
“I never satisfy myself until I can make a mechanical model ofa thing. If

I can make a mechanical model I can understand it. As long as I cannot

make a mechanical model all the way through I cannot understand; and that

is why I cannot get the electromagnetic theory ..... But I want to understand

light as well as I can, without introducing things that we understand even

less of. That is why I take plain dynamics. I can get a model in plain

dynamics; I cannot in electromagnetics.”

LORD KELVIN , BALTIMORE LECTURES, 1904

4
Smoothed Particle Magnetohydrodynamics

4.1 Introduction

Given the suitability of SPH for studies of star formation, it is unsurprising that magnetic field effects,

which are known to be important or even crucial in the star formation process, were incorporated into

SPH from the outset (Gingold and Monaghan, 1977). The application in this case was to static mag-

netic polytropes where good agreement was found between theSPH solution and perturbation calcula-

tions. Dynamical problems were considered by Phillips (1983b) and applied to star formation problems

(Phillips, 1982, 1983a, 1985, 1986a,b; Benz, 1984; Phillips and Monaghan, 1985). In the latter it was

shown that when the conservation form of the equations was used an instability developed which took the

form of SPH particles clumping. SPH blast waves in a magneticmedium were studied by Stellingwerf

and Peterkin (1990, 1994). Habe et al. (1991), Murray et al. (1996) and Mac Low et al. (1999) used a

form of the SPH equations where the magnetic fields were updated on a grid and interpolated to the SPH

particles.

Meglicki (1994, 1995) and Meglicki et al. (1995) used a formulation of ‘Smoothed Particle Mag-

netohydrodynamics’ (SPMHD) that uses a non-conservative (J×B) force, which is always stable and

guarantees that the magnetic force is exactly perpendicular to the magnetic field. This formalism was

also used by Byleveld and Pongracic (1996) and more recentlyby Cerqueira and de Gouveia Dal Pino

(2001, and references therein) and Hosking (2002), howeverthe non-conservation of momentum leads

to poor performance on shock-type problems. A conservativeform of SPMHD has been used by Dolag

et al. (1999) and by Marinho et al. (2001) since the magnetic field in their simulations remained in the

regime where the instability does not appear. Morris (1996)suggested using a compromise between the

conservative (tensor) force and theJ×B formalism. Non-ideal MHD terms in SPH were also considered

by Morris (1996), who suggested using resistive terms to control the divergence of the magnetic field

and by Hosking and Whitworth (2004), who considered the effects of ambipolar diffusion via a two-fluid
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model. The simulation of MHD shocks with SPH has been investigated by Børve (2001) (see Børve

et al. 2001), where excellent results were obtained by periodically invoking a regularization procedure

on the SPH particle distribution and by explicitly subtracting the effect of any non-zero divergence from

the conservative formalism.

However, the simplicity with which the MHD equations can be written down belies the fact that there

are a number of technical difficulties involved in their solution, which have not been fully addressed in

an SPH context. The first technical difficulty with MHD simulations is that the magnetic field comes

with the constraint∇ ·B = 0. As a first level treatment in this chapter, we follow the approach of Jan-

hunen (2000) in formulating the MHD equations from the premise that non zero∇ ·B terms may be

generated but that a consistent treatment of such terms by the numerical method will reduce the error as-

sociated with their presence. Consistency is ensured in this case by deriving the SPMHD equations from

a variational principle, using the discrete forms of the continuity and induction equations to constrain

the discrete formulations of the momentum and energy equations. Further discussion of this and other

approaches to maintaining the divergence constraint in an SPH context is deferred to Chapter 5.

A further technical difficulty peculiar to SPH is that when a conservative force is used the SPH parti-

cles tend to clump in pairs in the presence of tension. This was first noticed by Phillips and Monaghan

(1985) and re-discovered by researchers applying SPH to elastic fracture problems (see the references in

Monaghan 2000). Several remedies have been proposed (e.g. Dyka et al. 1997; Bonet and Kulasegaram

2000, 2001) but they all either involve a significant increase in computational expense or cannot be

applied where the particle configuration changes significantly. The nature of this instability was system-

atically investigated in an MHD context by Morris (1996), with several solutions proposed. A further

remedy for the tensile instability which can be easily applied to astrophysical problems has been recently

proposed by Monaghan (2000). The idea is to add a small artificial stress which prevents particles from

clumping in the presence of a negative stress. This term has been shown to work well in elastic dynamics

simulations (Gray et al., 2001) and we apply it here to the MHDcase.

The third technical difficulty is that shocks in MHD are much more complex than their hydrodynamic

counterparts. This is due to the additional wave types whichcan result in a wide range of discontinuous

structures, each of which must be treated appropriately by the numerical method. We approach this

problem by formulating artificial dissipation terms appropriate to the MHD case (the major difference

to the hydrodynamic case being the introduction of artificial resistivity at discontinuities in the magnetic

field). These dissipative terms are derived in such a manner that the contribution to the entropy and

thermal energy from viscosity, thermal conductivity and ohmic resistivity is guaranteed to be positive

definite.

The chapter is organised as follows: In§4.2 we give the continuum form of the MHD equations

and in§4.3 the SPH form of these equations, deriving the SPMHD equations self-consistently from a

variational principle (§4.3.2). Consistent alternative formulations, similar to those derived in the SPH

case (§3.4) are discussed in§4.3.4 whilst older formulations are also reviewed (§4.3.5). In §4.3.6 a

variational principle is again used to extend the SPMHD equations to the case where the smoothing

length is regarded as a function of local particle density. Stability considerations are discussed in§4.4

with the implementation of the instability correction of Monaghan (2000) presented in§4.4.1 as well as

several alternative methods. Dissipation terms appropriate for MHD shocks analogous to those derived in

the SPH case (§3.5) are given in§4.5. Finally, in§4.6 we present the results of extensive numerical tests
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for one dimensional problems including a range of shock tubeproblems (§4.6.3), linear waves (§4.6.4)

and magnetic Toy Stars (§4.6.5). The extension of the method to multidimensional problems is presented

in Chapter 5.

4.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a one-fluid approximation tothe equations of plasma physics, where

the effects of static electric charge are assumed to be negligible and the non-relativistic limit is gener-

ally taken (relativistic MHD involves dropping the latter assumption, whilst retaining the former). The

derivation of the MHD equations is given in many standard textbooks and we simply state the results

here.

4.2.1 Continuum equations

The continuity equation for the density remains the same as in the non-magnetic case, ie.

dρ
dt

+ ρ∇ ·v = 0, (4.1)

implying the conservation of mass. The acceleration equation in the absence of dissipation may be

expressed in conservative form as the gradient of a symmetric tensor, that is

dvi

dt
=

1
ρ

∂Si j

∂x j , (4.2)

where the stressSi j in the case of ideal MHD is defined by

Si j = −Pδ i j +
1
µ0

(

BiB j − 1
2

B2δ i j
)

. (4.3)

whereBi is theith component of the magnetic field andµ0 is the permittivity of free space. In SI units

µ0 = 4π/107. From the tensor formulation the magnetic force is easily interpreted in terms of an isotropic

force due to gradients in the magnetic pressure and an anisotropic (tension) force resisting motion which

is perpendicular to magnetic field lines. In vector notation(4.2) is given by

dv
dt

= −∇P
ρ

+
J×B

ρ
+

B∇ ·B
µ0ρ

, (4.4)

whereJ = ∇×B/µ0 is the magnetic current density. Under the assumption of∇ ·B = 0 (ie. no magnetic

monopoles), the force becomes

dv
dt

= −∇P
ρ

+
J×B

ρ
. (4.5)

The assumption of zero magnetic divergence is valid in the continuum case (making (4.4) and (4.5)

equivalent) but requires careful consideration in a numerical context since the divergence is not guar-

anteed to be zero exactly. Discrete formulations based on the conservative form (4.4) can be made to

conserve momentum exactly, whilst formulations based on the non-conservative form (4.5) can be made
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to guarantee that the magnetic force is exactly perpendicular to the magnetic field. We use (4.4) since

exact conservation of momentum is required in order to accurately simulate shocks, although older for-

malisms based on (4.5) are discussed in§4.3.5. The momentum conserving formulation (4.4) results

naturally in the derivation of the SPMHD equations from a variational principle given in§4.3.2.

The equation for the update of the magnetic field is the induction equation. The standard form is

derived from Maxwell’s equations neglecting displacementcurrents and a generalised form of Ohm’s

law. We follow Janhunen (2000) and Dellar (2001) in formulating the induction equations so that it is

consistent even if∇ ·B does not vanish. The induction equation then takes the form

∂B
∂ t

+ ∇× (v×B) = −∇× (ηJ)−v(∇ ·B), (4.6)

where the last term is the monopole current (Janhunen, 2000;Dellar, 2001) andη is the magnetic diffu-

sivity 1/(σ µ0) whereσ is the conductivity. Ideal MHD corresponds to the limit of infinite conductivity

η = 0. Using the Lagrangian time derivative (4.6) can be writtenas

dB
dt

= −B(∇ ·v)+ (B ·∇)v−∇× (ηJ). (4.7)

Taking the divergence of this equation, we find that monopoles evolve according to

∂
∂ t

(∇ ·B)+ ∇ · (v∇ ·B) = 0, (4.8)

which has the same form as the continuity equation for the density and therefore implies that the total

volume integral of∇ ·B is conserved (and therefore that the totalsurface integral of the magnetic flux is

conserved which is the important physical quantity, ratherthan thevolume integral which is conserved

when the induction equation is written in a so-called ‘conservative’ form). Note also that in this form the

induction equation can be written as

d
dt

(

B
ρ

)

=

(

B
ρ
·∇
)

v− ∇× (ηJ)

ρ
, (4.9)

which demonstrates that in ideal MHD the flux per unit mass,B/ρ is passively advected by the flow and

therefore that the magnetic field lines remain ‘frozen’ intothe fluid.

The total energy per unit mass is given by

e =
1
2

v2 + u+
B2

2µ0ρ
, (4.10)

whereu is the thermal energy per unit mass. The total energye evolves according to

de
dt

=
1
ρ

∂ (Si jv j)

∂x j +
1
ρ

∇ · [B× (ηJ)]. (4.11)

Alternatively the thermal energy equation can be used, which may be derived either from (4.10) giving

du
dt

=
de
dt

−v · dv
dt

− d
dt

(

B2

2µ0ρ

)

, (4.12)



4.2 Magnetohydrodynamics 77

or using the first law of thermodynamics. Either way, the resulting equation is given by

du
dt

= −P
ρ

∇ ·v, (4.13)

which is the same as in the hydrodynamic case. The equation set is closed by an appropriate equation of

state, which for a perfect gas is given by

P = (γ −1)ρu. (4.14)

4.2.2 Conserved quantities

In order to monitor the quality of a simulation, it is useful to be able to measure the accuracy to which

the algorithm conserves integrals of the motion. Aside fromthe usual conserved quantities of mass, mo-

mentum, angular momentum, energy and centre of mass, several additional quantities can be measured

in MHD. A list of such quantities can be derived using Hamiltonian techniques and is given by (e.g.)

Morrison and Hazeltine (1984). The helicity,

∫

(A ·B)dV, (4.15)

whereB = ∇×A, is a measure of the linkage of magnetic field lines (expressing the fact that magnetic

field lines which are initially linked cannot become unlinked in the absence of dissipative terms). This

quantity can only be usefully measured in simulations whichexplicitly use the vector potentialA. A

similar invariant is the cross helicity

∫

(B ·v)dV ≈∑
b

mb
Bb

ρb
·vb, (4.16)

which measures the mutual linkage of magnetic field and vortex lines. The conservation of the cross

helicity is a result of the magnetic field lines being frozen into the fluid. Measurement of the conservation

of this quantity in a numerical simulation therefore provides an estimate of the degree of slippage of the

magnetic field lines through the fluid. The volume integral ofthe magnetic flux

∫

BdV ≈ ∑
b

mb
Bb

ρb
(4.17)

is also conserved across the simulation volume, provided that the flux is normal to (or zero at) the bound-

ary of the integration volume. However the conservation of flux in a volume sense is not particularly

important physically (Janhunen, 2000). More important is that the surface integral of the flux

∫

B ·dS, (4.18)

should be conserved. Using the divergence theorem this corresponds to the conservation of the volume

integral

∫

(∇ ·B)dV ≈ ∑
b

mb
(∇ ·B)b

ρb
. (4.19)
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In the continuum case this conservation is exact since the divergence of the magnetic field is zero. How-

ever in a numerical scheme with non-zero magnetic divergence conservation of this quantity depends

on the formulation of the induction equation with respect tothe terms proportional to∇ ·B. Our induc-

tion equation (4.7) is formulated such that, even with non-zero ∇ ·B this quantity remains conserved

(although this may differ slightly in the discrete equations), whereas (4.17) will only be approximately

conserved.

