Appendix A

Discretization scheme for non-relativistic equations

The discretization scheme used in Chapter 2 for the non-relativistic fluid equations is summarised in Figure 2.1. Fluxes are calculated on the half grid points while the other terms are calculated on the integer points. We solve (2.1)-(2.5) in the following manner: The numerical equations are solved first for velocity on the half grid points (dropping the superscript r for convenience),

$$
\begin{align*}
\mathrm{v}_{i+1 / 2}^{n+1} & =\mathrm{v}_{i+1 / 2}^{n+1}-\Delta t\left[\mathrm{v}_{i+1 / 2}^{n}\left(\frac{\mathrm{v}_{i+3 / 2}^{n}-\mathrm{v}_{i+1 / 2}^{n}}{r_{i+3 / 2}-r_{i+1 / 2}}\right)-\frac{1}{\rho_{i+1 / 2}^{n}}\left(\frac{P_{i+1}^{n}-P_{i}^{n}}{r_{i+1}-r_{i}}\right)-\frac{1}{r_{i+1 / 2}^{2}}\right] \quad(\mathrm{v}<0) \\
& =\mathrm{v}_{i+1 / 2}^{n+1}-\Delta t\left[\mathrm{v}_{i+1 / 2}^{n}\left(\frac{\mathrm{v}_{i+1 / 2}^{n}-\mathrm{v}_{i-1 / 2}^{n}}{r_{i+3 / 2}-r_{i+1 / 2}}\right)-\frac{1}{\rho_{i+1 / 2}^{n}}\left(\frac{P_{i+1}^{n}-P_{i}^{n}}{r_{i+1}-r_{i}}\right)-\frac{1}{r_{i+1 / 2}^{2}}\right] \quad(\mathrm{v}>0) \tag{A.1}
\end{align*}
$$

where the superscript n refers to the nth timestep and the subscript i refers to i th grid point $\left(v_{i+1 / 2}, \rho_{i+1 / 2}\right.$ thus being points on the staggered velocity grid). The quantity $\rho_{i+1 / 2}$ is calculated using linear interpolation between the grid points, ie. $\rho_{i+1 / 2}=\frac{1}{2}\left(\rho_{i}+\rho_{i+1}\right)$. We then solve for the density and internal energy on the integer grid points using the updated velocity,

$$
\begin{align*}
\rho_{i}^{n+1} & =\rho_{i}^{n}-\Delta t\left[\mathrm{v}_{i}^{n+1}\left(\frac{\rho_{i+1}^{n}-\rho_{i}^{n}}{r_{i+1}-r_{i}}\right)-\frac{\rho_{i}^{n}}{r_{i}^{2}}\left(\frac{r_{i+1 / 2}^{2} \mathrm{v}_{i+1 / 2}^{n+1}-r_{i-1 / 2}^{2} \mathrm{v}_{i-1 / 2}^{n+1}}{r_{i+1 / 2}-r_{i-1 / 2}}\right)\right] \quad(\mathrm{v}<0) \\
& =\rho_{i}^{n}-\Delta t\left[\mathrm{v}_{i}^{n+1}\left(\frac{\rho_{i}^{n}-\rho_{i-1}^{n}}{r_{i}-r_{i-1}}\right)-\frac{\rho_{i}^{n}}{r_{i}^{2}}\left(\frac{r_{i+1 / 2}^{2} \mathrm{v}_{i+1 / 2}^{n+1}-r_{i-1 / 2}^{2} \mathrm{v}_{i-1 / 2}^{n+1}}{r_{i+1 / 2}-r_{i-1 / 2}}\right)\right] \quad(\mathrm{v}>0) \tag{A.2}
\end{align*}
$$

