“I never satisfy myself until | can make a mechanical moded tting. If

I can make a mechanical model | can understand it. As long aanat

make a mechanical model all the way through | cannot undedsgand that
is why | cannot get the electromagnetic theory ..... But | ttaminderstand
light as well as | can, without introducing things that we arstand even
less of. That is why | take plain dynamics. | can get a modellainp
dynamics; | cannot in electromagnetics.”

LORD KELVIN, BALTIMORE LECTURES 1904

Smoothed Particle Magnetohydrodynamics

4.1 Introduction

Given the suitability of SPH for studies of star formationisi unsurprising that magnetic field effects,
which are known to be important or even crucial in the stamfation process, were incorporated into
SPH from the outset (Gingold and Monaghan, 1977). The aic in this case was to static mag-
netic polytropes where good agreement was found betweeBRkksolution and perturbation calcula-
tions. Dynamical problems were considered by Phillips 88nd applied to star formation problems
(Phillips, 1982, 1983a, 1985, 1986a,b; Benz, 1984; Pkilipd Monaghan, 1985). In the latter it was
shown that when the conservation form of the equations wet ais instability developed which took the
form of SPH particles clumping. SPH blast waves in a magme@dium were studied by Stellingwerf

and Peterkin (1990, 1994). Habe et al. (1991), Murray etl@96) and Mac Low et al. (1999) used a
form of the SPH equations where the magnetic fields were eddat a grid and interpolated to the SPH
particles.

Meglicki (1994, 1995) and Meglicki et al. (1995) used a fotation of ‘Smoothed Particle Mag-
netohydrodynamics’ (SPMHD) that uses a non-conservaflve §) force, which is always stable and
guarantees that the magnetic force is exactly perpenditulthe magnetic field. This formalism was
also used by Byleveld and Pongracic (1996) and more recbgti@erqueira and de Gouveia Dal Pino
(2001, and references therein) and Hosking (2002), howtreenon-conservation of momentum leads
to poor performance on shock-type problems. A conservétiva of SPMHD has been used by Dolag
et al. (1999) and by Marinho et al. (2001) since the magnedld fn their simulations remained in the
regime where the instability does not appear. Morris (1$2@)gested using a compromise between the
conservative (tensor) force and the B formalism. Non-ideal MHD terms in SPH were also considered
by Morris (1996), who suggested using resistive terms tdrobthe divergence of the magnetic field
and by Hosking and Whitworth (2004), who considered thecigfef ambipolar diffusion via a two-fluid
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74 Chapter 4. Smoothed Particle Magnetohydrodynamics

model. The simulation of MHD shocks with SPH has been ingastid by Bgrve (2001) (see Bgrve
et al. 2001), where excellent results were obtained by geddly invoking a regularization procedure
on the SPH particle distribution and by explicitly subtiagtthe effect of any non-zero divergence from
the conservative formalism.

However, the simplicity with which the MHD equations can betien down belies the fact that there
are a number of technical difficulties involved in their g@n, which have not been fully addressed in
an SPH context. The first technical difficulty with MHD simtias is that the magnetic field comes
with the constraintd-B = 0. As a first level treatment in this chapter, we follow the ragh of Jan-
hunen (2000) in formulating the MHD equations from the pigamihat non zerd] - B terms may be
generated but that a consistent treatment of such termsbythnerical method will reduce the error as-
sociated with their presence. Consistency is ensuredsrcise by deriving the SPMHD equations from
a variational principle, using the discrete forms of thetoarity and induction equations to constrain
the discrete formulations of the momentum and energy empusmtiFurther discussion of this and other
approaches to maintaining the divergence constraint inPath &ntext is deferred to Chapter 5.

A further technical difficulty peculiar to SPH is that whenanservative force is used the SPH parti-
cles tend to clump in pairs in the presence of tension. Thsfiwst noticed by Phillips and Monaghan
(1985) and re-discovered by researchers applying SPHdtiefeacture problems (see the references in
Monaghan 2000). Several remedies have been proposed (&kg.ebal. 1997; Bonet and Kulasegaram
2000, 2001) but they all either involve a significant incee&s computational expense or cannot be
applied where the particle configuration changes signifigzaifihe nature of this instability was system-
atically investigated in an MHD context by Morris (1996),tviseveral solutions proposed. A further
remedy for the tensile instability which can be easily aggblio astrophysical problems has been recently
proposed by Monaghan (2000). The idea is to add a small atifitess which prevents particles from
clumping in the presence of a negative stress. This terméws shown to work well in elastic dynamics
simulations (Gray et al., 2001) and we apply it here to the MtdBe.

The third technical difficulty is that shocks in MHD are muchnacomplex than their hydrodynamic
counterparts. This is due to the additional wave types wbarhresult in a wide range of discontinuous
structures, each of which must be treated appropriatelyhbynumerical method. We approach this
problem by formulating artificial dissipation terms appiafe to the MHD case (the major difference
to the hydrodynamic case being the introduction of artifi@aistivity at discontinuities in the magnetic
field). These dissipative terms are derived in such a maragrthe contribution to the entropy and
thermal energy from viscosity, thermal conductivity andanad resistivity is guaranteed to be positive
definite.

The chapter is organised as follows: 4.2 we give the continuum form of the MHD equations
and in§4.3 the SPH form of these equations, deriving the SPMHD émpmiself-consistently from a
variational principle §4.3.2). Consistent alternative formulations, similarfioge derived in the SPH
case ¢3.4) are discussed i§4.3.4 whilst older formulations are also reviewed.B8.5). In§4.3.6 a
variational principle is again used to extend the SPMHD #qna to the case where the smoothing
length is regarded as a function of local particle densitybiity considerations are discussed§h4
with the implementation of the instability correction of kghan (2000) presentedjd.4.1 as well as
several alternative methods. Dissipation terms apprapftst MHD shocks analogous to those derived in
the SPH case;8.5) are given irg4.5. Finally, in§4.6 we present the results of extensive numerical tests
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for one dimensional problems including a range of shock prioblems §4.6.3), linear waves;é.6.4)
and magnetic Toy Star§4.6.5). The extension of the method to multidimensionabfenms is presented
in Chapter 5.

4.2 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a one-fluid approximationhte equations of plasma physics, where
the effects of static electric charge are assumed to begiggliand the non-relativistic limit is gener-

ally taken (relativistic MHD involves dropping the lattessmumption, whilst retaining the former). The
derivation of the MHD equations is given in many standardiiesks and we simply state the results
here.