There is also a conserved quantity which is the MHD analogue of the circulation (Bekenstein and

Oron, 2000; Kuznetsov and Ruban, 2000), although the physical interpretation is somewhat obscure.

It has been shown that SPH conserves an approximate version of the circulation in the hydrodynamic

case (Monaghan and Price, 2001), related to the invariance of the equations to the relabelling of particles

around a closed loop due to the frozen-in vorticity field (Salmon, 1988). A similar, though more restricted

relabelling symmetry holds in the MHD case (in that the particles around the loop must also be on the

same field line) and it may therefore be expected that SPMHD also maintains this invariance.

4.3 Smoothed Particle Magnetohydrodynamics

The discrete approximations to (4.1), (4.2), (4.7) and (4.11) are found by expressing the spatial deriva-

tives as summations over the particles. As in the SPH case (§3.3,§3.4) we derive the SPMHD equations

of motion and energy from a variational principle, in this case using the SPH forms of the continuity and

induction equations as constraints. This ensures consistency between the discrete forms of the SPH equa-

tions (and hence also the continuum forms, removing the ambiguity with regard to terms proportional to

the magnetic divergence) as well as adherence to physical principles.

4.3.1 Induction equation

The induction equation (4.7) in the absence of dissipation may be written in SPH form as

dBa

dt
=

1
ρa

∑
b

mb[Ba(vab ·∇aWab)−vab(Ba ·∇aWab)]. (4.20)

Alternatively we can use (4.9), written in the form

d
dt

(

B
ρ

)

=
1

ρ2 [(B ·∇)ρv−v(B ·∇ρ)] , (4.21)

with SPH equivalent

d
dt

(

B
ρ

)

a
= − 1

ρ2
a
∑
b

mbvab(Ba ·∇aWab). (4.22)

In the numerical tests presented in§4.6 we find little difference between the two forms (4.20) and(4.22)

of the SPH induction equation. Many authors prefer to use (4.22) as the flux per unit massB/ρ is a

natural quantity to be carried by Lagrangian particles. There is some advantage in using (4.20) rather

than (4.22) in one dimensional problems since using (4.20) ensures that the divergence of the magnetic

field is exactly zero (sinceBx = const). However the divergence errors associated with using (4.22)
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in one dimension were found to be negligible for nearly all ofthe problems considered. Note that a

‘conservative’ form of the induction equation (as used in most grid-based MHD codes, although not a

consistent formulation in the presence of magnetic monopoles) would correspond to a symmetric form

of (4.22) (with the addition of a termv∇ ·B), such that (4.17) is conserved but no longer implying the

conservation ofB/ρ along flow lines. An example of such a formalism is used in§5.3.2 in order to

compare the divergence errors associated with various formulations of the MHD equations.

4.3.2 Equations of motion

Variational principles for MHD have been discussed by many authors (e.g. Newcomb 1962; Henyey

1982; Oppeneer 1984; Field 1986) and the Lagrangian is givenby

L =

∫

(

1
2

ρv2−ρu− 1
2µ0

B2
)

dV, (4.23)

which is simply the kinetic minus the potential and magneticenergies. The SPH Lagrangian is therefore

Lsph = ∑
b

mb

[

1
2

v2
b −ub(ρb,sb)−

1
2µ0

B2
b

ρb

]

. (4.24)

where we have replaced the integral with a summation and the volume elementρdV with the mass per

SPH particlem. Ideally we would wish to express all the terms in the Lagrangian (4.24) in terms of the

particle co-ordinates, which would automatically guarantee the conservation of momentum and energy

since the equations of motion result from the Euler-Lagrange equations (e.g. Monaghan and Price 2001).

The density can be written as a function of the particle coordinates using the usual SPH summation

(3.42). The internal energy is regarded as a function of the density (via the first law of thermodynamics),

which is in turn a function of the particle co-ordinates. However it is not intuitively obvious how the

magnetic fieldB should be related to the particle co-ordinates, or even thatit could be expressed in such

a manner (in the SPH context this would imply an expression for B such that taking the time derivative

gives (4.20) or (4.22), analogous to (3.42) for the density), though it could be done easily for a plasma

with the electrons and ions described by separate sets of SPHparticles. We may however proceed using

the variational principle given for alternative formulations of SPH in§3.4, that is we require

δ
∫

Ldt =
∫

δLdt = 0, (4.25)

where we consider variations with respect to a small change in the particle co-ordinatesδ ra. We therefore

have

δL = mava ·δva −∑
b

mb

[

∂ub

∂ρb

∣

∣

∣

∣

s
δρb +

1
2µ0

(

Bb

ρb

)2

δρb −
1
µ0

Bb ·δ
(

Bb

ρb

)

]

. (4.26)

The Lagrangian variations in density and magnetic field are given by

δρb = ∑
c

mc (δ rb −δ r c) ·∇bWbc, (4.27)
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δ
(

Bb

ρb

)

= −∑
c

mc(δ rb −δ r c)
Bb

ρ2
b

·∇bWbc, (4.28)

where we have used (3.43) and (4.22) respectively (note thatwe also recover the following results if

we use (4.20) instead of (4.22)). The perturbations given above correspond to SPH forms of the usual

Lagrangian perturbations

δρ = −ρ0∇ · (δ r), (4.29)

δ
(

B
ρ

)

=
B0

ρ0
·∇(δ r). (4.30)

Using (4.27), (4.28) and the first law of thermodynamics (3.50) in (4.26) and rearranging, we find

δL
δ ra

= −∑
b

mb

[

Pb

ρ2
b
∑
c

mc∇bWbc(δba −δca)

]

−∑
b

mb

[

1
2µ0

(

Bb

ρb

)2

∇bWbc(δba −δca)

]

+ ∑
b

mb

[

1
µ0

Bb

ρ2
b

∑
c

mcBb ·∇bWbc(δba −δca)

]

, (4.31)

whereδab refers to the Kronecker delta. Putting this back into (4.25), integrating the velocity term by

parts and simplifying (using∇aWab = −∇bWba), we obtain

∫

{

−ma
dva

dt
− ∑

b

mb

(

Pa

ρ2
a

+
Pb

ρ2
b

)

∇aWab −∑
b

mb
1

2µ0

(

B2
a

ρ2
a

+
B2

b

ρ2
b

)

∇aWab

+ ∑
b

mb
1
µ0

[

Ba

ρ2
a
(Ba ·∇aWab)+

Bb

ρ2
b

(Bb ·∇aWab)

]

}

δ radt = 0. (4.32)

The SPH equations of motion are therefore given by

dvi
a

dt
= ∑

b

mb

[(

Si j

ρ2

)

a
+

(

Si j

ρ2

)

b

]

∇ j
aWab, (4.33)

whereSi j is the stress tensor (4.3). This form of the magnetic force term conserves linear momentum

exactly (angular momentum is discussed below) but was shownby Phillips and Monaghan (1985) to be

unstable under negative stresses, causing particles to clump together unphysically. The approach taken

in this thesis is to remove the instability by adding a short range repulsive force which prevents particles

from clumping, rather than sacrificing the conservation of momentum. The stability issues are discussed

in detail in§4.4.

Note that using (4.33) for the magnetic force no longer guarantees that the magnetic force is per-

pendicular toB, since the force (4.4) contains an additional term proportional to the divergence ofB.

This non-zero force directed along the line joining the particles is essentially the physical cause of the

clumping instability. It has been pointed out by Tóth (2000) in the context of grid based codes that if the

momentum is conserved then the force will not be exactly perpendicular toB even if ∇ ·B is zero in a

particular discretisation, since this does not imply that∇ ·B is zero in every discretisation1. An example

of this is in an SPH context is for purely one dimensional MHD,where even though∇ ·B = 0 (since

1although in a later paper Tóth (2002) has shown that both conditionscan be met provided that the discretisation in which
the divergence is zero is also the discretisation used in theforce term.
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Bx =const), the contribution from the divergence term in (4.33)is non-zero, resulting in an instability

even in this simple case.

Finally, it should be noted that the conservative form of themomentum equation was derived using a

non-conservative (in a volume sense, although conservative in a surface integral sense) induction equa-

tion, which agrees with the derivation of the MHD equations in the presence of magnetic monopoles

given by Janhunen (2000) and Dellar (2001). This is discussed further in§5.2.1.

Angular momentum conservation

Whilst the conservation of linear momentum is maintained exactly for the formalism derived above,

angular momentum conservation will not be exact since the force between the particles is not directed

along the line joining them. Considering two dimensional motion in x and y, the change in angular

momentum of the system is given by

d
dt ∑

a
(ra ×va)

z = ∑
a

∑
b

mamb
([

σ xx
ab −σ yy

ab

]

yabxab + σ xy
ab[y

2
ab − x2

ab]
)

Fab, (4.34)

whereyab = ya − yb, xab = xa − xb andσ i j
ab = Si j

a /ρ2
a + Si j

b /ρ2
b . We have replaced∇Wab by rabFab. From

(4.34) we see that the angular momentum will be conserved if the stress is isotropic and proportional

to the identity tensor. However for more general stresses the angular momentum will change. It can be

shown that upon translating the SPH expression (4.34) into continuum form (replacing the summations

with integrals), angular momentum is conserved exactly.

The same problem arises in the case of elastic stresses wherethe problem is made worse by the fact

that particles at the edge of the solid (which have no neighbours exterior to the solid to provide a full

interpolation) have densities similar to the interior and consequently produce a significant error in the

angular momentum. Bonet and Lok (1999) claim that normalising the kernel by a matrix factor similar

to that described in§3.2.3 corrects for this error. A similar approach could be taken to the astrophysical

problem, however we expect angular momentum conservation to be much better in this case without

normalising the kernel because edges are associated with low density and correspondingly low angular

momentum.

4.3.3 Energy equation

The Hamiltonian (3.59), using the Lagrangian (4.24) is given by

H = E = ∑
a

ma

(

1
2

v2
a + ua +

1
2µ0

B2
a

ρa

)

. (4.35)

Taking the (comoving) time derivative, we have

dE
dt

= ∑
a

ma

[

va ·
dva

dt
+

dua

dρa

dρa

dt
+

1
2µ0

B2
a

ρ2
a

dρa

dt
+

Ba

µ0
· d

dt

(

Ba

ρa

)]

, (4.36)

where the first term is specified by use of the momentum equation (4.33), the second term using the

first law of thermodynamics (3.50) and the continuity equation (3.43), the third term by the continuity
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equation and the fourth term by the induction equation (4.22). Using these and simplifying we find

dE
dt

= ∑
a

ma ∑
b

mb

[(

Si j

ρ2

)

a
vi

b +

(

Si j

ρ2

)

b
vi

a

]

∇ j
aWab, (4.37)

such that the total energy per particle is evolved accordingto

dea

dt
= ∑

b

mb

[(

Si j

ρ2

)

a
vi

b +

(

Si j

ρ2

)

b
vi

a

]

∇ j
aWab, (4.38)

where

ea =
1
2

v2
a + ua +

1
2µ0

B2
a

ρa
(4.39)

is the energy per unit mass. The internal energy equation follows from the use of the first law of ther-

modynamics and is therefore the same as in the hydrodynamic case (3.58) in the absence of dissipative

terms. The equation for evolving the entropy (3.65) is also unchanged.

4.3.4 Alternative formulations

Consistent sets of SPMHD equations may also be derived usingalternative forms of the continuity and

induction equations as in§3.4. For example, using the continuity equation

dρa

dt
= ρa ∑

b

mb
vab

ρb
·∇aWab, (4.40)

and the induction equation

d
dt

(

B
ρ

)

a
= − 1

ρa
∑
b

mb
vab

ρb
(Ba ·∇aWab). (4.41)

results in the momentum equation

dvi
a

dt
= ∑

b

mb

[

Si j
a + Si j

b

ρaρb

]

∇ j
aWab. (4.42)

This form of the SPMHD equations also conserves linear momentum exactly (and is hence also found to

be unstable to the clumping instability). The variationally consistent internal energy equation is given by

dua

dt
=

Pa

ρa
∑
b

mb
vab

ρb
·∇aWab, (4.43)

and the total energy equation by

dea

dt
= ∑

b

mb

[

Si j
a vi

b + Si j
b vi

a

ρaρb

]

∇ j
aWab. (4.44)

A general alternative formulation may also be derived, equivalent to that given in§3.4.
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4.3.5 Vector formulations of the magnetic force

Earlier implementations of MHD in an SPH context used simpleforms of the magnetic force terms based

on the non-conservative force equation (4.5). The simplestform of the magnetic force term in (4.5) is

derived by using the SPH summation interpolant for the magnetic field,

Ba = ∑
b

mb
Bb

ρb
W (ra − rb,h). (4.45)

Taking the curl of this equation we have

Ja = (∇×B)a = ∑
b

mb∇aWab ×
Bb

ρb
. (4.46)

The magnetic force term is then given by
(

J×B
µ0ρ

)

a
= (∇×B)a ×

Ba

µ0ρa

= ∑
b

mb

(

∇aWab ×
Bb

ρb

)

× Ba

µ0ρa
. (4.47)

In SPH, however it is preferable to interpolate the curl using (c.f. §3.2.3)

ρa(∇×B)a = ∑
b

mb(Ba −Bb)×∇aWab, (4.48)

and thus the magnetic force becomes

1
µ0ρ2

a
∑
b

mb (Bab ×∇aWab)×Ba, (4.49)

whereBab = Ba −Bb. This ‘vector’ form of the magnetic force term has been used by many authors

(e.g. Meglicki et al., 1995; Byleveld and Pongracic, 1996; Cerqueira and de Gouveia Dal Pino, 2001;

Hosking and Whitworth, 2004). Using this formulation the magnetic force is always perpendicular to

the magnetic field but exact conservation of momentum is not guaranteed. Equation (4.49) may also be

expressed as:

1
µ0ρ2

a
∑
b

mb [(Bab ·Ba)∇aWab − (Ba ·∇aWab)Bab] . (4.50)

Whilst this results in a stable numerical scheme, the lack ofmomentum conservation in this formalism

means that it gives extremely poor results on problems involving shocks. We also note that this is

the discretisation of a pureJ×B force which, as discussed in§4.2.1 does not represent a consistent

formulation of the magnetic force in the presence of monopoles.