and similarly,

$$
\begin{aligned}
\rho u_{i}^{n+1} & =\rho u_{i}^{n}-\Delta t\left[\mathrm{v}_{i}^{n+1}\left(\frac{\rho u_{i+1}^{n}-\rho u_{i}^{n}}{r_{i+1}-r_{i}}\right)-\left[\frac{P_{i}^{n}+\rho u_{i}^{n}}{r_{i}^{2}}\right]\left(\frac{r_{i+1 / 2}^{2} \mathrm{v}_{i+1 / 2}^{n+1}-r_{i-1 / 2}^{2} \mathrm{v}_{i-1 / 2}^{n+1}}{r_{i+1 / 2}-r_{i-1 / 2}}\right)+\rho_{i}^{n} \Lambda_{i}\right] \quad(\mathrm{v}<0) \\
& =\rho u_{i}^{n}-\Delta t\left[\mathrm{v}_{i}^{n+1}\left(\frac{\rho u_{i}^{n}-\rho u_{i-1}^{n}}{r_{i}-r_{i-1}}\right)-\left[\frac{P_{i}^{n}+\rho u_{i}^{n}}{r_{i}^{2}}\right]\left(\frac{r_{i+1 / 2}^{2} \mathrm{v}_{i+1 / 2}^{n+1}-r_{i-1 / 2}^{2} \mathrm{v}_{i-1 / 2}^{n+1}}{r_{i+1 / 2}-r_{i-1 / 2}}\right)+\rho_{i}^{n} \Lambda_{i}\right] \quad(\mathrm{v}>0)
\end{aligned}
$$

where $\Delta t=t^{n+1}-t^{n}$ and the timestep is regulated according to the Courant condition
$\Delta t<\frac{\min (\Delta r)}{\max (|\mathrm{v}|)+\max \left(c_{s}\right)}$
where c_{s} is the adiabatic sound speed in the gas given by $c_{s}^{2}=\gamma P / \rho$. We typically set Δt to half of this value.

Appendix B

SPH stability analysis

In this appendix we perform a stability analysis of the standard SPH formalism derived in §3.3. Since the SPH equations were derived directly from a variational principle, the linearised equations may be derived from a second order perturbation to the Lagrangian (3.46), given by
$\delta L=\sum_{b} m_{b}\left[\frac{1}{2} \mathrm{v}_{b}^{2}-\delta \rho_{b} \frac{d u_{b}}{d \rho_{b}}-\frac{\left(\delta \rho_{b}\right)^{2}}{2} \frac{d^{2} u_{b}}{d \rho_{b}^{2}}\right]$
where the perturbation to ρ is to second order in the second term and to first order in the third term. The density perturbation is given by a perturbation of the SPH summation (3.42), which to second order is given by ${ }^{1}$
$\delta \rho_{a}=\sum_{b} m_{b} \delta x_{a b} \frac{\partial W_{a b}}{\partial x_{a}}+\sum_{b} m_{b} \frac{\left(\delta x_{a b}\right)^{2}}{2} \frac{\partial^{2} W_{a b}}{\partial x_{a}^{2}}$
The derivatives of the thermal energy with respect to density follow from the first law of thermodynamics, ie.
$\frac{d u}{d \rho}=\frac{P}{\rho^{2}}, \quad \quad \frac{d^{2} u}{d \rho^{2}}=\frac{d}{d \rho}\left(\frac{P}{\rho^{2}}\right)=\frac{c_{s}^{2}}{\rho^{2}}-\frac{2 P}{\rho^{3}}$
The Lagrangian perturbed to second order is therefore
$\delta L=\sum_{b} m_{b}\left[\frac{1}{2} \mathrm{v}_{b}^{2}-\frac{P_{b}}{\rho_{b}^{2}} \sum_{c} m_{c} \frac{\left(\delta x_{b c}\right)^{2}}{2} \frac{\partial^{2} W_{b c}}{\partial x_{a}^{2}}-\frac{\left(\delta \rho_{b}\right)^{2}}{2 \rho_{b}^{2}}\left(c_{s}^{2}-\frac{2 P_{b}}{\rho_{b}}\right)\right]$
The perturbed momentum equation is given by using the perturbed Euler-Lagrange equation,
$\frac{d}{d t}\left(\frac{\partial L}{\partial \mathrm{v}_{a}}\right)-\frac{\partial L}{\partial\left(\delta x_{a}\right)}=0$.
where

$$
\begin{equation*}
\frac{\partial L}{\partial \mathrm{v}_{a}}=m_{a} \mathrm{v}_{a} \tag{B.5}
\end{equation*}
$$