4.2.1 Continuum equations

The continuity equation for the density remains the sama #i non-magnetic case, ie.

dp
E—FPD-V—O, (4.2)

implying the conservation of mass. The acceleration eguat the absence of dissipation may be
expressed in conservative form as the gradient of a synunetrgor, that is

dvi 198!

- = 4.2

d pox’ (4.2)

where the stresS! in the case of ideal MHD is defined by

Si— _pgiy - <BiBj—}Bzé”>. (4.3)
Ho 2

whereB!' is theith component of the magnetic field apg is the permittivity of free space. In Sl units
Uo = 411/10’. From the tensor formulation the magnetic force is eastigrjsreted in terms of an isotropic
force due to gradients in the magnetic pressure and an eopsoftension) force resisting motion which
is perpendicular to magnetic field lines. In vector nota(:2) is given by

dv OpP JxB BO-B
—=——t + :
dt P P Hop

(4.4)

whereJ = [0 x B/ is the magnetic current density. Under the assumptidn-& = O (ie. no magnetic
monopoles), the force becomes

dv 0P JxB
At (4.5)

dt P P

The assumption of zero magnetic divergence is valid in th@imoum case (making (4.4) and (4.5)
equivalent) but requires careful consideration in a nucaérgontext since the divergence is not guar-
anteed to be zero exactly. Discrete formulations based @rdhservative form (4.4) can be made to

conserve momentum exactly, whilst formulations based emtin-conservative form (4.5) can be made
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to guarantee that the magnetic force is exactly perperaticalthe magnetic field. We use (4.4) since

exact conservation of momentum is required in order to atelyr simulate shocks, although older for-

malisms based on (4.5) are discussed4r8.5. The momentum conserving formulation (4.4) results
naturally in the derivation of the SPMHD equations from aatimnal principle given ir$4.3.2.

The equation for the update of the magnetic field is the indnotquation. The standard form is
derived from Maxwell's equations neglecting displacemeuntrents and a generalised form of Ohm'’s
law. We follow Janhunen (2000) and Dellar (2001) in formimigtthe induction equations so that it is
consistent even ifl- B does not vanish. The induction equation then takes the form
oB

Sp TOx (vxB)=-0x(nd)—v(0-B), (4.6)

where the last term is the monopole current (Janhunen, ZB8IGr, 2001) and) is the magnetic diffu-
sivity 1/(o o) whereo is the conductivity. Ideal MHD corresponds to the limit ofiitite conductivity
n = 0. Using the Lagrangian time derivative (4.6) can be writien

%—?:—B(D-V)JF(B-D)V—DX(UJ). (4.7)

Taking the divergence of this equation, we find that monapelmlve according to

17}
E(D-B)JFD-(VD-B):O, (4.8)

which has the same form as the continuity equation for theitleand therefore implies that the total
volume integral of - B is conserved (and therefore that the tataface integral of the magnetic flux is
conserved which is the important physical quantity, rathan thevolume integral which is conserved
when the induction equation is written in a so-called ‘comative’ form). Note also that in this form the

induction equation can be written as

30)-( oo

which demonstrates that in ideal MHD the flux per unit m&s4 is passively advected by the flow and
therefore that the magnetic field lines remain ‘frozen’ itite fluid.

The total energy per unit mass is given by

1, B2
e=_-v-+u+ , 4.10
2 2lop (4.10)
whereu is the thermal energy per unit mass. The total energyolves according to
de 19(Sivi) 1
— = . —0-B . 4.11
it p ¥ p [Bx(nJ)] (4.11)

Alternatively the thermal energy equation can be used, lwitiay be derived either from (4.10) giving

2
du de dv d( B >’ 4.12)

dt dt Udt dt \ 2uop
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or using the first law of thermodynamics. Either way, the itesy equation is given by

du P

A (4.13)
which is the same as in the hydrodynamic case. The equatiésm desed by an appropriate equation of
state, which for a perfect gas is given by

P=(y-1pu (4.1

4.2.2 Conserved quantities

In order to monitor the quality of a simulation, it is usefallie able to measure the accuracy to which
the algorithm conserves integrals of the motion. Aside ftbenusual conserved quantities of mass, mo-
mentum, angular momentum, energy and centre of mass, badelidfonal quantities can be measured

in MHD. A list of such quantities can be derived using Hamiltm techniques and is given by (e.g.)

Morrison and Hazeltine (1984). The helicity,

/ (A-B)dV, (4.15)

whereB = [0 x A, is a measure of the linkage of magnetic field lines (expngstie fact that magnetic
field lines which are initially linked cannot become unlidkie the absence of dissipative terms). This
quantity can only be usefully measured in simulations whghlicitly use the vector potential. A
similar invariant is the cross helicity

/(B-V)dV~ %%%‘Vm (4.16)

which measures the mutual linkage of magnetic field and xdimes. The conservation of the cross
helicity is a result of the magnetic field lines being frozetoithe fluid. Measurement of the conservation
of this quantity in a numerical simulation therefore prasdcn estimate of the degree of slippage of the
magnetic field lines through the fluid. The volume integralhaf magnetic flux

Bp
BdV~§ my— 4.17

is also conserved across the simulation volume, providatthie flux is normal to (or zero at) the bound-
ary of the integration volume. However the conservation X fh a volume sense is not particularly
important physically (Janhunen, 2000). More importanhét the surface integral of the flux

/B-ds (4.18)

should be conserved. Using the divergence theorem thiesymonds to the conservation of the volume
integral

/(D-B)de %mo%. (4.19)
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In the continuum case this conservation is exact since treegince of the magnetic field is zero. How-
ever in a numerical scheme with non-zero magnetic dive@onservation of this quantity depends
on the formulation of the induction equation with respecth® terms proportional tol- B. Our induc-
tion equation (4.7) is formulated such that, even with nereZ]- B this quantity remains conserved
(although this may differ slightly in the discrete equatiprwhereas (4.17) will only be approximately
conserved.

There is also a conserved quantity which is the MHD analodubeocirculation (Bekenstein and
Oron, 2000; Kuznetsov and Ruban, 2000), although the palysiterpretation is somewhat obscure.
It has been shown that SPH conserves an approximate verstbe oirculation in the hydrodynamic
case (Monaghan and Price, 2001), related to the invariarbe equations to the relabelling of particles
around a closed loop due to the frozen-in vorticity field (Sah, 1988). A similar, though more restricted
relabelling symmetry holds in the MHD case (in that the p#t around the loop must also be on the
same field line) and it may therefore be expected that SPMid®rakintains this invariance.