4.3.6 Variable smoothing length terms

Since we cannot explicitly write the Lagrangian (4.24) as a function of the particle co-ordinates, we

cannot explicitly derive the SPMHD equations incorporating a variable smoothing length. We may,
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however deduce the form of the terms which should be includedby consistency arguments. We start

with the SPH induction equation in the form

d
dt

(

B
ρ

)

a
= − 1

ρ2
a
∑
b

mbvab(Ba ·∇aWab). (4.51)

Expanding the left hand side, we have

dBa

dt
= − 1

ρa
∑
b

mbvab(Ba ·∇aWab)+
Ba

ρa

dρa

dt
. (4.52)

If the smoothing length is a given function of the density, then the SPH continuity equation is given by

(3.70) and (4.52) becomes

dBa

dt
= − 1

ρa
∑
b

mb

{

vab(Ba ·∇aWab)−
1

Ωa
Ba[vab ·∇aWab(ha)]

}

. (4.53)

whereΩ is defined in§3.3.4. However in one dimension these terms must cancel to giveBx = const, and

thus we deduce that the correct form of the induction equation is therefore

dBa

dt
= − 1

Ωaρa
∑
b

mb {vab [Ba ·∇aWab(ha)]−Ba [vab ·∇aWab(ha)]} , (4.54)

or in the form (4.51) we would have

d
dt

(

B
ρ

)

a
= − 1

Ωaρ2
a
∑
b

mbvab[Ba ·∇aWab(ha)]. (4.55)

Using (4.54) or (4.55) and (3.70) as constraints we may then derive the equations of motion using the

variational principle described in§3.3.2 to give

dvi
a

dt
= ∑

b

mb

[(

Si j

Ωρ2

)

a
∇ j

aWab(ha)+

(

Si j

Ωρ2

)

b
∇ j

aWab(hb)

]

. (4.56)

The total energy equation is given by

dea

dt
= ∑

b

mb

[(

Si j

Ωρ2

)

a
vi

b∇ j
aWab(ha)+

(

Si j

Ωρ2

)

b
vi

a∇ j
aWab(hb)

]

, (4.57)

whilst the internal energy equation is found using the first law of thermodynamics and (3.70), that is

dua

dt
=

Pa

Ωaρ2
a
∑
b

mbvab ·∇aWab(ha) (4.58)

We show in§4.6.4 that including the correction terms for a variable smoothing length in this manner

significantly improves the numerical wave speed in the propagation of MHD waves and enables the shock

tube problems considered in§4.6.3 to be computed with no smoothing of the initial conditions.
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4.4 Stability

A full stability analysis of the SPMHD equations for negative stress has been presented by Morris (1996).

The simplest MHD case is for a purely one dimensional problem, whereB = [Bx,0,0]. In this case the

dispersion relation is easily obtained from the hydrodynamic version (3.41) by simply replacing the

pressureP by P− 1
2B2

x, giving

ω2
a =

2m(P0− 1
2B2

x)

ρ2
0

∑
b

[1−cosk(xa − xb)]
∂ 2W
∂x2 (xa − xb,h)

+
m2

ρ2
0

(

c2
s −

2(P0− 1
2B2

x)

ρ0

)[

∑
b

sink(xa − xb)
∂W
∂x

(xa − xb,h)

]2

, (4.59)

where as previouslyc2
s = ∂P/∂ρ . Following Morris (1996), we define the negative stress parameter

R = 1−
1
2B2

x

P0
(4.60)

such thatR = 1 corresponds to the hydrodynamic case andR < 0 corresponds to negative stress. The

dispersion relation for an isothermal gas (c2
s = P/ρ) is then given by

ω2
a =

2mc2
s

ρ0
R∑

b

[1−cosk(xa − xb)]
∂ 2W
∂x2 (xa − xb,h)

+

(

mcs

ρ0

)2

(1−2R)

[

∑
b

sink(xa − xb)
∂W
∂x

(xa − xb,h)

]2

. (4.61)

Figure 4.1 shows contours of the (normalised) square of the numerical sound speedC2
num = ω2/k2

from this dispersion relation evaluated for the cubic spline kernel at a fixed value of smoothing length

(h = 1.2∆p). The contours are shown as a function of wavenumber (in units of the average particle spac-

ing) and the negative stress parameterR2. As in §3.2.7, sums in (4.61) are calculated numerically (rather

than making any further approximations) assuming an isothermal sound speed and particle spacing of

unity (where both wavelength and smoothing length are calculated in units of the particle spacing). From

Figure 4.1 we observe that the kernel is unstable to negativestress (R < 0) at short wavelengths, with

the instability first occurring at a wavenumberk = π (corresponding to a wavelength of twice the particle

spacing∆p). Note that these results are very similar for other smoothing length values and for all of the

kernels considered in§3.2.

In a numerical simulation, this instability manifests as particles clumping together, beginning at short

wavelengths but quickly destroying the simulation (Figure4.2). Since the one dimensional MHD case

involves only a constant magnetic pressure subtracted fromthe gas pressure, the source of the instability

can be traced to non-cancellation of the first error term (which is non-zero even for constant functions) in

the SPH approximation when a momentum-conserving form of the gradient evaluation is used (refer to

the discussion in§3.2.3). Indeed using a differencing form for the gradient term such as (3.16) results in

a stable formalism, but in this case the exact conservation of momentum is lost (although a compromise

approach is described below,§4.4.2).

2this figure corresponds to Figure 2.1 in Morris (1996)
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Figure 4.1: One dimensional stability properties of the cubic spline kernel with respect to the negative
stress parameterR = (1− 1

2B2
x/P) (y-axis). Thex-axis corresponds to wavenumber in units of 1/∆x

(such thatkx → 0 represents the limit of an infinite number of particles per wavelength). Contours show
the (normalised) square of the numerical wave speed from thedispersion relation (4.59). The kernel is
unstable to negative stress (R < 0) at short wavelengths.

Figure 4.2: Results of a one dimensional isothermal sound wave simulation with a constant magnetic
field in thex−direction such thatR = −1. The initial conditions are shown in the left panel, using 100
particles with an initial amplitude of 0.5%. The wave quickly becomes unstable due to the negative stress
and the results are shown in the right panel after one period.

Since conservation of momentum is important for the accurate simulation of shocks, several reme-

dies for this instability, associated with the tensor (ie. momentum-conserving) form of the magnetic force

term have been suggested. In their initial investigation Phillips and Monaghan (1985) used a simple ‘reg-

ularization’ technique - that is they swept over the particles to find the maximum value of the magnetic

component of the stress tensor (4.3) and then subtracted this from the stress tensor in (4.33). Recently,

however, it has been shown that a similar instability occurswhen SPH is used in solid mechanics simu-

lations where again there is an anisotropic stress. The instability occurs when the particles are in tension

(ie. the stress is negative) and again leads to a clumping effect, analogous to the MHD instability. Several

remedies have been proposed in the engineering literature (e.g. Dyka et al. 1997; Bonet and Kulasegaram

2000, 2001) but they all either involve a significant increase in computation or cannot be applied where

the particle configuration changes significantly (for a moredetailed discussion see Monaghan, 2000).
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A remedy for the tensile instability which does not require additional computational expense and can

be easily applied to astrophysical problems was proposed byMonaghan (2000) and we investigate this

technique below.

4.4.1 Anti-clumping term

The idea proposed by Monaghan (2000) is add a term which prevents particles clumping under negative

stress. Since the instability occurs at short wavelengths,this term should modify the stress at small

particle spacings so as to provide a repulsive force which prevents the particles clumping together under

tension forces (negative stress). Determining whether or not the particles are in tension is determined by

rotating into co-ordinates which lie along the principal stress axis (ie. where the stress tensor is diagonal).

The magnetic stress tensor is diagonal when the magnetic field lies along one of the co-ordinate axes

(which in this case we assume to be thex−axis). The magnetic field is thenB′ = (B,0,0) and the

stress tensor has non zero componentsM′
xx = B2/(2µ0), M′

yy = −B2/(2µ0) , andM′
zz = −B2/(2µ0). The

positive component in thex−component indicates tension, whilst the negative components in they− and

z− directions indicate compression. To remove the tension term at close range a term is added toM′
xx so

that it is negative when the particles approach. The term added isRB2, where

R = − ε
2µ0

(

Wab

W1

)n

, (4.62)

whereW is the SPH kernel andW1 is the kernel evaluated at the average particle spacing (a constant).

Rotating back to the original co-ordinate system, this is equivalent to defining a new magnetic stress

M′
i j = Mi j + RBiB j. (4.63)

The momentum equation (4.33) becomes

dvi
a

dt
= ∑

b

mb

{(

Si j

ρ2

)

a
+

(

Si j

ρ2

)

b
+ R

[(

BiB j

ρ2

)

a
+

(

BiB j

ρ2

)

b

]}

∂Wab

∂x j,a
. (4.64)

In the preceding discussion, we have interpreted the artificial stress term as a modification of the

anisotropic component of the magnetic stress tensor. An alternative interpretation (and one which we

prefer) is to regard it as a modification to the kernel gradient in the anisotropic force at small particle

spacings. The momentum equation may then be expressed as

dvi
a

dt
= −∑

b

mb

[(

P
ρ2 +

B2

2µ0ρ2

)

a
+

(

P
ρ2 +

B2

2µ0ρ2

)

b

]

∂Wab

∂x j,a

+∑
b

mb

µ0

[(

BiB j

ρ2

)

a
+

(

BiB j

ρ2

)

b

]

∂Yab

∂x j,a
, (4.65)

where∂Yab/∂x is the modified kernel gradient, given by

∂Yab

∂x
=

[

1− ε
2

(

Wab

W1

)n] ∂Wab

∂x
(4.66)

The effect of the anticlumping term on the kernel gradient isshown in Figure 4.3 for various values ofε
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Figure 4.3: Effect of the anticlumping term on the kernel gradient in theanisotropic magnetic force. The
cubic spline kernel (solid line) and its first derivative (dashed) are shown as modified by the anticlumping
term. The left panel shows the effect of varyingε (shown in steps of 0.2 fromε = 0.0 to ε = 1.0) whilst
the right panel shows the effect of varying the indexn (shown forn = 3,4 and 5, with the unmodified
kernel shown for comparison). The constant kernel in the denominator,W1, is evaluated atr/h = 1/1.5.
The modification of the kernel gradient shown in this figure isused when computing the anisotropic
magnetic force to prevent the particles from clumping unphysically. The modified kernel itself is not
used in the calculations and is plotted for comparison only.

andn. This modified gradient isonly used in the anisotropic magnetic force and does not therefore affect

the calculation of hydrodynamic and isotropic magnetic forces.

The functionR is designed to increase as the particle separation decreases. The kernel gradients in

Figure (4.3) are shown for a smoothing length ofh = 1.5∆p and therefore in (4.62) the kernel in the

denominator is computed using∆p/h = 1/1.5. In the one dimensional numerical tests described in§4.6

simulations using this value of smoothing length, use of theanticlumping term was found to give good

results with few side effects. In two and three dimensions, however, more typical values forh are in the

range 1.1− 1.2∆p, in order to reduce the number of neighbours required in the summations (and thus

the computational expense). Re-running the one dimensional shock simulations with these values forh,

it was found that the artificial stress term produced pronounced errors in the shock profiles (this is dis-

cussed further in§4.6.3 and demonstrated in Figure 4.13). For this reason we find it is better to interpret

W(∆p) as the kernel evaluated at a particular fixed radius, ratherthan at the average particle spacing. We

therefore user/h = 1/1.5 in W(∆p) independent of the choice of smoothing length. That this provides a

significant improvement in the results is also demonstratedin Figure (4.6) from the results of a stability

analysis of the SPMHD equations incorporating the anticlumping term. The stability analysis is given

below.