[^0]\[

$$
\begin{align*}
\frac{\partial L}{\partial\left(\delta x_{a}\right)}= & -m_{a} \sum_{b} m_{b}\left(\frac{P_{a}}{\rho_{a}^{2}}+\frac{P_{b}}{\rho_{b}^{2}}\right) \delta x_{a b} \frac{\partial^{2} W_{b c}}{\partial x_{a}^{2}} \\
& -m_{a} \sum_{b} m_{b}\left[\left(c_{s}^{2}-\frac{2 P_{b}}{\rho_{b}}\right) \frac{\delta \rho_{a}}{\rho_{a}^{2}}+\left(c_{s}^{2}-\frac{2 P_{b}}{\rho_{b}}\right) \frac{\delta \rho_{b}}{\rho_{b}^{2}}\right] \frac{\partial W_{a b}}{\partial x_{a}} \tag{B.6}
\end{align*}
$$
\]

giving the SPH form of the linearised momentum equation

$$
\begin{align*}
\frac{d^{2} \delta x_{a}}{d t^{2}}= & -\sum_{b} m_{b}\left(\frac{P_{a}}{\rho_{a}^{2}}+\frac{P_{b}}{\rho_{b}^{2}}\right) \delta x_{a b} \frac{\partial^{2} W_{b c}}{\partial x_{a}^{2}} \\
& -\sum_{b} m_{b}\left[\left(c_{s}^{2}-\frac{2 P_{b}}{\rho_{b}}\right) \frac{\delta \rho_{a}}{\rho_{a}^{2}}+\left(c_{s}^{2}-\frac{2 P_{b}}{\rho_{b}}\right) \frac{\delta \rho_{b}}{\rho_{b}^{2}}\right] \frac{\partial W_{a b}}{\partial x_{a}} \tag{B.7}
\end{align*}
$$

Equation (B.7) may also be obtained by a direct perturbation of the SPH equations of motion derived in §3.3.2. For linear waves the perturbations are assumed to be of the form
$x=x_{0}+\delta x$,
$\rho=\rho_{0}+\delta \rho$,
$P=P_{0}+\delta P$.
where
$\delta x_{a}=X e^{i\left(k x_{a}-\omega t\right)}$,
$\delta \rho_{a}=D e^{i\left(k x_{a}-\omega t\right)}$,
$\delta P_{a}=c_{s}^{2} \delta \rho_{a}$.
Assuming equal mass particles, the momentum equation (B.7) becomes
$-\omega^{2} X=-\frac{2 m P_{0}}{\rho_{0}^{2}} X \sum_{b}\left[1-e^{i k\left(x_{b}-x_{a}\right)}\right] \frac{\partial^{2} W}{\partial x_{a}^{2}}-\frac{m}{\rho_{0}^{2}}\left(c_{s}^{2}-\frac{2 P_{b}}{\rho_{b}}\right) D \sum_{b}\left[1+e^{i k\left(x_{b}-x_{a}\right)}\right] \frac{\partial W}{\partial x_{a}}$
From the continuity equation (3.43) the amplitude D of the density perturbation is given in terms of the particle co-ordinates by
$D=X m \sum_{b}\left[1-e^{i k\left(x_{b}-x_{a}\right)}\right] \frac{\partial W}{\partial x_{a}}$
Finally, plugging this into (B.14) and taking the real component, the SPH dispersion relation (for any equation of state) is given by

$$
\begin{align*}
\omega_{a}^{2}= & \frac{2 m P_{0}}{\rho_{0}^{2}} \sum_{b}\left[1-\cos k\left(x_{a}-x_{b}\right)\right] \frac{\partial^{2} W}{\partial x^{2}}\left(x_{a}-x_{b}, h\right) \\
& +\frac{m^{2}}{\rho_{0}^{2}}\left(c_{s}^{2}-\frac{2 P_{0}}{\rho_{0}}\right)\left[\sum_{b} \sin k\left(x_{a}-x_{b}\right) \frac{\partial W}{\partial x}\left(x_{a}-x_{b}, h\right)\right]^{2} \tag{B.16}
\end{align*}
$$

