactly.

The same problem arises in the case of elastic stresses where the problem is exacerbated by the fact that the particles near the edge of
a solid have densities similar to the interior and the particles do not have neighbours exterior to the solid. In this case the conservation of
angular momentum is significantly in error. Bonet & Lok (1999) showed, however, that angular momentum could be conserved by altering
the gradient of the kernel to a matrix operator. The astrophysical problem could be solved in the same way but we expect the astrophysical
conservation to be very much better without changing the kernel, because edges are associated with low density and correspondingly low
angular momentum.

6 N U M E R I C A L T E S T S

We demonstrate the usefulness of the variable smoothing-length terms in the MHD case by the simulation of MHD waves and the shock tube
problem of Brio & Wu (1988). We find that with the variable smoothing-length terms included it is better to use (40) to update the magnetic
field rather than (39) since we find that using (39) can lead to negative thermal energies in the shock tube problem. The results shown use the
total energy equation (as in paper I) although similar results are obtained when the thermal energy is integrated.

6.1 MHD waves

The equations of magnetohydrodynamics admit three ‘families’ of waves, the so-called slow, Alfvén and fast waves (Appendix A). The tests
presented here are taken from Dai & Woodward (1998). We consider travelling slow and fast MHD waves propagating in a one-dimensional
domain, where the velocity and magnetic field are allowed to vary in three dimensions. We use γ = 5/3 for the problems considered here.
The perturbation in density is applied by perturbing the particles from an initially uniform set-up (since we use equal-mass particles). Details
of this perturbation are given in Appendix B and the amplitudes for the other quantities are derived in Appendix A. We leave the artificial
dissipation on for this problem, with the switch of Morris & Monaghan (1997) implemented using Kmin = 0.05 (see paper I for details of
this implementation). This is to demonstrate that the switch is effective in turning off the artificial dissipation in the absence of shocks. The
variable smoothing-length terms (Section 4) do not affect the wave profiles but inclusion of these terms gives very accurate numerical wave
speeds.

The fast wave is shown in Fig. 1, with the dashed line giving the initial conditions. The initial amplitude is 0.55 per cent as in Dai &
Woodward (1998). Results are shown at t = 10 for five different simulations using 32, 64, 128, 256 and 512 particles in the x-direction. The
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[t]

Figure 1. Results for the one-dimensional travelling fast wave problem. Initial conditions are indicated by the dashed line. Results are presented after 10 periods
for simulations with 32, 64, 128, 256 and 512 particles. The fast wave speed in the gas is very close to unity which is accurately reproduced by the SPMHD
solution (i.e. the numerical solution is in phase with the initial conditions). The artificial dissipation is turned on but uses the switch of Morris & Monaghan
(1997) which dramatically reduces its effects away from shocks. The wave is steepened slightly by non-linear effects.
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[t]

Figure 2. Results for the one-dimensional travelling slow wave problem. Initial conditions are indicated by the dashed line and results are presented after
10 periods for simulations with 32, 64, 128, 256 and 512 particles. The slow wave speed in the gas is very close to unity, such that the numerical solution at
t = 10 should be in phase with the initial conditions. This is well represented by the SPMHD solution for the higher-resolution runs. The artificial dissipation
is turned on but uses the switch of Morris & Monaghan (1997) which dramatically reduces its effects away from shocks. The wave is steepened slightly by
non-linear effects.
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[t]

Figure 3. Results of the shock tube test of Brio & Wu (1988) with no smoothing of the initial conditions. Initial conditions to the left of the origin are given
by (ρ, P, vx, vy, By) = [1, 1, 0, 0, 1] and to the right by (ρ, P, vx, vy, By) = [0.125, 0.1, 0, 0, −1] with Bx = 0.75 and γ = 2.0. Profiles of density, pressure,
vx, vy, transverse magnetic field and thermal energy are shown at time t = 0.1 and may be compared with the numerical solution from Balsara (1998) given
by the solid line. In this case the density summation, total energy equation and the induction equation using B/ρ have been used, incorporating the variable
smoothing-length terms.
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[t]