Stability analysis with anticlumping term

A one-dimensional stability analysis of SPH including an artificial stress term is given by Monaghan

(2000). With the artificial stress interpreted as a modification to the kernel gradient on the anisotropic

force, the one dimensional dispersion relation for MHD is easily obtained from the hydrodynamic version
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(3.41) by assuming a pressure of the formP = Piso + Paniso, where in this case we havePiso = P + 1
2B2

x

andPaniso = −B2
x. The resulting dispersion relation is given by

ω2
a =

2mPiso

ρ2
0

∑
b

[1−cosk(xa − xb)]
∂ 2Wab

∂x2

+
m2

ρ2
0

(

c2
s −

2Piso

ρ0

)

[

∑
b

sink(xa − xb)
∂Wab

∂x

]2

+
2mPaniso

ρ2
0

∑
b

[1−cosk(xa − xb)]
∂ 2Yab

∂x2

−m2

ρ2
0

(

2Paniso

ρ0

)

[

∑
b

sink(xa − xb)
∂Wab

∂x

][

∑
b

sink(xa − xb)
∂Yab

∂x

]

, (4.67)

where the modified kernelY and its derivatives are given by

Yab =

[

1− ε
2(n+1)

(

Wab

W1

)n]

Wab, (4.68)

∂Yab

∂x
=

[

1− ε
2

(

Wab

W1

)n] ∂Wab

∂x
, (4.69)

∂ 2Yab

∂x2 =
∂ 2Wab

∂x2 − ε
(n+1)W n

1

∂ 2W n+1
ab

∂x2 . (4.70)

Figure 4.4 shows contours of the square of the numerical sound speedC2
num = ω2/k2 from this dis-

persion relation as a function of wavenumber and the negative stress parameterR (where in this case we

havePiso/ρ0 = c2
s (2−R) andPaniso/ρ0 = 2c2

s (R −1)) for an isothermal equation of state, usingn = 4

and six different values ofε . The top left panel (ε = 0.0) corresponds to Figure 4.1, except that the

y−axis extends toR = −10 in this case. Results are shown for a fixed smoothing lengthof h = 1.2∆p,

however as discussed above the constant kernel in the denominator,W1, is evaluated atr/h = 1/1.5.

This means that the kernel used on the anisotropic term corresponds to those shown in Figure (4.3). We

observe that for this value ofn the formalism is stabilised forε & 0.3 and this is confirmed by numerical

simulations (Figure 4.5). However, whereas in theε = 0.0 case the contours nearkx = 0 are close to

unity, in Figure (4.1) the numerical wave speed appears to increase substantially with increasing negative

stress (R → −∞). Thus, although the formalism is stabilised at short wavelengths, the wave speed at

long wavelengths is also affected slightly.

This effect is illustrated further in Figure (4.6), where weplot the numerical sound speed versusR at

kx ≈ 0 taken from Figure (4.1) (solid line) forh = 1.2∆p. The results usingW1 evaluated at the average

particle spacing (ie atr/h = 1/1.2 in this case) as in the original formulation of Monaghan (2000) are

also shown (dashed line). In both cases the wave speed is increases substantially asR becomes more

negative, although the former case is a significant improvement over the latter. To confirm that the

analytic stability analysis is an accurate representationof numerical results, we also plot the results of 12

simulations of small amplitude (0.5%) isothermal sound waves (as described in§3.7.2) with a constant

magnetic field in thex−direction corresponding to various values ofR. The numerical results (solid

points) show excellent agreement with the analytic dispersion relation.

To understand the increase in wave speed with decreasingR caused by the anticlumping term, it is
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Figure 4.4: Effect of the anticlumping term on the one dimensional stability properties of the cubic
spline kernel for various values ofε andn (as indicated in legend). Contours show the square of the
numerical sound speed from the dispersion relation (4.67) as a function of the negative stress parameter
R = (1− 1

2B2
x/P) (y−axis) and the wavenumber in units of the particle spacing. Results are for a fixed

smoothing length ofh = 1.2∆p, with W1 evaluated atr/h = 1.5.

Figure 4.5: A repeat of the isothermal sound wave simulation shown in Figure 4.2 (withR = −1) using
the anticlumping term with parametersε = 0.4,n = 4. The initial conditions are shown in the left panel,
using 100 particles with an initial amplitude of 0.5%. The results after one period are shown in the right
panel and are clearly stabilised by the anticlumping term, although the wave exhibits a significant phase
error.
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Figure 4.6: Numerical sound speed vs negative stress parameter R for thecubic spline kernel with a
fixed smoothing length ofh = 1.2∆p and anticlumping parametersε = 0.4, n = 4. The solid and dashed
lines show the results atkx ≈ 0 from the dispersion relation (4.67), with the kernel in thedenominator
of the anticlumping term evaluated at the average particle spacing (dashed line) and at the fixed radius
1/1.5 (solid line), as discussed in the text. In the latter case the analytic results may be compared with
the solid points from numerical simulations. The close agreement between the two demonstrates that the
analytic stability analysis is a faithful representation of the numerical results.

instructive at to consider (4.67) in the limit ofk → 0 (ie. at long wavelengths). In this case we have

sink(xa − xb) ≈ k(xa − xb) and cosk(xa − xb) ≈ 1− 1
2k2(xa − xb)

2, giving

ω2
a /k2

x =
mPiso

ρ2
0

∑
b

(xa − xb)
2∂ 2Wab

∂x2 +
m2

ρ2
0

(

c2
s −

2Piso

ρ0

)

[

∑
b

(xa − xb)
∂Wab

∂x

]2

+
mPaniso

ρ2
0

∑
b

(xa − xb)
2∂ 2Yab

∂x2 − m2

ρ2
0

(

2Paniso

ρ0

)

[

∑
b

(xa − xb)
∂Wab

∂x

][

∑
b

(xa − xb)
∂Yab

∂x

]

.(4.71)

The accuracy of the numerical sound speed in this limit (which is the limit of an infinite number of

particles, but not an infinite number of neighbours) is governed by the extent to which, for each kernel,

the following normalisation conditions hold on the gradients:

∑
b

mb

ρb
(xa − xb)

∂Wab

∂x
≈ 1, and

1
2∑

b

mb

ρb
(xa − xb)

2 ∂ 2Wab

∂x2 ≈ 1. (4.72)

In the limit of an infinite number of neighbours (ie.h → ∞) the summations can be written as integrals

and the normalisations take the form

∫

(x− x′)
∂W
∂x

dx′ = 1 and
1
2

∫

(x− x′)2 ∂ 2W
∂x2 dx′ = 1. (4.73)

It may be easily verified by the reader that setting the corresponding expressions to unity in (4.71) (for

both kernels) gives the exact dispersion relation for soundwaves (ie. ω2 = k2
xc2

s ). A straightforward

integration for the cubic spline kernel demonstrates that both of these integrals hold on account of the

normalisation condition (3.4) and the fact that the kernel is even. Considering the modified kernel gra-

dient used in the anticlumping term (4.69)-(4.70), the normalisations can no longer hold because the

kernel gradient is no longer normalised. The approach takento this problem in Monaghan (2000) is to
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simply choose the indexn so as to minimise the term multiplying these integrals, giving n in the range

3≤ n ≤ 7. Naively, one might expect that a renormalising the modified kernel gradient so as to maintain

the integrals (4.73) would increase the accuracy of the simulation results. However in practise we find

that this is not the case, since the summations (4.72) only sample the integrals at a few points. As such

the renormalisation can have detrimental effects because it changes the kernel gradient at larger/h to

compensate for the changing shape at smallr/h, affecting more than the nearest neighbours.

In the hydrodynamic case it was found that allowing the smoothing length to vary could significantly

improve the numerical wave speeds (§3.7.2). In the case of a variable smoothing length, three options

are available for the modified kernel gradient: to use the average of the smoothing lengths, the average of

the kernel gradients or thirdly to use the consistent formulation including the variable smoothing length

terms (§4.3.6), in this case evaluated for the modified kernel gradient. Since the variable smoothing

length terms effectively normalise the kernel gradient, the latter would seem to be a particularly good

approach, particularly in the light of the discussion in theprevious section. However, the one (somewhat

large) caveat to the anticlumping approach is that, using variable smoothing lengths, we do not find

that the anticlumping term guarantees numerical stabilityfor all values of negative stress. For example,

using the average smoothing length in (all of) the kernel gradients, the one dimensional sound waves

become unstable atR . −9. Using the average of the gradients the problem is worse andthe waves

become unstable atR . −3. With the variable smoothing length terms calculated independently for

both kernels, instability is observed atR . −2. It would seem therefore, that although sufficient to

provide numerical stability for all of the test problems considered here, the anticlumping approach as

it stands does not provide a comprehensive solution. For this reason we compare this approach to two

other methods described in§4.4.2 and§4.4.4 and in fact the multidimensional tests described in Chapter

5 suggest that these methods both give better results than use of the anticlumping term.

Implementation

The anticlumping term is implemented in this thesis by calculating the modified kernel gradient in a

similar manner to the usual kernel. This is also the most cost-effective implementation since the modified

kernel can be pre-computed and tabulated as for the usual kernel.

Where the total energy equation (4.38) is used, the contribution to the total energy from the anti-

clumping term must be added for consistency. This can be found using (4.36) and is given by

(

dea

dt

)

src
= ∑

b

mbvi
aR

[(

BiB j

ρ2

)

a
+

(

BiB j

ρ2

)

b

]

∂Wab

∂x j,a
. (4.74)

Alternatively, interpreting the anticlumping term as a modified kernel gradient, the contribution to the

total energy from the anisotropic term in (4.38) is replacedby

(

dea

dt

)

aniso
= ∑

b

mb

(

Bi
aB j

a

ρ2
a

vi
b∇ jWab +

Bi
bB j

b

ρ2
b

vi
a∇ jYab

)

+∑
b

mb
Bi

aB j
a

ρ2
a

vi
a

(

∇ jYab −∇ jWab
)

. (4.75)

In principle it is possible to conserve total energy exactlyby also using the modified kernel gradient

in theB/ρ version of the induction equation (givingWab = Yab in the above). However this introduces
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an unnecessary alteration to the magnetic field evolution and consequently produces undesirable side

effects. The degree to which energy conservation is violated when the total energy equation is evolved

may therefore be used as an indication of the relative error introduced by the anticlumping term. In

general this is found to be quite small for the problems considered in this thesis.

4.4.2 Morris approach

An alternative approach suggested by Morris (1996) is to retain the conservation of momentum on the

isotropic terms in (4.33) but to treat the anisotropic termsusing a differencing formalism which is exact

in the case of a constant functions (see§3.2.3). The force term is then given by

−∑
b

mb

(

Pa + 1
2B2

a/µ0

ρ2
a

+
Pb + 1

2B2
b/µ0

ρ2
b

)

∂Wab

∂xi +
1
µ0

∑
b

mb
(BiB j)b − (BiB j)a

ρaρb

∂Wab

∂x j
. (4.76)

This formalism does not therefore guarantee exact momentumconservation (since the anisotropic term

does not give equal and opposite forces between particle pairs) but can be expected to give good results

on shocks for which the anisotropic term is less important. It is also a better approach than the vector-

based formalisms (§4.3.5) since (4.76) is still a discretisation of a tensor force and therefore conserves

momentum in the continuum limit for non-zero∇ ·B. This also means that (4.76) retains the consistent

formulation of the MHD equations in the presence of monopoles, although the discrete equations are no

longer self-consistent with each other. Note that when using the variable smoothing length terms, we

use the average of the normalised kernel gradient in (4.76),as in the dissipative terms. The dispersion

relation for this formalism in the case of one dimensional MHD takes a particularly simple form since

the terms resulting from the anisotropic force are zero in the case ofBx =const, giving

ω2
a =

2mPiso

ρ2
0

∑
b

[1−cosk(xa − xb)]
∂ 2Wab

∂x2

+
m2

ρ2
0

(

c2
s −

2Piso

ρ0

)

[

∑
b

sink(xa − xb)
∂Wab

∂x

]2

. (4.77)

Contours of the square of the numerical sound speedC2
num = ω2/k2

x from this dispersion relation are

shown in Figure (4.7). The formalism is seen to be stable for all wavelengths and this is confirmed

by numerical simulations. Also the numerical wave speed does not show the increase with increasing

negative stress observed for the anticlumping term, although the numerical wave speed is somewhat

overestimated at short wavelengthskx ∼ π/2∆x. The more accurate numerical wave speeds result from

the use of the differencing formalism since in this case the zeroth order error terms for small perturbations

are zero exactly (§3.2.3). However, the main test of this formalism is the degree to which the lack

of momentum conservation affects the shock capturing ability of the scheme. This is examined and

compared with the anticlumping approach in the shock tube tests described in§4.6 where in fact the

differences are found to be very minor. This simple approachis therefore a very viable solution which

guarantees numerical stability in all circumstances and does not suffer from the numerical wave speed

errors introduced by the anticlumping term.
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Figure 4.7: One dimensional stability properties of the cubic spline kernel using Morris’ formalism of
the magnetic force (4.76). Contours of the square of the numerical sound speed from the dispersion
relation (4.77) are shown with respect to the negative stress parameterR = (1− 1

2B2
x/P) (y−axis) and

the wavenumber in units of the particle spacing (x−axis). The formalism is stable to negative stress
at all wavelengths, however momentum conservation is not maintained exactly for anisotropic forces.
Note that the numerical sound speed is close to unity at long wavelengths (kx → 0), although somewhat
overestimated at short wavelengthskx ∼ π/2∆x.