4.3 Smoothed Particle Magnetohydrodynamics

The discrete approximations to (4.1), (4.2), (4.7) andi¥dke found by expressing the spatial deriva-
tives as summations over the particles. As in the SPH ¢&s8,£3.4) we derive the SPMHD equations
of motion and energy from a variational principle, in thiseaising the SPH forms of the continuity and
induction equations as constraints. This ensures consistietween the discrete forms of the SPH equa-
tions (and hence also the continuum forms, removing the guitgiwith regard to terms proportional to
the magnetic divergence) as well as adherence to physicaigles.

4.3.1 Induction equation
The induction equation (4.7) in the absence of dissipatiag be written in SPH form as

dBa 1

at g % My[Ba(Vap - aWan) — Van(Ba - DaWap)]- (4.20)

Alternatively we can use (4.9), written in the form

d /B 1

o (E) = 2 [(B-O)pv—v(B-Op)], (4.21)
with SPH equivalent

d /B 1

In the numerical tests presentedkih6 we find little difference between the two forms (4.20) &h@2)
of the SPH induction equation. Many authors prefer to us22jdas the flux per unit madd/p is a
natural quantity to be carried by Lagrangian particles. réhge some advantage in using (4.20) rather

than (4.22) in one dimensional problems since using (4.88)res that the divergence of the magnetic
field is exactly zero (sinc®, = const). However the divergence errors associated withgugir22)
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in one dimension were found to be negligible for nearly altleé problems considered. Note that a
‘conservative’ form of the induction equation (as used instgrid-based MHD codes, although not a
consistent formulation in the presence of magnetic moreg)alould correspond to a symmetric form
of (4.22) (with the addition of a terml - B), such that (4.17) is conserved but no longer implying the
conservation oB/p along flow lines. An example of such a formalism is used5t8.2 in order to
compare the divergence errors associated with variousulations of the MHD equations.

4.3.2 Equations of motion

Variational principles for MHD have been discussed by mamthars (e.g. Newcomb 1962; Henyey
1982; Oppeneer 1984; Field 1986) and the Lagrangian is diyen

(1 > 1
L= / <2pv pu ZIJOB ) av, (4.23)
which is simply the kinetic minus the potential and magnetiergies. The SPH Lagrangian is therefore

1 Bg} . (4.24)

1
Lsph = % my [EV% — Up(pp, S) — 20 Do

where we have replaced the integral with a summation anddahene elemenpdV with the mass per
SPH particlem. Ideally we would wish to express all the terms in the Lagiamd4.24) in terms of the
particle co-ordinates, which would automatically guaeanthe conservation of momentum and energy
since the equations of motion result from the Euler-Lageaeqguations (e.g. Monaghan and Price 2001).
The density can be written as a function of the particle cioatés using the usual SPH summation
(3.42). The internal energy is regarded as a function of émsitly (via the first law of thermodynamics),
which is in turn a function of the particle co-ordinates. H@r it is not intuitively obvious how the
magnetic fieldB should be related to the particle co-ordinates, or eventthatild be expressed in such
a manner (in the SPH context this would imply an expressiomBfsuch that taking the time derivative
gives (4.20) or (4.22), analogous to (3.42) for the densttyyugh it could be done easily for a plasma
with the electrons and ions described by separate sets op&Ridles. We may however proceed using
the variational principle given for alternative formutats of SPH irt3.4, that is we require

5 / Ldt= / SLdt=0, (4.25)

where we consider variations with respect to a small chamgeiparticle co-ordinated ;. We therefore

have
op +i <%>25p —iB 5<%> (4.26)
s °" 210 \ o " /)| '

The Lagrangian variations in density and magnetic field arengby

o,
dpp

Spp = H Mc(drp—0rc)- oW, (4.27)
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Bp Bp
ol— | = - orp—0re)— -0 , 4.28
(pb> 3 (31— ) 23 - T (4.28)

where we have used (3.43) and (4.22) respectively (notewibadlso recover the following results if
we use (4.20) instead of (4.22)). The perturbations giveasvalzorrespond to SPH forms of the usual
Lagrangian perturbations

&p = —pol-(3r), (4.29)
B Bo
o(—| = -d(or 4.30
() - &om o
Using (4.27), (4.28) and the first law of thermodynamics @i (4.26) and rearranging, we find
B 1 /By
S L DX %)}—%mo[zﬁl () Db\/\woa—aca)]
—>b By, - TWhe(Gpa — } 4.31
S 28 S By DB G @.:31)

where d4, refers to the Kronecker delta. Putting this back into (4.2&ggrating the velocity term by
parts and simplifying (usin@laWap = —OpWha), We obtain

dva ( > 1 (Bg BZ>
my O my — + AN
/{ % p2 pb aab%Zuope% p2) o
B
b

The SPH equations of motion are therefore given by

w1 [(), (3]

dt % PZ a PZ b
whereS/ is the stress tensor (4.3). This form of the magnetic forom teonserves linear momentum
exactly (angular momentum is discussed below) but was stgwehillips and Monaghan (1985) to be
unstable under negative stresses, causing particlesnpdiogether unphysically. The approach taken
in this thesis is to remove the instability by adding a shanige repulsive force which prevents particles

from clumping, rather than sacrificing the conservation ofmentum. The stability issues are discussed
in detail in§4.4.

Note that using (4.33) for the magnetic force no longer gutaes that the magnetic force is per-
pendicular toB, since the force (4.4) contains an additional term propodi to the divergence d.
This non-zero force directed along the line joining the iphas is essentially the physical cause of the
clumping instability. It has been pointed out by Toth (2PB0the context of grid based codes that if the
momentum is conserved then the force will not be exactly gredjzular toB even if - B is zero in a
particular discretisation, since this does not imply thaB is zero in every discretisatidnAn example
of this is in an SPH context is for purely one dimensional Mhhere even thoughl - B = 0 (since

lalthough in a later paper Toth (2002) has shown that botHitions can be met provided that the discretisation in which
the divergence is zero is also the discretisation used ifotice term.
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By =const), the contribution from the divergence term in (4.33)on-zero, resulting in an instability
even in this simple case.

Finally, it should be noted that the conservative form ofrfti@mentum equation was derived using a
non-conservative (in a volume sense, although conseevatia surface integral sense) induction equa-
tion, which agrees with the derivation of the MHD equationghie presence of magnetic monopoles
given by Janhunen (2000) and Dellar (2001). This is disaifsgher in§5.2.1.