Figure 4. Results of the MHD shock tube test with initial conditions to the left of the shock given by (ρ, P, vx, vy, vz, By, Bz) = [1, 1, 36.87, −0.155, −0.0386,
4/(4π)1/2, 1/(4π)1/2] and to the right by (ρ, P, vx, vy, vz, By, Bz) = [1, 1, −36.87, 0, 0, 4/(4π)1/2, 1/(4π)1/2] with Bx = 4.0/(4π)1/2 and γ = 5/3. Results are
shown at time t = 0.03 and compare extremely well with the exact solution given by Dai & Woodward (1994) (solid line). The overshoots in density, pressure
and magnetic field observed in paper I are no longer present due to our self-consistent inclusion of terms relating to the gradient of the smoothing length.
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properties of the gas are set such that the fast wave speed is very close to unity, meaning that the solution at t = 10 should be in phase with
the initial conditions. Fig. 1 demonstrates that this is accurately reproduced by the SPMHD algorithm. The effects of the small amount of
dissipation present can be seen in the amount of damping present in the solutions. The small amount of steepening observed in the wave
profiles is due to non-linear effects and agrees with the results presented by Dai & Woodward (1998).

The slow MHD wave is shown in Fig. 2, again with the dashed line giving the initial conditions. The perturbation amplitude is 0.6 per
cent as in Dai & Woodward (1998). Results are again shown at t = 10 at resolutions of 32, 64, 128, 256 and 512 particles. In this case the
properties of the gas are set such that the slow wave speed in the medium is very close to unity, again meaning that the solution at t = 10 should
be in phase with the initial conditions. We see in Fig. 2 that this is reproduced by the SPMHD solution for the higher-resolution runs. The
artificial dissipation is again turned on using the switch and a minimum of Kmin = 0.05. The wave is slightly overdamped in this case since we
construct the artificial dissipation using the fastest wave speed (cf. paper I) which in this case is approximately three times the wave propagation
speed.

6.2 Shock tube

As an additional example of the advantages of the consistent smoothing-length evolution and the variable smoothing-length terms we recalculate
the shock tube test of Brio & Wu (1988) from paper I. In this case, however, we apply no smoothing whatsoever to the initial conditions and
calculate the solution using the density summation (31), the total energy equation (42) and the induction equation (40). As in paper I we set
up the problem using approximately 800 equal-mass particles in the domain x = [− 0.5, 0.5]. Conditions to the left of the shock are given by
(ρ, P, vx, vy, By) = [1, 1, 0, 0, 1] and to the right by (ρ, P, vx, vy, By) = [0.125, 0.1, 0, 0, − 1] with Bx = 0.75 and γ = 2.0. The results are
shown in Fig. 3 at time t = 0.1 and may be compared with the numerical solution from Balsara (1998) given by the solid line. The results
may also be compared with Fig. 2 in paper I. The non-smoothed initial conditions result in a small starting error at the contact discontinuity
and a small overshoot at the end of the rarefaction wave; however, the compound wave in particular is significantly less spread out than in the
results given in paper I. The consistent update of the smoothing length discussed in Section 4 results in some extra iterations of the density
(for most of the simulation two passes over the density summation are used).

As a final example we also recompute the shock tube test shown in Fig. 7 of paper I. The initial conditions to the left of the shock are
given by (ρ, P, vx, vy, vz, By, Bz) = [1, 1, 36.87, −0.155, −0.0386, 4/(4π)1/2, 1/(4π)1/2] and to the right by (ρ, P, vx, vy, vz, By, Bz) = [1, 1,
−36.87, 0, 0, 4/(4π)1/2, 1/(4π)1/2] with Bx = 4.0/(4π)1/2 and γ = 5/3, resulting in two extremely strong fast shocks which propagate away
from the origin. The resolution varies from 400 to 1286 particles throughout the simulation due to the inflow boundary conditions. Results
are shown in Fig. 4 at time t = 0.03 and compare extremely well with the exact solution given by Dai & Woodward (1994) (solid lines). In
paper I the post-shock density and transverse magnetic field components were observed to overshoot the exact solution. In Fig. 4 we observe
that these effects are no longer present when the variable smoothing-length terms are self-consistently accounted for.

7 S U M M A RY

In summary, we have shown that

(i) The equations of motion and energy for SPMHD can be derived from a variational principle using the continuity and induction equations
as constraints. This demonstrates that the equation set is consistent and the resulting equations conserve linear momentum and energy exactly.
In the MHD case this also demonstrates that the treatment of source terms proportional to ∇ · B is consistent, as discussed in paper I with
reference to Janhunen (2000) and Dellar (2001).