4.4.3 Børve approach

Børve et al. (2001) remove the instability by explicitly subtracting the unphysical force term from the

conservation form of the momentum equation (4.33). This term is calculated using

B(∇ ·B)

ρ
≈ Ba ∑

b

mb

(

Bb

ρ2
b

+
Ba

ρ2
a

)

·∇aWab (4.78)

which is then subtracted from (4.33). This resolves the stability problem since it removes the (unphysical)

component of magnetic force along the line joining the particles (ie. in continuum form the formalism

becomes simply theJ×B component of the magnetic force). However the disadvantageto this approach

can be seen in the simple case of one dimensional MHD, where for a constantBx the term introduces

a low level of numerical noise throughout the simulation. InBørve et al. (2001) this noise is removed

by periodically smoothing the magnetic field, which is also used to remove post-shock oscillations inB.

Since we use artificial resistivity to prevent such post-shock oscillations (see below), additional smooth-

ing is not required and so the noise introduced by subtracting (4.78) remains present. Furthermore we

find that the lack of momentum conservation in this formalismcan lead to extremely poor results on

shock tube problems in the absence of the particle regularisation procedure used by these authors.

4.4.4 Removing the constant component of magnetic field

For simulations where the magnetic field is strong due to an initial net flux through the simulation, a

simple method for removing the tensile instability is to remove the constant, external (ie. produced by

currents outside the simulation domain) component of the magnetic field from the anisotropic gradient

analytically (by subtracting this field component from the stress contained within the gradient term). The
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stress tensor (4.3) for particlea is modified according to

Si j
a = −

(

Pa +
1

2µ0
B2

a

)

δ i j +
1
µ0

(

Bi
aB j

a −Bi
0B j

0

)

, (4.79)

whereB0 is the magnetic field component which does not change throughout the simulation (for example

in one dimensional simulations we would useB0 = [Bx,0,0]). In general the constant field could also

have a spatial profile (for example in a fixed dipole field from the central star in an accretion disc) and

would in this case depend on the particle position. In all of the cases we consider the external magnetic

field is always the same independent of the particle position, such that calculating (4.79) involves storing

only a single vector. It is worth noting that the formalism given above (where the constant field is

subtracted from the total field) is more efficient than explicitly adding the contributions from separate

constant and variable field components.

This simple solution completely cures the one dimensional instability because theBx component of

the field is explicitly removed from the anisotropic gradient term. Negative stresses can only arise in this

formulation when the anisotropic terms in the fluctuating component dominate the isotropic pressure

term (from which the constant field hasnot been subtracted). In many ways this is similar to the original

proposal of Phillips and Monaghan (1985) in which the maximum value of the stress tensor over all the

particles was determined and then subtracted from the stress for each particle. Such an approach makes

sense in light of the fact that the instability arises due to the non-zero evaluation of the gradient of a

constant function in the momentum-conserving formulation(c.f. §3.2.3). Morris’ approach described

above (§4.4.2) removes this error by ensuring that the gradient of a constant function vanishes exactly in

the anisotropic term, although momentum conservation is not maintained exactly. Using the momentum-

conserving formalismany arbitrary constant could be added to the stress in order to make the total stress

positive (which effectively changes the factor multiplying the first error term in equation 3.19).

The disadvantage to this approach is that total energy is notconserved exactly since the contribution

to the total energy evolution from the induction equation (which uses the total magnetic field) does not

exactly balance the contribution from the momentum equation. This method is used in many of the

two dimensional problems considered in Chapter 5, reverting to the Morris approach where this is not

possible. The results in all cases are much better than thoseobtained using the anticlumping term.

4.5 Shocks

Various approaches to ensuring a physically realistic treatment of shocks in numerical schemes were

discussed in an SPH context in§3.5. Following this, dissipative terms (artificial viscosity and thermal

conductivity) were derived for hydrodynamic shocks similar to those given by Monaghan (1997b), the

major differences being that the artificial thermal conductivity was applied to particles in both compres-

sion and rarefaction (the importance of which was highlighted in the numerical tests described in§3.7)

and controlled using a switch similar to that used in the viscosity (§3.5.2).

In this section we generalise the dissipative terms derivedin §3.5 to the MHD case. In particular using

the formulation of Monaghan (1997b) naturally results in anartificial resistivity term in the SPMHD

induction equation. Whereas the effect of adding artificialthermal conductivity at discontinuities in

the thermal energy is fairly small (§3.7.3), in this case adding artificial resistivity at discontinuities in
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the magnetic field turns out to be crucial in order to prevent significant post-shock oscillations in the

magnetic field (§4.6.3).

4.5.1 Artificial dissipation

Dissipative terms in the MHD case are constructed in a manneranalogous to that of§3.5 (Monaghan,

1997b) involving jumps in the physical variables. As in the hydrodynamic case (§3.5.1), the momentum

equation (4.33) contains a viscosity term (forvab · rab < 0)

(

dva

dt

)

diss
= −∑

b

mb
αvsig(va −vb) · r̂ab

2ρ̄ab
∇aWab, (4.80)

whereα is a dimensionless constant of order unity, vsig is the maximum speed of signal propagation

between the particles,̂rab = (ra − rb)/|ra − rb| is a unit vector along the line joining the particles and

ρ̄ab = 1
2(ρa +ρb). The term in the total energy equation (4.38) involves a jumpin energy and is given by

(

dea

dt

)

diss
= −∑

b

mb
vsig(e∗a − e∗b)

2ρ̄ab
r̂ab ·∇aWab, (4.81)

where in the MHD case the energye∗ is constructed using the velocity jump parallel to the line joining the

particles and the jump in the magnetic field component perpendicular to this line (since these components

are expected to change at shock fronts, although see below),giving

e∗a =

{

1
2α(va · r̂ab)

2 + αuua + 1
2αB[B2

a − (Ba · r̂ab)
2]/µ0ρ̄ab, vab · rab < 0;

αuua + 1
2αB[B2

a − (Ba · r̂ab)
2]/µ0ρ̄ab, vab · rab ≥ 0;

(4.82)

with a similar equation fore∗b. The appropriate form of the other dissipative terms is thenfound by

working out the contribution to the thermal energy and requiring that this contribution be positive definite

(leading to a positive definite increase in entropy). The contribution to the thermal energy equation is

found using

du
dt

=
de
dt

−v · dv
dt

− d
dt

(

B2

2µ0ρ

)

. (4.83)

Substituting (4.80) and (4.81), a positive definite contribution to the thermal energy from the kinetic and

magnetic terms is given only if the terms in the thermal energy equation take the form
(

du
dt

)

diss
= −∑

b

mb
vsig

2ρ̄ab

{

1
2

α [(va · r̂ab)− (vb · r̂ab)]
2 + αu(ua −ub)

+
αB

2µ0ρ̄ab

[

B2
ab − (Bab · r̂ab)

2]
}

r̂ab ·∇aWab (4.84)

where both the kinetic and magnetic terms can be seen to give apositive definite contribution to the

thermal energy since the kernel gradient term is negative definite. The thermal energy term provides an

artificial thermal conductivity which acts to smooth gradients in the thermal energy. This term is identical

to the hydrodynamic case and has been discussed in detail in§3.5.1 and in the numerical tests described

in §3.7.3. The kinetic energy contribution to (4.84) takes the form given due to the contribution from the
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viscosity term in the momentum equation via (4.83). Similarly for the contribution from the magnetic

energy term in (4.81) to result in a positive definite dissipation of the form given in (4.84) requires a

dissipation term in the induction equation, in this case of the form

(

dB
dt

)

diss
= ρa ∑

b

mb
αBvsig

2ρ̄2
ab

[Bab − r̂ab(Bab · r̂ab)] r̂ab ·∇aWab. (4.85)

This term may be written as

ρa ∑
b

mb
αBvsig

2ρ̄2
ab

[r̂ab × (Bab × r̂ab)] r̂ab ·∇aWab. (4.86)

It may be expected that in continuum form this equation should be some approximation to

−∇× (η∇×B), (4.87)

which for constantη is given by

η
[

∇2B−∇(∇ ·B)
]

(4.88)

Using the second derivative interpolations given in§3.2.4 we find that in fact (4.86) is an SPH form of

η
[

∇2B− 2
3

∇(∇ ·B)

]

, (4.89)

which is similar to the exact equation with ohmic diffusivity η ∝ αBvsigh. Since this term is derived from

a jump in the magnetic energy perpendicular to the line joining the particles, the effect is to smooth out

gradients in transverse magnetic field over several smoothing lengths, just as the viscosity acts to smooth

out gradients in the velocity along the line between the particles

An important point to note is that discontinuities in the magnetic field can occur in the absence of

compression such that the artificial resistivity term should be applied uniformly to particles in both com-

pression and rarefaction. In fact the application of artificial resistivity, unlike that of artificial thermal

conductivity, turns out to be a crucial requirement in the simulation of MHD shocks (this is graphi-

cally illustrated in Figure 4.10), a point which is often overlooked in dissipation-based shock capturing

schemes for MHD. For example both Børve et al. (2001) and Maron and Howes (2003) find it necessary

to explicitly smooth the magnetic field at regular intervalsin order to prevent post-shock oscillations.

Using the artificial resistivity terms described above, such smoothing occurs naturally within the simu-

lation. Similar artificial resistivity terms are required in finite-difference codes which are also based on

the differential form of the MHD equations (see for example Caunt and Korpi 2001, which is based on

Nordlund and Galsgaard 1995).

Dissipation terms using total energy

In the above derivation, it was assumed that only componentsof the magnetic field perpendicular to

the line joining the particles would change at a shock front.However, in a numerical simulation the

assumption of non-zero magnetic divergence may not hold exactly, as has already been discussed. In
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particular divergence errors are often created at flow discontinuities where fluid quantities are changing

rapidly. It therefore makes good sense to drop the assumption of non-zero magnetic divergence in the

derivation of the dissipative terms. The assumption that only the velocity components parallel to the

line joining the particles will change is also no longer truein the MHD case since velocity components

transverse to this line will change with a jump in the transverse magnetic field. For this reason we

re-derive the dissipative terms with an energy term of the form

e∗a =
1
2

αv2
a + αuua + αB

B2
a

2µ0ρ̄ab
(4.90)

which involves both the total kinetic and magnetic energies. For the contribution to the entropy to be

positive definite, the terms in the thermal energy equation must take the form

(

du
dt

)

diss
= −∑

b

mb
vsig

2ρ̄ab

{

1
2

α(va −vb)
2 +

αB

2µ0ρ̄ab
(Ba −Bb)

2 + αu(ua −ub)

}

r̂ab ·∇aWab, (4.91)

which correspondingly requires dissipation terms in the momentum and induction equations of the form
(

dva

dt

)

diss
= ∑

b

mb
αvsig(va −vb)

2ρ̄ab
r̂ab ·∇aWab, (4.92)

(

dB
dt

)

diss
= ρa ∑

b

mb
αBvsig

2ρ̄2
ab

(Ba −Bb) r̂ab ·∇aWab. (4.93)

In the multidimensional case we find that use of (4.93) has distinct advantages over (4.85) since in

more than one dimension divergence errors can cause the extra component of the magnetic field to jump

slightly. Whether or not to use (4.92) in place of (4.80) is slightly less clear. The application of dissipative

terms to specific discontinuities was discussed at some length in §3.5.2 with regards to artificial thermal

conductivity, where it was found that smoothing of discontinuities in the thermal energy was necessary

only where the discontinuity is not already smoothed by the application of artificial viscosity (which

could occur, for example at a contact discontinuity). In thepresent case, since a jump in transverse

velocity canonly occur at a corresponding jump in the transverse magnetic field, these discontinuities

will already be smoothed by the application of artificial resistivity there and so the use of (4.92) may

simply result in excessive dissipation (since it must also be applied to particles in both compression and

rarefaction, whereas the usual viscosity term is applied only to particles in compression). Furthermore

the effect of (4.92) is to diffuse discontinuities corresponding to the curl of the vector field as well as the

divergence and the expression therefore no longer conserves angular momentum and no longer vanishes

for rigid body rotation (since in effect rotational energy is converted into thermal energy). Thus for

simulations involving significant amounts of shear (for example in accretion discs) the effects of using

(4.92) would need to be studied quite carefully. It is worth noting that a similar term was used by Morris

(1996).