Angular momentum conservation

Whilst the conservation of linear momentum is maintainedctly for the formalism derived above,
angular momentum conservation will not be exact since theefbetween the particles is not directed
along the line joining them. Considering two dimensionaltioroin x andy, the change in angular
momentum of the system is given by

dtZraxva - %mamb 0% — O] YapXan + 0L [Vap — Xap)) Fabs (4.34)

whereyap = Ya — Yo, Xab = Xa — Xp and a;f) = S;j/pg + Sg/pg. We have replacedWgy, by r anFap. From
(4.34) we see that the angular momentum will be conserveukiftress is isotropic and proportional
to the identity tensor. However for more general stressesitigular momentum will change. It can be
shown that upon translating the SPH expression (4.34) immtircuum form (replacing the summations
with integrals), angular momentum is conserved exactly.

The same problem arises in the case of elastic stresses thiegoeoblem is made worse by the fact
that particles at the edge of the solid (which have no neigtsexterior to the solid to provide a full
interpolation) have densities similar to the interior amethgequently produce a significant error in the
angular momentum. Bonet and Lok (1999) claim that nornradishe kernel by a matrix factor similar
to that described i§3.2.3 corrects for this error. A similar approach could betato the astrophysical
problem, however we expect angular momentum conservatidre tmuch better in this case without
normalising the kernel because edges are associated wittidnsity and correspondingly low angular
momentum.

4.3.3 Energy equation

The Hamiltonian (3.59), using the Lagrangian (4.24) is gilg

1 32
Z < " 210 pa (4-35)

Taking the (comoving) time derivative, we have

dE [ dva dusdpa 1 BZdpa d<Ba>] (4.36)

IS et a
where the first term is specified by use of the momentum equé4i@3), the second term using the

first law of thermodynamics (3.50) and the continuity equati3.43), the third term by the continuity
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equation and the fourth term by the induction equation (4.28ing these and simplifying we find

2 gm0 () e

such that the total energy per particle is evolved accorting

- gnl(3) 4 (2) o

where

6= V24 Upt 1B (4.39)
2 2o Pa

is the energy per unit mass. The internal energy equatidomislfrom the use of the first law of ther-
modynamics and is therefore the same as in the hydrodynaasée (8.58) in the absence of dissipative
terms. The equation for evolving the entropy (3.65) is alschanged.

4.3.4 Alternative formulations

Consistent sets of SPMHD equations may also be derived adtieignative forms of the continuity and
induction equations as i§8.4. For example, using the continuity equation

dpa Vap
ot pa% moE - HaWap, (4.40)

and the induction equation

d /B 1 Vab
— (=) =—= — (B OaWap). 4.41
dt <P>a Pa%mbpb( a- D) (4.41)

results in the momentum equation

SRR
PaPo

avi

o o2
This form of the SPMHD equations also conserves linear momneexactly (and is hence also found to
be unstable to the clumping instability). The variatiopaibnsistent internal energy equation is given by

O3Wap. (4.42)

dUa Pa Vab
—a_a T W, 4.43
dt Pa%mjpb e (4.43)

and the total energy equation by

5
PapPo

L

A general alternative formulation may also be derived, eant to that given ig3.4.

DWW (4.44)
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4.3.5 Vector formulations of the magnetic force

Earlier implementations of MHD in an SPH context used sinfigtes of the magnetic force terms based
on the non-conservative force equation (4.5). The simftest of the magnetic force term in (4.5) is
derived by using the SPH summation interpolant for the migfield,

By
By = —W(ra—rp,h). 4.45
a %mbpb (ra—rp,h) (4.45)

Taking the curl of this equation we have

B
Ja=(0xB)a= %m)DaWab x 2. (4.46)
Po

The magnetic force term is then given by

<J><B>  (OxB)ax Ba
HoP / a HoPa
Ba

Bp
= OaWap X — | X . 4.47
%%( A Pb> HopPa (4.47)

In SPH, however it is preferable to interpolate the curl ggmf. §3.2.3)

Pa(ll x B)a= %mo(Ba— Bb) x OaWab, (4.48)

and thus the magnetic force becomes

1
Hop3

%%(Bab X OaWap) x Ba, (4.49)

whereBg, = By — Bp. This ‘vector’ form of the magnetic force term has been usganiany authors
(e.g. Meglicki et al., 1995; Byleveld and Pongracic, 199érdtieira and de Gouveia Dal Pino, 2001;
Hosking and Whitworth, 2004). Using this formulation thegnatic force is always perpendicular to
the magnetic field but exact conservation of momentum is natanteed. Equation (4.49) may also be
expressed as:

1
Hop3

% My [(Bab . Ba) DaWab — (Ba- DaWab)Bab] . (4.50)

Whilst this results in a stable numerical scheme, the lackarhentum conservation in this formalism
means that it gives extremely poor results on problems wingl shocks. We also note that this is
the discretisation of a puréx B force which, as discussed f#.2.1 does not represent a consistent
formulation of the magnetic force in the presence of monegol

4.3.6 Variable smoothing length terms

Since we cannot explicitly write the Lagrangian (4.24) asacfion of the particle co-ordinates, we
cannot explicitly derive the SPMHD equations incorpomgtin variable smoothing length. We may,
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however deduce the form of the terms which should be inclufedonsistency arguments. We start
with the SPH induction equation in the form

d /B 1

Expanding the left hand side, we have

dB Bad
—a =—— % MpVap(Ba - OaWap) + —aﬁ (4.52)

pa dt
If the smoothing length is a given function of the densitgrtihe SPH continuity equation is given by
(3.70) and (4.52) becomes

de,

at = %%{Vab Ba DaWab) — iBa[Vab DaWab(ha)]} (4.53)

Qa

whereQ is defined in§3.3.4. However in one dimension these terms must cancevédBgi= const, and
thus we deduce that the correct form of the induction eqoasioherefore

B,
dt Qapa

%mb{vab Ba DaWab(ha)] Ba[Vab DaWab(ha)]} (4.54)

or in the form (4.51) we would have

% (%) =- Q:pz %%Vab[Ba‘ OaWap (ha)]. (4.55)

Using (4.54) or (4.55) and (3.70) as constraints we may tlegivel the equations of motion using the
variational principle described §8.3.2 to give

dd—\f[i'* = %mb K%)aﬂjwab(h )+ (%)bﬂéwab(hb)] : (4.56)

The total energy equation is given by

des _ SN i) + (S0 Vo (he) (4.57)
at ~ 2™ |\ gpz ), Pl +{ g5 | vaMes(hb) | '
whilst the internal energy equation is found using the fast bf thermodynamics and (3.70), that is

du, P
dt  Qap2

% MpVap - DaWap (ha) (4.58)