(ii) The correction terms for a variable smoothing length may be derived naturally from a variational approach. Accounting for these terms
is shown to improve the accuracy of SPH wave propagation.
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A P P E N D I X A : L I N E A R WAV E S I N M H D

In this section we describe the set-up used for the MHD waves described in Section 6.1. The MHD equations in continuum form may be
written as
dρ

dt
= −ρ∇ · v (A1)

dv

dt
= −∇ P

ρ
− B × (∇ × B)

µ0ρ
(A2)

dB
dt

= (B · ∇)v− B(∇ · v) (A3)

together with the divergence constraint ∇ · B = 0. We perturb according to

ρ = ρ0 + δρ

v = v

B = B0 + δB

δP = c2
s δρ

(A4)

where c2
s = γ P0/ρ 0 is the sound speed. Considering only linear terms, the perturbed equations are therefore given by

d(δρ)

dt
= −ρ0(∇ · v) (A5)

dv

dt
= −c2

s

∇(δρ)

ρ0
− B0 × (∇ × δB)

µ0ρ0
(A6)

d(δB)

dt
= (B0 · ∇)v− B0(∇ · v). (A7)

Specifying the perturbation according to

δρ = Dei(k·x−ωt)

v = vei(k·x−ωt)

δB = bei(k·x−ωt) (A8)

we have

−ωD = −ρ0(v · k) (A9)

−ωv = −c2
s

Dk
ρ0

− 1

µ0ρ0
[(B0 · b)k − (B0 · k)b] (A10)

−ωb = (B0 · k)v− B0(k · v). (A11)

Considering only waves in the x-direction (i.e. k = [kx, 0, 0]), defining the wave speed v = ω/k and using (A9) to eliminate D, equation (A10)
gives

vx

(
v − c2

s

v

)
=

(
By0by + Bz0bz

µ0ρ0

)
(A12)

vvy = − Bx0by

µ0ρ0
(A13)

vvz = − Bx0bz

µ0ρ0
(A14)
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where bx = 0 since ∇ · B = 0. Using these in (A11) we have

vby = −Bx0vy + By0vx (A15)

vbz = −Bx0vz + Bz0vx . (A16)

We can therefore solve for the perturbation amplitudes vx, vy, vz, by and bz in terms of the amplitude of the density perturbation D and the
wave speed v. We find

vx = vD

ρ
(A17)

vy

(
v2 − B2

x

µ0ρ

)
= Bx By

µ0ρ
vx (A18)

vz

(
v2 − B2

x

µ0ρ

)
= Bx Bz

µ0ρ
vx (A19)

by

(
v2 − B2

x

µ0ρ

)
= vByvx (A20)

bz

(
v2 − B2

x

µ0ρ

)
= vBzvx (A21)

where we have dropped the subscript 0. The wave speed v is found by eliminating these quantities from (A12), giving

vx(
v2 − B2

x /µ0ρ
) [

v4 − v2

(
c2

s + B2
x + B2

y + B2
z

µ0ρ

)
+ c2

s B2
x

µ0ρ

]
= 0, (A22)

which reveals the three wave types in MHD. The Alfvén waves are those with

v2 = B2
x

µ0ρ
. (A23)

These are transverse waves which travel along the field lines. The term in square brackets in (A22) gives a quartic for v (or a quadratic for
v2), with roots

v2 = 1

2


(

c2
s + B2

x + B2
y + B2

z

µ0ρ

)
±

√(
c2

s + B2
x + B2

y + B2
z

µ0ρ

)2

− 4
c2

s B2
x

µ0ρ


 , (A24)

which are the fast (+) and slow (−) magnetosonic waves.

A P P E N D I X B : D E N S I T Y P E RT U R BAT I O N I N S P H

The perturbation in density is applied by perturbing the particles from an initially uniform set-up. We consider the one-dimensional
perturbation

ρ = ρ0[1 + A sin(kx)], (B1)

where A = D/ρ 0 is the perturbation amplitude. The cumulative total mass in the x-direction is given by

M(x) = ρ0

∫
[1 + A sin(kx)] dx

= ρ0[x − A cos(kx)]x
0, (B2)

such that the cumulative mass at any given point as a fraction of the total mass is given by

M(x)

M(xmax)
. (B3)

For equal-mass particles distributed in x = [0, xmax] the cumulative mass fraction at particle a is given by xa/xmax such that the particle position
may be calculated using

xa

xmax
= M(xa)

M(xmax)
. (B4)
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Substituting the expression for M(x) we have the following equation for the particle position:

xa

xmax
− xa − A cos(kxa)

[xmax − Acos(kxmax)]
= 0, (B5)

which we solve iteratively using a simple Newton–Raphson root-finder. With the uniform particle distribution as the initial conditions this
converges in one or two iterations.
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