Signal Velocity

The signal velocity in the MHD case is a simple generalisation of that given in§3.5.1. The key point is

that it is the relative speed of signals from moving observers at the positions of particlesa andb when
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the signals are sent along the line of sight. If there are no magnetic fields a good estimate of this signal

velocity (c.f. §3.5.1) is

vsig = ca + cb −βvab · r̂ab, (4.94)

whereca denotes the speed of sound of particlea and β ∼ 1. The signal velocity is larger when the

particles are approaching each other and in practice, the effects of shocks can be included by choosing

β = 2. If there are magnetic fields then a variety of other waves are possible. The fastest wave in a static

medium along the x axis has speed (c.f. Appendix C)

v2 =
1
2





(

c2
s +

B2

µ0ρ

)

+

√

(

c2
s +
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−4
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s B2
x

µ0ρ



 , (4.95)

A natural generalization of (4.94) for the case of magnetic fields is to take

vsig = va +vb −βvab · r̂ab, (4.96)

where

va =
1√
2
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c2
a +

B2
a

µ0ρa

)

+

√
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a +

B2
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−4
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µ0ρa





1/2

, (4.97)

with a similar equation for vb.

4.5.2 Artificial dissipation switches

Since artificial resistivity is required at discontinuities in the magnetic field, which may occur where

particles are not necessarily approaching each other, artificial viscosity and resistivity should not be

controlled using the same switch. A similar switch appropriate to the artificial resistivity term can be

devised similar to that used in the artificial viscosity and thermal conductivities in the SPH case (§3.5.2).

We evolve the resistive dissipation parameterαB according to

dαB

dt
= −αB

τ
+S (4.98)

where the decay timescaleτ is given in§3.5.2 and in this case the source term is given by

S = max

( |∇×B|√µ0ρ
,
|∇ ·B|√µ0ρ

)

, (4.99)

such that artificial resistivity is applied at large gradients in the current density as well as at large diver-

gences in the magnetic field (the latter term is required onlywhen the total energy formulation (4.93) of

the artificial resistivity is used). The source term is constructed to have dimensions of inverse time, as

required by (4.98). In the numerical shock tube tests described in§4.6.3 we find that using this switch

in conjunction with switches for the viscosity and thermal conductivity can result in too little dissipation

at shock fronts due to the fact that the transverse velocity components are not smoothed when (4.80) is
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used in the artificial viscosity. In this case the artificial resistivity must provide sufficient smoothing for

the discontinuities in both magnetic field and transverse velocity. For this reason we prefer in general to

control only the viscosity and thermal conductivities using the switches and to apply the magnetic term

using a uniformαB = 1.

4.6 Numerical tests in one dimension

The numerical scheme described in this chapter has been tested on a variety of one dimensional problems.

In order to demonstrate that SPMHD gives good results on problems involving discontinuities in the

physical variables we present results of standard problemsused to test grid-base MHD codes (e.g. Stone

et al. 1992; Dai and Woodward 1994; Ryu and Jones 1995; Balsara 1998; Dai and Woodward 1998).

The advantages of SPMHD are the simplicity with which these results can be obtained and the complete

absence of any numerical grid.

4.6.1 Implementation

The particles are allowed to move in one dimension only, whilst the velocity and magnetic field are

allowed to vary in three dimensions. This means that they− andz− components of velocity are evolved

using the appropriate force terms and used in the total energy but that these velocities are not used to

move the particles (this is rather like regarding the particles as representing planes in one dimension such

that translations in they− andz− directions have no effect).

We use equal mass particles such that density changes correspond to changes in particle spacing.

Unless otherwise indicated in this section we integrate thecontinuity equation (3.43), the momentum

equation (4.33), the total energy equation (4.38) and the induction equation (4.20). This is the most

efficient implementation of the SPMHD equations since it does not require an extra pass over the particles

to calculate the density via the summation (3.42). However,use of the continuity equation requires some

smoothing of the initial conditions and this is done using the smoothing described in§3.7.3, although

initial velocity profiles are not smoothed. Similar resultsto those shown here are also obtained when

the thermal energy equation is integrated instead of the total energy. Additionally we note that whilst

evolving the flux per unit mass (4.22) instead of the flux density (4.20) does not exactly maintain∇ ·B = 0

in one dimension, the associated errors are small and hence we also find in this case that the results

are similar. Unless otherwise indicated the tests presented here are all performed with the artificial

viscosity and thermal conductivity controlled using the switches discussed in§3.5.2. For the viscosity

the minimum is set toαmin = 0.1 whilst for the artificial thermal conductivity the minimumis zero.

This results in very little dissipation away from shock fronts. Artificial resistivity is applied uniformly

with αB = 1. This is required (rather than using the resistivity switch) because the transverse velocity

components are not smoothed (that is we retain the use of (4.80) rather than (4.92)). The smoothing

length is set according to the rule (3.67) such that initially h = 1.2(m/ρ). The anticlumping term (§4.4.1)

is used with parametersε = 0.8 andn = 4 with the constant kernel in the denominatorW1 evaluated at a

fixed radiusq = 1/1.5 as discussed in§4.4.1, except where otherwise indicated.



4.6 Numerical tests in one dimension 101

Scaling

The magnetic field variable is scaled in units such that the constantµ0 is unity and numerical quantities

are dimensionless. Note that the magnetic flux densityB has dimensions

[B] =
[mass]

[time][charge]
, (4.100)

whilst µ0 has dimensions

[µ0] =
[mass][length]

[charge]2
. (4.101)

Choosing mass, length and time scales of unity and specifying µ0 = 1 therefore defines the unit of charge.

Re-scaling of the magnetic field variable to physical units requires multiplication of the code value by a

constant

Bphysical =

{

µ0[mass]
[length][time]2

}1/2

Bnumerical . (4.102)

For example, in cgs units, with mass, length and time scales of unity the magnetic flux density in Gauss

is given by

Bcgs = (4π)1/2Bnumerical . (4.103)

4.6.2 Simple advection test

This simple test is described in Evans and Hawley (1988) and in Stone et al. (1992) and measures the

ability of an algorithm to advect contact discontinuities.A square pulse of transverse magnetic field is

setup and advected a distance of five times its width with the pressure terms switched off. The current

densityJ is calculated in order to ascertain that the method does not produce sign reversals or anomalous

extrema in this quantity. In SPH we compute this quantity using

Ja = ∇×Ba = ∑
b

mb(Ba −Bb)×∇aWab. (4.104)

We perform this test simply by using a magnetic pressure thatis negligible compared to the gas

pressure. We setup 100 particles placed evenly along the x axis with constant velocity in the positive

x-direction and use a pulse that is initially 50 particle spacings wide. The pulse is not initially smoothed

in any way and periodic boundary conditions are enforced using ghost particles (this is also a good test

of the periodic boundary conditions since the particles arecontinually crossing the domain).

The SPMHD results are shown in Figure 4.8 after advecting thepulse a distance of five times its width

(in this case equivalent to 5 crossings of the computationaldomain). The top panel shows the results

with the artificial dissipation terms turned off. There is nospread in the discontinuities since SPH uses a

Lagrangian derivative which means that the advection is exact. The current density, which is analytically

given by a delta function at each discontinuity, is also computed very well by the SPH approximation. In

(Eulerian) grid based codes the advection terms must be explicitly evaluated, resulting in some diffusion
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Figure 4.8: Results of the advection of a square pulse of transverse magnetic field 50 particle separations
wide a distance of five times its width. In the absence of dissipative terms the discontinuities are kept
to less than a particle spacing (top) due to the Lagrangian nature of SPH. The current density (top right)
is also estimated well (analytically this is a delta function at each discontinuity). With the artificial
resistivity turned on a small amount of smoothing is observed (bottom panels).

of the pulse as it is advected. In SPH the only diffusion present is that explicitly introduced in the shock

capturing scheme. With the artificial resistivity turned ona small smoothing of the field is observed

(bottom panels), however this still compares favourably with the implicit dissipation resulting from the

grid-based advection schemes shown in Stone et al. (1992).

4.6.3 Shock tubes

The first shock tube test we perform was first described by Brioand Wu (1988) and is the MHD analogue

of the Sod (1978) shock tube problem (§3.7.3). The problem consists of a discontinuity in pressure, den-

sity, transverse magnetic field and internal energy initially located at the origin. As time develops com-

plex shock structures develop which only occur in MHD because of the different wave types. Specifically

the Brio and Wu (1988) problem contains a compound wave consisting of a slow shock attached to a rar-

efaction wave. The existence of such intermediate shocks was contrary to the expectations of earlier

theoretical studies (Brio and Wu, 1988), although more recent studies suggest that these intermediate

states are an artifact of restricting the geometry to one spatial dimension whilst allowing the magnetic

field to vary in two dimensions and that such solutions decay rapidly in more than one spatial dimension

(Barmin et al., 1996). Regardless of its theoretical underpinnings, this problem is now a standard test

for any astrophysical MHD code and has been used by many authors (e.g. Stone et al. 1992; Dai and

Woodward 1994; Ryu and Jones 1995; Balsara 1998)

We set up the problem using approximately 800 equal mass particles in the domainx = [−0.5,0.5].
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Figure 4.9: Results of the Brio and Wu (1988) shock tube test. To the left of the origin the initial state is
(ρ ,P,vx,vy,By) = [1,1,0,0,1] whilst to the right the initial state is(ρ ,P,vx,vy,By) = [0.125,0.1,0,0,−1]
with Bx = 0.75 everywhere andγ = 2.0. Profiles of density, pressure, vx, vy, thermal energy andBy are
shown at timet = 0.1. Points indicate the SPMHD particles whilst the numericalsolution from Balsara
(1998) is given by the solid line.

Initial conditions to the left of the discontinuity (hereafter the left state) are given by(ρ ,P,vx,vy,By) =

[1,1,0,0,1] and conditions to the right (the right state) are given by(ρ ,P,vx,vy,By)= [0.125,0.1,0,0,−1]

with Bx = 0.75 andγ = 2.0. The results are shown in Figure 4.9 at timet = 0.1. Although no exact solu-

tion is known for this problem, the results compare well withthe numerical solution taken from Balsara

(1998) (solid lines). Several points regarding the SPMHD solution are worth noting. The first is that the
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slope of the rarefaction wave appears slightly wrong. This was noted in the hydrodynamic case (§3.7.3)

and is a result of the smoothing used on the initial conditions. With no smoothing of the initial con-

ditions this error disappears (Figure 4.11). The second point to note is that no significant post-shock

oscillations are visible, demonstrating that the dissipative terms are effective in smoothing the discon-

tinuities sufficiently. However, some small post-shock oscillations may be observed in the transverse

velocity profile. This is due to the fact that we do not apply any smoothing to the transverse velocity

components. The reason why the effect of this neglect remains fairly small is because the transverse ve-

locity jumps are caused by the jumps in transverse magnetic field, which are smoothed using the artificial

resistivity terms. This is similar to the effect of neglecting the use of artificial thermal conductivity in

the hydrodynamic case (§3.7.3), where the effects are small because the shock is already smoothed by

the viscosity term. Note, however that the inclusion of artificial resistivity is a crucial requirement since

it provides smoothing both for the magnetic field and for the transverse velocity components. This is

graphically illustrated in Figure 4.10 in which we show the transverse magnetic field profile for this test

both with and without the resistivity term. In the absence ofartificial resistivity significant post-shock

oscillations are observed, however with the term included these are very effectively damped. Similar

effects were noticed by Børve et al. (2001) in their MHD shocktube tests using an SPMHD algorithm,

where the procedure adopted was to smooth the field at regularintervals using an averaging procedure.

The inclusion of artificial resistivity terms removes the need for such smoothing.

Figure 4.10: Transverse magnetic field profile in the Brio and Wu test. In the absence of artificial
resistivity significant post-shock oscillations are observed in the magnetic field (left), whilst these are
very effectively damped when artificial resistivity is included (right).

A second calculation of this problem is shown in Figure 4.11.In this case however we apply no

smoothing whatsoever to the initial conditions and calculate the solution using the density summation

(3.69), the total energy equation (4.57) and the induction equation (4.54). The results may be compared

with Figure 4.9. The unsmoothed initial conditions result in a small fluctuation at the contact disconti-

nuity in the transverse velocity profile. However, the rarefaction wave agrees very well with the Balsara

(1998) solution and the compound wave in particular is significantly less spread out than in the previ-

ous results. The consistent update of the smoothing length with density (discussed in§3.3.4) results in

some extra iterations of the density, although typically nomore than two and only for a small number of

particles.