For an isothermal equation of state this can be simplified further by setting $c_{s}^{2}=P_{0} / \rho_{0}$. An adiabatic equation of state corresponds to setting $c_{s}^{2}=\gamma P_{0} / \rho_{0}$.

Appendix C

Linear waves in MHD

In this section we describe the setup used for the MHD waves described in $\S 4.6 .4$. The MHD equations in continuum form may be written as

$$
\begin{align*}
\frac{d \rho}{d t} & =-\rho \nabla \cdot \mathbf{v} \tag{C.1}\\
\frac{d \mathbf{v}}{d t} & =-\frac{\nabla P}{\rho}-\frac{\mathbf{B} \times(\nabla \times \mathbf{B})}{\mu_{0} \rho} \tag{C.2}\\
\frac{d \mathbf{B}}{d t} & =(\mathbf{B} \cdot \nabla) \mathbf{v}-\mathbf{B}(\nabla \cdot \mathbf{v}) \tag{C.3}
\end{align*}
$$

together with the divergence constraint $\nabla \cdot \mathbf{B}=0$. We perturb according to

$$
\begin{align*}
\rho & =\rho_{0}+\delta \rho \\
\mathbf{v} & =\mathbf{v} \\
\mathbf{B} & =\mathbf{B}_{0}+\delta \mathbf{B} \\
\delta P & =c_{s}^{2} \delta \rho \tag{C.4}
\end{align*}
$$

where $c_{s}^{2}=\gamma P_{0} / \rho_{0}$ is the sound speed. Considering only linear terms, the perturbed equations are therefore given by

$$
\begin{align*}
\frac{d(\delta \rho)}{d t} & =-\rho_{0}(\nabla \cdot \mathbf{v}) \tag{C.5}\\
\frac{d \mathbf{v}}{d t} & =-c_{s}^{2} \frac{\nabla(\delta \rho)}{\rho_{0}}-\frac{\mathbf{B}_{0} \times(\nabla \times \delta \mathbf{B})}{\mu_{0} \rho_{0}} \tag{C.6}\\
\frac{d(\delta \mathbf{B})}{d t} & =\left(\mathbf{B}_{0} \cdot \nabla\right) \mathbf{v}-\mathbf{B}_{0}(\nabla \cdot \mathbf{v}) \tag{C.7}
\end{align*}
$$

Specifying the perturbation according to

$$
\begin{align*}
\delta \rho & =D e^{i(\mathbf{k} x-\omega t)} \\
\mathbf{v} & =\mathbf{v} e^{i(\mathbf{k} x-\omega t)} \\
\delta \mathbf{B} & =\mathbf{b} e^{i(\mathbf{k} x-\omega t)} \tag{C.8}
\end{align*}
$$

we have
$-\omega D=-\rho_{0}(\mathbf{v} \cdot \mathbf{k})$

$$
\begin{align*}
-\omega \mathbf{v} & =-c_{s}^{2} \frac{D \mathbf{k}}{\rho_{0}}-\frac{1}{\mu_{0} \rho_{0}}\left[\left(\mathbf{B}_{0} \cdot \mathbf{b}\right) \mathbf{k}-\left(\mathbf{B}_{0} \cdot \mathbf{k}\right) \mathbf{b}\right] \tag{C.10}\\
-\omega \mathbf{b} & =\left(\mathbf{B}_{0} \cdot \mathbf{k}\right) \mathbf{v}-\mathbf{B}_{0}(\mathbf{k} \cdot \mathbf{v}) . \tag{C.11}
\end{align*}
$$