We show ing4.6.4 that including the correction terms for a variable sthimg length in this manner
significantly improves the numerical wave speed in the pyapan of MHD waves and enables the shock
tube problems considered §4.6.3 to be computed with no smoothing of the initial cortis.
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4.4 Stability

A full stability analysis of the SPMHD equations for negatstress has been presented by Morris (1996).
The simplest MHD case is for a purely one dimensional problehereB = [By,0,0]. In this case the
dispersion relation is easily obtained from the hydrodyicawersion (3.41) by simply replacing the
pressure? by P— B2, giving

,  2m(P—3B3) 92w
W = — %[1—cosk(xa—xb)]—ax2 (Xa — X, N)
L 2(P — 3B}) , ow ’
+p§ (cs—ipo %smk(xa—xb) X (Xa—Xp,h) | (4.59)

where as previously2 = dP/dp. Following Morris (1996), we define the negative stress ipetar

R —1— 22X (4.60)

such thatZ = 1 corresponds to the hydrodynamic case &het O corresponds to negative stress. The
dispersion relation for an isothermal ga$ € P/p) is then given by

o2 2mc2 9°W

- %%[1—COSK(Xa—Xb)]W(Xa—Xb>h)
) 2
+<%> (1-2%) [%Sink(xa—xb)i—v)\(/(xa—xbah) : (4.61)

Figure 4.1 shows contours of the (normalised) square of timeenical sound speed?,,, = w?/k?
from this dispersion relation evaluated for the cubic splkernel at a fixed value of smoothing length
(h=1.2Ap). The contours are shown as a function of wavenumber (is whithe average particle spac-
ing) and the negative stress parame#ér As in §3.2.7, sums in (4.61) are calculated numerically (rather
than making any further approximations) assuming an isothbsound speed and particle spacing of
unity (where both wavelength and smoothing length are tatled in units of the particle spacing). From
Figure 4.1 we observe that the kernel is unstable to negsiiiess & < 0) at short wavelengths, with
the instability first occurring at a wavenumbet 11 (corresponding to a wavelength of twice the particle
spacingAp). Note that these results are very similar for other smaogtitength values and for all of the
kernels considered i§B.2.

In a numerical simulation, this instability manifests agtigles clumping together, beginning at short
wavelengths but quickly destroying the simulation (Figdr2). Since the one dimensional MHD case
involves only a constant magnetic pressure subtracted tlhergas pressure, the source of the instability
can be traced to non-cancellation of the first error term ¢ivis non-zero even for constant functions) in
the SPH approximation when a momentum-conserving formefytadient evaluation is used (refer to
the discussion i1§3.2.3). Indeed using a differencing form for the gradienintsuch as (3.16) results in
a stable formalism, but in this case the exact conservafiomoonentum is lost (although a compromise
approach is described belo{4.4.2).

2this figure corresponds to Figure 2.1 in Morris (1996)
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Figure 4.1: One dimensional stability properties of the cubic splinmkéwith respect to the negative
stress paramete# = (1 — %B)%/P) (y-axis). Thex-axis corresponds to wavenumber in units afx/
(such thakx — O represents the limit of an infinite number of particles pav@length). Contours show
the (normalised) square of the numerical wave speed frordiipersion relation (4.59). The kernel is
unstable to negative stres# (< 0) at short wavelengths.
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Figure 4.2: Results of a one dimensional isothermal sound wave sinounlatith a constant magnetic
field in thex—direction such tha#Z = —1. The initial conditions are shown in the left panel, usiog 1
particles with an initial amplitude of.8%. The wave quickly becomes unstable due to the negatessstr
and the results are shown in the right panel after one period.

Since conservation of momentum is important for the aceusahulation of shocks, several reme-

dies for this instability, associated with the tensor (i@mentum-conserving) form of the magnetic force
term have been suggested. In their initial investigatioitliphiand Monaghan (1985) used a simple ‘reg-
ularization’ technique - that is they swept over the pagsdo find the maximum value of the magnetic
component of the stress tensor (4.3) and then subtractedroinn the stress tensor in (4.33). Recently,
however, it has been shown that a similar instability oceunien SPH is used in solid mechanics simu-
lations where again there is an anisotropic stress. Thalitisy occurs when the particles are in tension
(ie. the stress is negative) and again leads to a clumpiegtefinalogous to the MHD instability. Several
remedies have been proposed in the engineering literagigeyka et al. 1997; Bonet and Kulasegaram
2000, 2001) but they all either involve a significant inceeascomputation or cannot be applied where
the particle configuration changes significantly (for a moe¢ailed discussion see Monaghan, 2000).
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A remedy for the tensile instability which does not requidalitional computational expense and can
be easily applied to astrophysical problems was proposdddnaghan (2000) and we investigate this
technique below.

4.4.1 Anti-clumping term

The idea proposed by Monaghan (2000) is add a term which pieparticles clumping under negative
stress. Since the instability occurs at short wavelengtiis,term should modify the stress at small
particle spacings so as to provide a repulsive force whiekigots the particles clumping together under
tension forces (negative stress). Determining whetheobthe particles are in tension is determined by
rotating into co-ordinates which lie along the principaéss axis (ie. where the stress tensor is diagonal).
The magnetic stress tensor is diagonal when the magneticliisl along one of the co-ordinate axes
(which in this case we assume to be theaxis). The magnetic field is theB’ = (B,0,0) and the
stress tensor has non zero componéfits= B?/(21o), My, = —B?/(2o) , andM,, = —B?/(210). The
positive component in the—component indicates tension, whilst the negative compsrieithey— and

z— directions indicate compression. To remove the tensian tgrclose range a term is addedMig, so
that it is negative when the particles approach. The ternecikRB?, where

& Wab>n
R=——(—] ., 4.62
2Ho <W1 (4.62)

whereW is the SPH kernel and/ is the kernel evaluated at the average particle spacingnstamt).
Rotating back to the original co-ordinate system, this isiadent to defining a new magnetic stress

M/; = M;j + RB;B;. (4.63)

The momentum equation (4.33) becomes

gl () ()3 ()5

In the preceding discussion, we have interpreted the aatifitress term as a modification of the
anisotropic component of the magnetic stress tensor. Asmraltive interpretation (and one which we
prefer) is to regard it as a modification to the kernel gradierithe anisotropic force at small particle
spacings. The momentum equation may then be expressed as

% nl(Ea), ()
d % p?  2Uop?), \P? 2Uop? )y 9%ja
BiB; BiB;
T[8)(52)) 5
Ho [\ P* Ja \ P? /pl 0Xja

wheredYy, /X is the modified kernel gradient, given by
0Yab_ € Wy \" OWyp
T3 (W) |5 (4:69)