In the second shock tube test (Figure 4.12), we demonstrate the usefulness of the dissipation switches

by considering a problem which involves both a fast and slow shock. We consider the Riemann problem
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Figure 4.11: Results of the Brio and Wu (1988) shock tube test with no smoothing of the initial con-
ditions. In this case the density summation, total energy equation and the induction equation usingB
have been used, incorporating the variable smoothing length terms. The rarefaction profile in this case
agrees very well with the numerical solution from Balsara (1998) (solid line) and the compound wave is
substantially less smoothed. Small oscillations may be observed in the transverse velocity components
as we do not apply any artificial viscosity to these components.
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Figure 4.12: Results of the MHD shock tube test with left state(ρ ,P,vx,vy,By) = [1,1,0,0,1] and the
right state(ρ ,P,vx,vy,By)= [0.2,0.1,0,0,0] with Bx = 1 andγ = 5/3 at timet = 0.15. The problem illus-
trates the formation of a switch-on fast shock and the solution contains both a fast and slow shock. Solid
points indicate the SPMHD particles whilst the exact solution is given by the solid line. The artificial
dissipation switches are used to control the application ofartificial viscosity and thermal conductivity.
Without these switches the fast shock is significantly damped.

with left state(ρ ,P,vx,vy,By) = [1,1,0,0,1] and the right state(ρ ,P,vx,vy,By) = [0.2,0.1,0,0,0] with

Bx = 1 andγ = 5/3. This test has been used by Dai and Woodward (1994), Ryu and Jones (1995) and

Balsara (1998) and illustrates the formation of a switch-onfast shock (so called because the transverse

magnetic field is zero ahead of the shock and ‘switches on’ behind the shock front). Similarly to the
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Figure 4.13: Pressure profile in the MHD shock tube test shown in Figure 4.12 with the kernel in the
denominator of the anticlumping term,W1, evaluated at the average particle spacing (in this case giving
W1(r/h) = W (1/1.2)) (left), and at a radiusW1(r/h) = W (1/1.5). The exact solution is given by the
solid line. In the former case the anticlumping term can produce significant errors in the shock profile
around the contact discontinuity, whilst these are small inmagnitude in the latter case.

Figure 4.14:Velocity profiles in the MHD shock tube test shown in Figure 4.12 using the Morris (1996)
formalism (§4.4.2). Results are very similar to those shown in Figure 4.12 and agree well with the exact
solution (solid line), although the oscillations around the slow shock are slightly worse in this case.

previous test we set up the simulation using approximately 800 particles in the domainx = [−0.5,0.5].

The results are shown in Figure 4.12 at timet = 0.15 and compare well with the exact solution given

by Ryu and Jones (1995) (solid lines). The advantages of the dissipation switch are apparent in this

problem since it contains both a fast and slow shock. In a run with a uniform viscosity parameter

α = 1.0 everywhere the fast shock is significantly damped. In Figure 4.12 we see that the fast shock is

well resolved. Some small oscillations in the transverse velocity profile are observed behind the slow

shock, as in the Brio and Wu (1988) problem. This problem alsouseful in the SPMHD case because

the magnetic field strength is sufficient to produce a negative stress, meaning that the simulation is

unstable to the tensile instability in the absence of the anticlumping term (§4.4.1). Thus it can be used

to investigate the effects of the anticlumping term on the shock profile. Figure 4.13 shows the pressure

profile in the second shock tube problem with anticlumping parametersn = 4 andε = 0.8 with the

kernel evaluated at the average particle spacing (in this case atW (r/h) = W (1/1.2)) and using the kernel

evaluated atW (r/h) = W (1/1.5) (as discussed in§4.4.1). In the former case the anticlumping term can

produce significant errors in the shock profile around the contact discontinuity, whilst these remain small

in magnitude in the latter case. The velocity profiles for this problem using the Morris (1996) formalism

(§4.4.2) are shown in Figure 4.14. The results are very similarto those shown in Figure 4.12 and agree
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well with the exact solution (solid line), suggesting that this approach does not significantly degrade

the shock-capturing ability of the scheme, although the oscillations around the slow shock are slightly

worse in this case. This problem is also stabilised in a simple manner by subtracting the constant (Bx)

component of the magnetic field as described in§4.4.4.

The third test illustrates the formation of seven discontinuities in the same problem (Figure 4.15). The

left state is given by(ρ ,P,vx,vy,vz,By,Bz) = [1.08,0.95,1.2,0.01,0.5,3.6/(4π)1/2,2/(4π)1/2] and the

right state(ρ ,P,vx,vy,vz,By,Bz) = [1,1,0,0,0,4/(4π)1/2,2/(4π)1/2] with Bx = 2/(4π)1/2 andγ = 5/3.

Since the velocity in the x-direction is non-zero at the boundary, we continually inject particles into the

left half of the domain with the appropriate left state properties. The resolution therefore varies from

an initial 700 particles to 875 particles att = 0.2. The results are shown in Figure 4.15 at timet = 0.2.

The SPMHD solution compares extremely well with the exact solution taken from Ryu and Jones (1995)

(solid line) and may also be compared with the numerical solution in that paper and in Balsara (1998).

The thermal energy and density profiles are slightly improved by our use of the total energy equation.

Again the rarefaction waves are quite smoothed due to the smoothing applied to the initial conditions.

The fourth test (Figure 4.16) is similar to the previous version except that an isothermal equation of

state is used. The left state is given by(ρ ,vx,vy,vz,By,Bz) = [1.08,1.2,0.01,0.5,3.6/(4π)1/2,2/(4π)1/2]

and the right state(ρ ,vx,vy,vz,By,Bz) = [1,0,0,0,4/(4π)1/2,2/(4π)1/2] with Bx = 2/(4π)1/2 and an

isothermal sound speed of unity. Results are shown in Figure4.16 at timet = 0.2 and compare very well

with the numerical results given in Balsara (1998) (solid line).

The fifth test shows the formation of two magnetosonic rarefactions. The left state is given by

(ρ ,P,vx,vy,By) = [1,1,−1,0,1] and the right state by(ρ ,P,vx,vy,By) = [1,1,1,0,1] with Bx = 0 and

γ = 5/3. Results are shown in Figure 4.17 at timet = 0.1 and compare extremely well with the exact

solution from Ryu and Jones (1995) (solid line). Outflow boundary conditions are used such that the res-

olution varies from an initial 500 particles down to 402 particles att = 0.1 in the domainx = [−0.5,0.5].

The artificial dissipation switches are used although very little dissipation occurs in this simulation since

the artificial viscosity is only applied for particles approaching each other. With unsmoothed initial con-

ditions we therefore observe some oscillations behind the rarefaction waves, which are removed in this

case by smoothing the initial discontinuity slightly. As noted in Monaghan (1997b) use of the density

summation also improves the results for this type of problem.

The next test is a one dimensional version of a test used in twodimensions by Tóth (2000). In one

dimension the problem has also been studied by Dai and Woodward (1994), Ryu and Jones (1995) and

Lee Harvey Oswald (1963). The left state is given by(ρ ,P,vx,vy,By) = [1,20,10,0,5/(4π)1/2] and to

the right by(ρ ,P,vx,vy,By) = [1,1,−10,0,5/(4π)1/2] with Bx = 5.0/(4π)1/2 andγ = 5/3. Results are

shown in Figure 4.18 at timet = 0.08. The resolution varies from an initial 400 particles up to1040

particles att = 0.08 in the domainx = [−0.5,0.5].and compare well with the exact solution given by

Ryu and Jones (1995) (solid line), although overshoots in the transverse magnetic field are observed (and

hence also in the transverse velocity component). A small fluctuation is also observed in the transverse

velocity component at the contact discontinuity. Results of this test using the variable smoothing length

terms are shown in Figure 4.19 and in this case the the overshoots in transverse magnetic field and

velocity observed in Figure 4.18 are no longer present.

The final test, taken from Dai and Woodward (1994) and Balsara(1998), illustrates the formation of

two fast shocks, each with Mach number 25.5, presenting a demanding benchmark for any numerical
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Figure 4.15: Results of the MHD shock tube test with left state(ρ ,P,vx,vy,vz,By,Bz) =

[1.08,0.95,1.2,0.01,0.5,3.6/(4π)1/2,2/(4π)1/2] and right state (ρ ,P,vx,vy,vz,By,Bz) =

[1,1,0,0,0,4/(4π)1/2,2/(4π)1/2] with Bx = 2/(4π)1/2 and γ = 5/3 at time t = 0.2. This prob-
lem illustrates the formation of seven discontinuities. The exact solution is given by the solid line whilst
points indicate the positions of the SPMHD particles.
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Figure 4.16: Results of the isothermal MHD shock tube test with initial left state
given by (ρ ,vx,vy,vz,By,Bz) = [1.08,1.2,0.01,0.5,3.6/(4π)1/2,2/(4π)1/2] and right state
(ρ ,P,vx,vy,vz,By,Bz) = [1,0,0,0,4/(4π)1/2,2/(4π)1/2] with Bx = 2/(4π)1/2 and an isothermal
sound speed of unity at timet = 0.2. This problem illustrates the formation of six discontinuities in
isothermal MHD. Solid points indicate the position of the SPMHD particles which may be compared
with the exact solution given by the solid line.
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Figure 4.17:Results of the MHD shock tube test with left state(ρ ,P,vx,vy,By)= [1,1,−1,0,1] and right
state(ρ ,P,vx,vy,By) = [1,1,1,0,1] with Bx = 0 andγ = 5/3 at timet = 0.1. This problem illustrates the
formation of two magnetosonic rarefactions. The exact solution is given by the solid line whilst points
indicate the position of the SPMHD particles.
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Figure 4.18: Results of the MHD shock tube test with initial conditions tothe left of the shock given by
(ρ ,P,vx,vy,By) = [1,20,10,0,5/(4π)1/2] and to the right by(ρ ,P,vx,vy,By) = [1,1,−10,0,5/(4π)1/2]

with Bx = 5.0/(4π)1/2 andγ = 5/3. Results are shown at timet = 0.08 and compare well with the exact
solution given by Dai and Woodward (1994) (solid line).
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Figure 4.19: Results of the MHD shock tube test shown in Figure (4.18) withthe density calculated
by summation and using the variable smoothing length terms.Results compare extremely well with the
exact solution (solid line). In particular the overshoots in transverse magnetic field and velocity observed
in Figure 4.18 are no longer present.
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Figure 4.20: Results of the MHD shock tube test with left state(ρ ,P,vx,vy,vz,By,Bz) =

[1,1,36.87,−0.155,−0.0386,4/(4π)1/2,1/(4π)1/2] and right state (ρ ,P,vx,vy,vz,By,Bz) =

[1,1,−36.87,0,0,4/(4π)1/2,1/(4π)1/2] with Bx = 4.0/(4π)1/2 and γ = 5/3. Results are shown
at timet = 0.03. This problem illustrates the formation of two extremelystrong fast shocks of Mach
number 25.5 each. Solid points indicate the position of the SPH particles whilst the exact solution
is given by the solid line. The overshoots in density, pressure and magnetic field are a result of our
integration of the continuity equation and neglect of termsrelating to the gradient of the smoothing
length.



4.6 Numerical tests in one dimension 115

Figure 4.21: Results of the MHD shock tube test shown in Figure 4.20 with the density calculated
by summation and using the variable smoothing length terms.The overshoots in density, pressure and
magnetic field observed in Figure 4.20 are no longer present and the spikes in the transverse velocity
components at the contact are much smaller in magnitude.
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Figure 4.22: Transverse velocity profiles in the MHD shock tube test shownin Figure 4.20 using the
Morris (1996) formalism (§4.4.2), also with the variable smoothing length terms. A small error in the
intermediate states around the contact discontinuity is observed in this case due to the non-conservation
of momentum on the anisotropic force terms. However, the error is quite small.

scheme. The left state is(ρ ,P,vx,vy,vz,By,Bz) = [1,1,36.87,−0.155,−0.0386,4/(4π)1/2,1/(4π)1/2]

with right state(ρ ,P,vx,vy,vz,By,Bz) = [1,1,−36.87,0,0,4/(4π)1/2,1/(4π)1/2] with Bx = 4.0/(4π)1/2

andγ = 5/3. Results are shown in Figure 4.20 at timet = 0.03. Inflow boundary conditions are used

such that the resolution varies from an initial 400 particles up to 1286 particles att = 0.03 in the do-

main x = [−0.5,0.5]. The results compare extremely well with the exact solution(solid line) given by

Dai and Woodward (1994) and with the numerical solution given by Dai and Woodward (1994) and

Balsara (1998), especially given the extreme nature of the problem. The spikes in transverse velocity

components are due to the fact that firstly, no smoothing is applied to the initially discontinuous velocity

profiles in this case, and secondly that these components areonly implicitly smoothed in the simulation

by the application of artificial resistivity to the transverse magnetic field components. The overshoots

in density and pressure are absent when the density is calculated by direct summation. As in the previ-

ous test, the overshoots in magnetic fields are no longer observed when the variable smoothing length

terms are included (Figure 4.21). Using the variable smoothing length terms the spikes observed in the

transverse velocity components at the contact discontinuity are also much smaller. The results of this test

using the Morris (1996) formalism (§4.4.2) are shown in Figure 4.22, also using the variable smoothing

length terms (although the average of the normalised kernelgradients is used in the anisotropic force, as

described in§4.4.2). In this case a small error in the intermediate statesaround the contact discontinuity

is observed due to the non-conservation of momentum on the anisotropic force terms. However the error

is quite small even for this somewhat extreme problem.