Considering only waves in the x -direction (ie. $\mathbf{k}=\left[\mathrm{k}_{x}, 0,0\right]$), defining the wave speed $v=\omega / \mathrm{k}$ and using (C.9) to eliminate D, equation (C.10) gives

$$
\begin{align*}
v_{x}\left(v-\frac{c_{s}^{2}}{v}\right) & =\left(\frac{B_{y 0} b_{y}+B_{z 0} b_{z}}{\mu_{0} \rho_{0}}\right) \tag{C.12}\\
v v_{y} & =-\frac{B_{x 0} b_{y}}{\mu_{0} \rho_{0}} \tag{C.13}\\
v v_{z} & =-\frac{B_{x 0} b_{z}}{\mu_{0} \rho_{0}} \tag{C.14}
\end{align*}
$$

where $b_{x}=0$ since $\nabla \cdot \mathbf{B}=0$. Using these in (C.11) we have
$v b_{y}=-B_{x 0} v_{y}+B_{y 0} v_{x}$,
$v b_{z}=-B_{x 0} v_{z}+B_{z 0} v_{x}$.
We can therefore solve for the perturbation amplitudes $v_{x}, v_{y}, v_{z}, b_{y}$ and b_{z} in terms of the amplitude of the density perturbation D and the wave speed v. We find

$$
\begin{align*}
v_{x} & =\frac{v D}{\rho} \tag{C.17}\\
v_{y}\left(v^{2}-\frac{B_{x}^{2}}{\mu_{0} \rho}\right) & =\frac{B_{x} B_{y}}{\mu_{0} \rho} v_{x} \tag{C.18}\\
v_{z}\left(v^{2}-\frac{B_{x}^{2}}{\mu_{0} \rho}\right) & =\frac{B_{x} B_{z}}{\mu_{0} \rho} v_{x} \tag{C.19}\\
b_{y}\left(v^{2}-\frac{B_{x}^{2}}{\mu_{0} \rho}\right) & =v B_{y} v_{x} \tag{C.20}\\
b_{z}\left(v^{2}-\frac{B_{x}^{2}}{\mu_{0} \rho}\right) & =v B_{z} v_{x} \tag{C.21}
\end{align*}
$$

where we have dropped the subscript 0 . The wave speed v is found by eliminating these quantities from (C.12), giving
$\frac{v_{x}}{\left(v^{2}-B_{x}^{2} / \mu_{0} \rho\right)}\left[v^{4}-v^{2}\left(c_{s}^{2}+\frac{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}{\mu_{0} \rho}\right)+\frac{c_{s}^{2} B_{x}^{2}}{\mu_{0} \rho}\right]=0$,
which reveals the three wave types in MHD. The Alfvén waves are those with
$v^{2}=\frac{B_{x}^{2}}{\mu_{0} \rho}$,

These are transverse waves which travel along the field lines. The term in square brackets in (C.22) gives a quartic for v (or a quadratic for v^{2}), with roots

$$
\begin{equation*}
v^{2}=\frac{1}{2}\left[\left(c_{s}^{2}+\frac{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}{\mu_{0} \rho}\right) \pm \sqrt{\left(c_{s}^{2}+\frac{B_{x}^{2}+B_{y}^{2}+B_{z}^{2}}{\mu_{0} \rho}\right)^{2}-4 \frac{c_{s}^{2} B_{x}^{2}}{\mu_{0} \rho}}\right], \tag{C.24}
\end{equation*}
$$

which are the fast(+) and slow(-) magnetosonic waves.

[^0]: ${ }^{1}$ Note that the first order term may be decoded into continuum form to give the usual expression
 $\delta \rho=-\rho_{0} \nabla \cdot(\delta \mathbf{r})$
 where ρ_{0} refers to the unperturbed quantity.