The effect of the anticlumping term on the kernel gradiershiswn in Figure 4.3 for various values of
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r/h r/h

Figure 4.3: Effect of the anticlumping term on the kernel gradient in@hésotropic magnetic force. The
cubic spline kernel (solid line) and its first derivative $tiad) are shown as modified by the anticlumping
term. The left panel shows the effect of varyin¢shown in steps of 0.2 from= 0.0 to € = 1.0) whilst

the right panel shows the effect of varying the indef¢shown forn = 3,4 and 5, with the unmodified
kernel shown for comparison). The constant kernel in thedenatorW, is evaluated at/h = 1/1.5.
The modification of the kernel gradient shown in this figureiged when computing the anisotropic
magnetic force to prevent the particles from clumping urgitally. The modified kernel itself is not
used in the calculations and is plotted for comparison only.

andn. This modified gradient ienly used in the anisotropic magnetic force and does not therefitect
the calculation of hydrodynamic and isotropic magneticést

The functionR is designed to increase as the particle separation desre@ke kernel gradients in
Figure (4.3) are shown for a smoothing lengthhof 1.5Ap and therefore in (4.62) the kernel in the
denominator is computed usidgp/h = 1/1.5. In the one dimensional numerical tests describggif
simulations using this value of smoothing length, use ofahiclumping term was found to give good
results with few side effects. In two and three dimensiosydver, more typical values fdérare in the
range 11 — 1.2Ap, in order to reduce the number of neighbours required in timensations (and thus
the computational expense). Re-running the one dimerisstiogk simulations with these values taor
it was found that the artificial stress term produced procedrerrors in the shock profiles (this is dis-
cussed further i§4.6.3 and demonstrated in Figure 4.13). For this reason watfig better to interpret
W(Ap) as the kernel evaluated at a particular fixed radius, rdittaer at the average particle spacing. We
therefore use/h = 1/1.5 in W(Ap) independent of the choice of smoothing length. That thisipies a
significant improvement in the results is also demonstratédgure (4.6) from the results of a stability
analysis of the SPMHD equations incorporating the antiglmg term. The stability analysis is given
below.

Stability analysis with anticlumping term

A one-dimensional stability analysis of SPH including atifiaral stress term is given by Monaghan
(2000). With the artificial stress interpreted as a modificato the kernel gradient on the anisotropic
force, the one dimensional dispersion relation for MHD silgaobtained from the hydrodynamic version
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(3.41) by assuming a pressure of the fdPa= By + Paniso, Where in this case we hawg, = P+ %B)Z(
andPaiso = —B2. The resulting dispersion relation is given by

2 _ 2MPner ) Ve
@ = = ¥ (- coskba0))
2
e 2P,50> : Oy
+— (-2 Sink(Xa — Xp) ——
pg ( S oo % (Xa—Xp) Ix
02 %[1 — cosK(Xa — Xp)] N
e 2Paniso> : Wy : Vap
—— Sink(Xg — Xp) —— SinkK(Xg — Xp) —— | , 4.67
() | 5 ki) T2 | |5 skt 5 (4.67)
where the modified kern& and its derivatives are given by
o & Wap :
aYab . € (W : aWab
T = -5 (w) |G (469
2 2Ap/n+1
ox? o (n+1L)W) x?

Figure 4.4 shows contours of the square of the numericaldsepaedC?,,, = w?/k? from this dis-
persion relation as a function of wavenumber and the negatiess parametef (where in this case we
haveRgs/po = c§(2—%) andPaniso/Po = 2c§(%’ —1)) for an isothermal equation of state, usimg- 4
and six different values of. The top left panelg = 0.0) corresponds to Figure 4.1, except that the
y—axis extends ta#Z = —10 in this case. Results are shown for a fixed smoothing leofgth= 1.2Ap,
however as discussed above the constant kernel in the deatmmW, is evaluated at/h = 1/1.5.
This means that the kernel used on the anisotropic termsmonels to those shown in Figure (4.3). We
observe that for this value ofthe formalism is stabilised far 2> 0.3 and this is confirmed by numerical
simulations (Figure 4.5). However, whereas in the 0.0 case the contours nelgr = 0 are close to
unity, in Figure (4.1) the numerical wave speed appearsctease substantially with increasing negative
stress ## — —). Thus, although the formalism is stabilised at short wewgths, the wave speed at
long wavelengths is also affected slightly.

This effect is illustrated further in Figure (4.6), where plet the numerical sound speed versasit

x ~ 0 taken from Figure (4.1) (solid line) fdr= 1.2Ap. The results usinyV; evaluated at the average
particle spacing (ie at/h = 1/1.2 in this case) as in the original formulation of MonaghanO@0are
also shown (dashed line). In both cases the wave speed &ases substantially @ becomes more
negative, although the former case is a significant impr@rénover the latter. To confirm that the
analytic stability analysis is an accurate representaifarumerical results, we also plot the results of 12
simulations of small amplitude (®%) isothermal sound waves (as describefg3ry.2) with a constant
magnetic field in thex—direction corresponding to various values@f The numerical results (solid
points) show excellent agreement with the analytic dispenslation.

To understand the increase in wave speed with decreagingused by the anticlumping term, it is
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Figure 4.4: Effect of the anticlumping term on the one dimensional ditghproperties of the cubic
spline kernel for various values @fandn (as indicated in legend). Contours show the square of the
numerical sound speed from the dispersion relation (4.6@)fanction of the negative stress parameter
Z=(1- %B)%/P) (y—axis) and the wavenumber in units of the particle spacinguRare for a fixed
smoothing length ofi = 1.2Ap, with W, evaluated at/h = 1.5.
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Figure 4.5: A repeat of the isothermal sound wave simulation shown iniféig.2 (with#Z = —1) using

the anticlumping term with parameters= 0.4, n = 4. The initial conditions are shown in the left panel,
using 100 particles with an initial amplitude 0oB5%6. The results after one period are shown in the right
panel and are clearly stabilised by the anticlumping tetthpagh the wave exhibits a significant phase
error.
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T T
cubic spline, h=1.2Ap
S el analytic using W,(1/1.5)

77777 analytic using W,(1/1.2)
« numerical results using W,(1/1.5)

cs

Figure 4.6: Numerical sound speed vs negative stress parameter R fautiie spline kernel with a
fixed smoothing length df = 1.2Ap and anticlumping parametegs= 0.4, n = 4. The solid and dashed
lines show the results & ~ 0 from the dispersion relation (4.67), with the kernel in temominator

of the anticlumping term evaluated at the average partiideisg (dashed line) and at the fixed radius
1/1.5 (solid line), as discussed in the text. In the lattesecde analytic results may be compared with
the solid points from numerical simulations. The close agrent between the two demonstrates that the
analytic stability analysis is a faithful representatiditte numerical results.