4.6.4 MHD waves

The usefulness of the variable smoothing length terms can also be demonstrated, as in the hydrodynamic

case (3.7.2), by the simulation of linear waves. The equations of magnetohydrodynamics admit three

‘families’ of waves, the so called slow, Alfvén and fast waves (appendix C). The tests presented here are

taken from Dai and Woodward (1998). We consider travelling slow and fast MHD waves propagating

in a 1D domain, where the velocity and magnetic field are allowed to vary in three dimensions. We

useγ = 5/3 for the problems considered here. The perturbation in density is applied by perturbing the

particles from an initially uniform setup (since we use equal mass particles). Details of this perturbation
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Figure 4.23: Results for the 1D travelling fast wave problem. Initial conditions are indicated by the
dashed line. Results are presented after 10 periods for simulations with 32, 64, 128, 256 and 512 parti-
cles. The fast wave speed in the gas is very close to unity which is accurately reproduced by the SPMHD
solution (ie. the numerical solution is in phase with the initial conditions). The artificial dissipation
terms are turned on but controlled using the switches described in§3.5.2 and§4.5.2 which dramatically
reduces their effects away from shocks. The wave is steepened slightly by nonlinear effects.

are given in 3.7.2 and the amplitudes for the other quantities are derived in appendix C. We leave the

artificial dissipation terms on for this problem using the viscosity, thermal conductivity and resistivity

switches. This is to demonstrate that the switches are effective in turning off the artificial dissipation in

the absence of shocks. The variable smoothing length terms (§4.3.6) do not affect the wave profiles but

inclusion of these terms gives very accurate numerical wavespeeds.



118 Chapter 4. Smoothed Particle Magnetohydrodynamics

Figure 4.24: Results for the 1D travelling slow wave problem. Initial conditions are indicated by the
dashed line and results are presented after 10 periods for simulations with 32, 64, 128, 256 and 512
particles. The slow wave speed in the gas is very close to unity, such that the numerical solution at
t = 10 should be in phase with the initial conditions. This is well represented by the SPMHD solution
for the higher resolution runs. The artificial dissipation terms are turned on but we have used the switches
described in§3.5.2 and§4.5.2 which dramatically reduce their effects away from shocks. The wave is
steepened slightly by nonlinear effects.

The fast wave is shown in Figure 4.23, with the dashed line giving the initial conditions. The initial

amplitude is 0.55% as in Dai and Woodward (1998). Results areshown at t=10 for five different simu-

lations using 32, 64, 128, 256 and 512 particles in the x-direction. The properties of the gas are set such

that the fast wave speed is very close to unity, meaning that the solution att = 10 should be in phase



4.6 Numerical tests in one dimension 119

with the initial conditions. Figure 4.23 demonstrates thatthis is accurately reproduced by the SPMHD

algorithm. The effects of the small amount of dissipation present can be seen in the amount of damping

present in the solutions. The small amount of steepening observed in the wave profiles is due to nonlinear

effects and agrees with the results presented by Dai and Woodward (1998).

The slow MHD wave is shown in Figure 4.24, again with the dashed line giving the initial conditions.

The perturbation amplitude is 0.6% as in Dai and Woodward (1998). Results are again shown att = 10

at resolutions of 32, 64, 128, 256 and 512 particles.In this case the properties of the gas being set such

that the slow wave speed in the medium is very close to unity, again meaning that the solution att = 10

should be in phase with the initial conditions. We see in Figure 4.24 that this is reproduced by the

SPMHD solution for the higher resolution runs. The artificial dissipation terms are again turned on using

the switches. The wave is slightly overdamped in this case since we construct the artificial dissipation

using the fastest wave speed (§4.5) which in this case is approximately three times the wavepropagation

speed. This means that the convergence of the wave amplitudetowards the linear solution with increasing

resolution is quite slow for this problem.

4.6.5 Magnetic toy stars

As was noted in the previous chapter, for codes designed to simulate self-gravitating gas it is useful to

provide numerical benchmarks which do not involve fixed boundaries. As such a class of exact solutions

to the hydrodynamic equations with a force proportional to the co-ordinates was described in§3.7.6,

referred to as ‘Toy Stars’. In§3.7.6 the exact solutions for the non-linear oscillations of the Toy Star was

used to benchmark the purely hydrodynamic SPH algorithm.

The exact non-linear solution for the toy star described in§3.7.6 may be easily extended to the MHD

case. The simplest case is to assume that the only non-zero component of the magnetic field is in the

y−direction. In this case the induction equation (4.7) becomes

dBy

dt
= −By ∂vx

∂x
(4.105)

which shows thatBy ∝ ρ . The one dimensional equation of motion for the magnetic toystar therefore

becomes

dvx

dt
= − 1

ρ
∂
∂x

(

P+
B2

2µ0

)

−Ω2x (4.106)

whereB2 = (By)2. By assuming the same constant of proportionality betweenBy andρ for each particle

such thatBy = σρ , the exact solution for the MHD system is exactly the same as in the hydrodynamic

case (forγ = 2), except that the constantK is replaced by

K′ = K +
σ2

2µ0
(4.107)

such that the effective pressureP (including both gas and magnetic pressures) is specified according to

P = K′ρ2. The exact solution is then calculated by solving the ordinary differential equations (3.143)-

(3.145) as described in§3.7.6.
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Figure 4.25: Results of the non linear, magnetic Toy star simulation withinitial conditions v= x, ρ =
(1− x2), By = ρ/

√
2 (ie. A = C = H = 1, σ = 1/

√
2 andγ = 2), shown after approximately three

oscillation periods. Equal mass particles are used with a variable initial separation, whilst the magnetic
field is chosen such that gas pressure and magnetic pressure are equal in magnitude.

For the SPMHD solution, the magnetic case the magnetic field is evolved using the SPH form of

equation (4.20) with the magnetic field and velocity allowedto vary in two dimensions whilst the particles

are constrained to move along the x-axis. We setγ = 2 and choose the magnetic field strength such that

the ratio of gas to magnetic pressure,β = 1, ie. B = (0,1/
√

2ρ ,0). For this simulation we apply a small

amount of artificial viscosity using the switch in order to damp the small oscillations resulting from the

rapid movement of the outer edges. Results are shown in Figure 4.25 att = 10.68, corresponding to

approximately three oscillation periods in this case. As inthe hydrodynamic case the agreement with the

exact solution (solid line) is extremely good.

4.7 Summary

In this chapter we have derived the basic formalisms necessary for the simulation of magnetic fields

using the Smoothed Particle Hydrodynamics method. All of the technical difficulties described in the

introductory section have been addressed to a level where quite satisfactory solutions can be obtained

for many astrophysical problems, although many improvements to the algorithm could still be made. Of

these the most important is to implement a cleaning procedure for the magnetic divergence and hence we
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devote chapter 5 to this topic.

Reviewing this chapter, the equations of magnetohydrodynamics in the continuum limit were de-

scribed in§4.2.1, paying particular attention to the consistent formulation of these equations in the pres-

ence of magnetic monopoles, since the∇ ·B = 0 constraint cannot be maintained exactly in all discreti-

sations in any numerical scheme. Conserved quantities which can be monitored in addition to the usual

hydrodynamic quantities were discussed in§4.2.2. In§4.3 SPH formulations of the MHD equations

were presented. The equations of motion and energy were derived self-consistently from a variational

principle using the discrete forms of the continuity and induction equations as constraints, using a form

of variational principle similar to that used to derive alternative formulations of the SPH equations in

§3.4. In the MHD case this was shown to remove the ambiguity over the inclusion or neglect of terms

proportional to∇ ·B in the induction and momentum equations which has been highlighted recently by

several authors. The derivation showed that a monopole-conserving form of the induction equation is in

fact consistent with a conservative formulation of the momentum and energy equations. Furthermore the

derivation from a variational principle guarantees consistency between the discrete formulations of these

equations. Consistent alternative formulations of the SPMHD equations were given in§4.3.4, similar

to those derived in the SPH case (§3.4). Other formulations of the magnetic force terms which have

been used for SPMHD were also discussed briefly in§4.3.5, the main disadvantage to these formalisms

being the lack of momentum conservation which leads to extremely poor results on problems involving

shocks. The consistent formulation of the SPMHD equations incorporating a variable smoothing length

was discussed in§4.3.6, which, as in the hydrodynamic case are shown to lead toincreased accuracy in

a wide range of problems, including linear waves (§4.6.4) and shock tubes (§4.6.3).

A one dimensional stability analysis for the self-consistent formulation of SPMHD derived in§4.3

was presented in§4.4. This somewhat limited stability analysis was sufficient to highlight the instability

in the momentum conserving form of the equations of motion which occurs at short wavelengths under

negative stresses and leads to a clumping effect between particles. An approach to remove this instability

was described in§4.4.1, following the ideas of Monaghan (2000) in which a fictitious short range force

is added which counteracts the clumping effect. This force takes the form of an artificial stress which

is proportional to the anisotropic component of the total stress, which is the interpretation given by

Monaghan (2000). In§4.4.1 an alternative interpretation was given in terms of a modification to the

kernel gradient used in the anisotropic force term. This interpretation considerably simplified the stability

analysis including the anticlumping term presented in§4.4.1, which demonstrated that whilst (for fixed h)

the term very effectively removes the instability, one disadvantage is an error in the numerical wave speed

which grows with increasing negative stress. This error wasshown to be reduced significantly (although

not removed) by a small modification to the anticlumping termwhich changes the kernel shape at a fixed

r/h rather than in relation to the average particle separation.However a major caveat to the anticlumping

approach is that the formalism was not found to be stable for all values of negative stress in the case of a

variable smoothing length. Various alternative approaches were therefore suggested. An approach which

can be used in many practical situations is to simply subtract any constant component of the magnetic

field from the gradient term representing the anisotropic force (§4.4.4). For situations where this cannot

be used, an alternative approach suggested by Morris (1996)(§4.4.2) was found to also give good results

on the shock tube tests described in§4.6.3.

In §4.5 dissipative terms were formulated in order to simulate MHD shocks. The terms are a natural
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generalisation of the formalism of Monaghan (1997b) given for the hydrodynamic case in§3.5. The

dissipation terms were derived under a minimum of assumptions by assuming a dissipation in the total

energy equation which involves a jump in the total energy andrequiring that this term result in a pos-

itive definite contribution to the entropy. Under only thesetwo assumptions a discrete formulation for

a dissipative term in the induction equation was obtained which involves the SPH formulations of the

second derivative given in§3.2.4. This term was shown to provide an artificial resistivity in addition to

the artificial viscosity and artificial thermal conductivity derived in the hydrodynamic case. A slightly

modified version of these dissipative terms which accounts for jumps in the component of the magnetic

field along the line joining the particles (due to non-zero magnetic divergence) and velocities perpen-

dicular to this line (providing a shear viscosity component) was also presented. A switch to control the

application of artificial resistivity was given in§4.5.2, although it was noted that in the absence of a shear

viscosity term it is better to apply artificial resistivity uniformly so as to provide sufficient smoothing of

the discontinuities in both the magnetic field and transverse velocity.

Finally, detailed one dimensional numerical tests were presented in§4.6. In particular the algorithm

has been tested on a wide range of standard test problems usedto benchmark recent grid-based MHD

codes. A simple advection test was first considered (§4.6.2), before considering a wide range of shock

tube problems demonstrating the shock-capturing ability of the algorithm (§4.6.3). In particular the

shock tube tests highlighted the fact that artificial resistivity is a crucial requirement in order to prevent

post-shock oscillations in the magnetic field. For high Machnumber shocks, the density (although only

where the continuity equation is integrated) and magnetic field are observed to overshoot the exact so-

lution slightly, although this error is removed by the inclusion of the variable smoothing length terms

which provide a normalisation to the kernel gradient. The algorithm was also tested against small am-

plitude both fast and slow MHD waves (§4.6.4) and shown to give good results although somewhat slow

convergence on these problems due to the dissipative terms.