instructive at to consider (4.67) in the limit &f— O (ie. at long wavelengths). In this case we have
SINK(Xa — Xp) = K(Xa — Xp) and coK(Xa — Xp) ~ 1 — 3k?(Xa — Xp)?, giving

w/ke = ngxaxb e Tz \" %Xa Xo) =5~
MPaniso

0
02 %(Xa—xb)za;ng_pﬁg (ngis°> [;(xa—xb)i,ﬂjb] [%(Xa—xb)a ab](4 71)

The accuracy of the numerical sound speed in this limit (tvhgcthe limit of an infinite number of

particles, but not an infinite number of neighbours) is goedrby the extent to which, for each kernel,
the following normalisation conditions hold on the gradgen

% o (Xa — Xp o ~ 1, and 2% o a2 1 (4.72)

In the limit of an infinite number of neighbours (ib.— ) the summations can be written as integrals

and the normalisations take the form

/(x—%)%—v)\(/dx’zl and 2/

It may be easily verified by the reader that setting the cpomeding expressions to unity in (4.71) (for
both kernels) gives the exact dispersion relation for sowades (ie. w? = k2c2). A straightforward

zazwd)( 1. (4.73)

integration for the cubic spline kernel demonstrates tlo# lof these integrals hold on account of the
normalisation condition (3.4) and the fact that the kersedhien. Considering the modified kernel gra-
dient used in the anticlumping term (4.69)-(4.70), the radisations can no longer hold because the
kernel gradient is no longer normalised. The approach tékeinis problem in Monaghan (2000) is to
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simply choose the indel so as to minimise the term multiplying these integrals, rgivi in the range

3 < n< 7. Naively, one might expect that a renormalising the modlikiernel gradient so as to maintain
the integrals (4.73) would increase the accuracy of thelsition results. However in practise we find
that this is not the case, since the summations (4.72) onipkathe integrals at a few points. As such
the renormalisation can have detrimental effects becaudwnges the kernel gradient at lamyé to
compensate for the changing shape at smél] affecting more than the nearest neighbours.

In the hydrodynamic case it was found that allowing the simiogtlength to vary could significantly
improve the numerical wave speed8.(.2). In the case of a variable smoothing length, thremiopt
are available for the modified kernel gradient: to use theameeof the smoothing lengths, the average of
the kernel gradients or thirdly to use the consistent foatioh including the variable smoothing length
terms £4.3.6), in this case evaluated for the modified kernel gradi&Since the variable smoothing
length terms effectively normalise the kernel gradieng, lditter would seem to be a particularly good
approach, particularly in the light of the discussion in pinevious section. However, the one (somewhat
large) caveat to the anticlumping approach is that, usin@gbi smoothing lengths, we do not find
that the anticlumping term guarantees numerical stalfdityall values of negative stress. For example,
using the average smoothing length in (all of) the kernetligmats, the one dimensional sound waves
become unstable @& < —9. Using the average of the gradients the problem is worsetendvaves
become unstable a¥ < —3. With the variable smoothing length terms calculated jeaelently for
both kernels, instability is observed & < —2. It would seem therefore, that although sufficient to
provide numerical stability for all of the test problems swiered here, the anticlumping approach as
it stands does not provide a comprehensive solution. Ferdaison we compare this approach to two
other methods described §4.4.2 and;4.4.4 and in fact the multidimensional tests described iapdr
5 suggest that these methods both give better results tleaof tise anticlumping term.

Implementation

The anticlumping term is implemented in this thesis by daling the modified kernel gradient in a
similar manner to the usual kernel. This is also the mostefiisttive implementation since the modified
kernel can be pre-computed and tabulated as for the usuadlker

Where the total energy equation (4.38) is used, the cotiitbdo the total energy from the anti-
clumping term must be added for consistency. This can bedfosimg (4.36) and is given by

(). gmeel G )+ (G ) o 1

Alternatively, interpreting the anticlumping term as a rified kernel gradient, the contribution to the
total energy from the anisotropic term in (4.38) is replabgd

(dea>amso %”b( B;) DJy) %m) DJYab DJWab) (4.75)

In principle it is possible to conserve total energy exabtiyalso using the modified kernel gradient
in the B/p version of the induction equation (givindlyp, = Yap in the above). However this introduces
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an unnecessary alteration to the magnetic field evoluti@hcamsequently produces undesirable side
effects. The degree to which energy conservation is vidlateen the total energy equation is evolved
may therefore be used as an indication of the relative entooduced by the anticlumping term. In
general this is found to be quite small for the problems atersid in this thesis.

4.4.2 Morris approach

An alternative approach suggested by Morris (1996) is tmimghe conservation of momentum on the
isotropic terms in (4.33) but to treat the anisotropic teusisg a differencing formalism which is exact
in the case of a constant functions (§8e2.3). The force term is then given by

Pa+ 182/ %+%B§/uo>awab 1 (BiB))b — (BiBj)a MWy 476

_ + ° -
%%( Pz o5 X Ho% PaPo X;

This formalism does not therefore guarantee exact momeontmservation (since the anisotropic term
does not give equal and opposite forces between partialg)gmit can be expected to give good results
on shocks for which the anisotropic term is less importanis &lso a better approach than the vector-
based formalisms§#.3.5) since (4.76) is still a discretisation of a tensocéoand therefore conserves
momentum in the continuum limit for non-zetd- B. This also means that (4.76) retains the consistent
formulation of the MHD equations in the presence of monapadthough the discrete equations are no
longer self-consistent with each other. Note that whengutlie variable smoothing length terms, we
use the average of the normalised kernel gradient in (4a&i the dissipative terms. The dispersion
relation for this formalism in the case of one dimensional Mtdkes a particularly simple form since
the terms resulting from the anisotropic force are zero éncdse 0By =const, giving

2mPg, 02W.
2 pg %[1—cosk(xa—xb)] dx;b
2
+pﬁg (cﬁ——zz:‘)> [%sink(xa—xb)—ag\:(ab] . (4.77)

Contours of the square of the numerical sound spg@&&d = w?/k2 from this dispersion relation are
shown in Figure (4.7). The formalism is seen to be stable lowavelengths and this is confirmed
by numerical simulations. Also the numerical wave speed dut show the increase with increasing
negative stress observed for the anticlumping term, aithahe numerical wave speed is somewhat
overestimated at short wavelengtys~ 11/2Ax. The more accurate numerical wave speeds result from
the use of the differencing formalism since in this case #@reth order error terms for small perturbations
are zero exactly§.2.3). However, the main test of this formalism is the degi@ which the lack
of momentum conservation affects the shock capturingtglili the scheme. This is examined and
compared with the anticlumping approach in the shock tubts tdescribed i1§4.6 where in fact the
differences are found to be very minor. This simple apprdacherefore a very viable solution which
guarantees numerical stability in all circumstances aresdmt suffer from the numerical wave speed
errors introduced by the anticlumping term.
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Figure 4.7: One dimensional stability properties of the cubic splinekéusing Morris’ formalism of
the magnetic force (4.76). Contours of the square of the migalesound speed from the dispersion
relation (4.77) are shown with respect to the negative sfpasamete? = (1 — %B)Z( /P) (y—axis) and
the wavenumber in units of the particle spacing-&xis). The formalism is stable to negative stress
at all wavelengths, however momentum conservation is nattaiaed exactly for anisotropic forces.
Note that the numerical sound speed is close to unity at lagiengthsKy — 0), although somewhat
overestimated at short wavelengifis- 11/2Ax.

4.4.3 Bgrve approach

Barve et al. (2001) remove the instability by explicitly satocting the unphysical force term from the
conservation form of the momentum equation (4.33). Thimtiercalculated using

B(0-B)
p

Bb Ba)
~B %w(——k— - HaWap 4.78
a pg paz a ( )

which is then subtracted from (4.33). This resolves thel#iaproblem since it removes the (unphysical)
component of magnetic force along the line joining the plas (ie. in continuum form the formalism
becomes simply thé x B component of the magnetic force). However the disadvarttatgs approach
can be seen in the simple case of one dimensional MHD, whera donstanBy the term introduces

a low level of numerical noise throughout the simulation.Blarve et al. (2001) this noise is removed
by periodically smoothing the magnetic field, which is alsedito remove post-shock oscillationsBn
Since we use artificial resistivity to prevent such postekhascillations (see below), additional smooth-
ing is not required and so the noise introduced by subtrggdn78) remains present. Furthermore we
find that the lack of momentum conservation in this formalicam lead to extremely poor results on
shock tube problems in the absence of the patrticle regataisprocedure used by these authors.

4.4.4 Removing the constant component of magnetic field

For simulations where the magnetic field is strong due to @ialimet flux through the simulation, a
simple method for removing the tensile instability is to ma@ the constant, external (ie. produced by
currents outside the simulation domain) component of thgrmec field from the anisotropic gradient
analytically (by subtracting this field component from thress contained within the gradient term). The
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stress tensor (4.3) for partictels modified according to

= <Pa+ iBﬁ) i+ (BiaB;— BiOBg',) , (4.79)
2o Ho

whereBy is the magnetic field component which does not change thmuighe simulation (for example

in one dimensional simulations we would uBg = [By,0,0]). In general the constant field could also

have a spatial profile (for example in a fixed dipole field frdra tentral star in an accretion disc) and

would in this case depend on the particle position. In alhef¢tases we consider the external magnetic

field is always the same independent of the particle positoch that calculating (4.79) involves storing

only a single vector. It is worth noting that the formalisnveagi above (where the constant field is

subtracted from the total field) is more efficient than expjicadding the contributions from separate

constant and variable field components.

This simple solution completely cures the one dimensionsthbility because thB, component of
the field is explicitly removed from the anisotropic graditarm. Negative stresses can only arise in this
formulation when the anisotropic terms in the fluctuatingnponent dominate the isotropic pressure
term (from which the constant field hast been subtracted). In many ways this is similar to the origina
proposal of Phillips and Monaghan (1985) in which the maximualue of the stress tensor over all the
particles was determined and then subtracted from thesdwegach particle. Such an approach makes
sense in light of the fact that the instability arises dueh mnon-zero evaluation of the gradient of a
constant function in the momentum-conserving formulaof §3.2.3). Morris’ approach described
above §4.4.2) removes this error by ensuring that the gradient afistant function vanishes exactly in
the anisotropic term, although momentum conservationtisrantained exactly. Using the momentum-
conserving formalisnany arbitrary constant could be added to the stress in order ke the total stress
positive (which effectively changes the factor multiplyithe first error term in equation 3.19).

The disadvantage to this approach is that total energy isoraerved exactly since the contribution
to the total energy evolution from the induction equatioti@h uses the total magnetic field) does not
exactly balance the contribution from the momentum equnatidhis method is used in many of the
two dimensional problems considered in Chapter 5, revgtinthe Morris approach where this is not
possible. The results in all cases are much better than timaaed using the anticlumping term.

4.5 Shocks

Various approaches to ensuring a physically realistictiimeat of shocks in numerical schemes were
discussed in an SPH context 48.5. Following this, dissipative terms (artificial visctysand thermal
conductivity) were derived for hydrodynamic shocks simttathose given by Monaghan (1997b), the
major differences being that the artificial thermal conilitgt was applied to particles in both compres-
sion and rarefaction (the importance of which was highéghin the numerical tests describedsB7)
and controlled using a switch similar to that used in theosdy (§3.5.2).

In this section we generalise the dissipative terms deiiivéd.5 to the MHD case. In particular using
the formulation of Monaghan (1997b) naturally results inaatificial resistivity term in the SPMHD
induction equation. Whereas the effect of adding artifithedrmal conductivity at discontinuities in
the thermal energy is fairly smal£3.7.3), in this case adding artificial resistivity at disttonities in
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the magnetic field turns out to be crucial in order to prevégmiBcant post-shock oscillations in the
magnetic field §4.6.3).

4.5.1 Artificial dissipation

Dissipative terms in the MHD case are constructed in a maanalogous to that df3.5 (Monaghan,
1997b) involving jumps in the physical variables. As in thyeltodynamic case;8.5.1), the momentum
equation (4.33) contains a viscosity term (fgg - rap < 0)

dva> QVsig(Va—Vp) - T
“Va ——Sm ab Wp, 4.80
( dt / giss % 2Pz : (480
wherea is a dimensionless constant of order unityg ¥s the maximum speed of signal propagation
between the particle$a, = (ra—rp)/|ra—rp| IS @ unit vector along the line joining the particles and
Pab = %(pa+pb). The term in the total energy equation (4.38) involves a jumgnergy and is given by

dea) Vsig(€ — &)
mbfrab OaWab, 4.81
( dt diss % Pab : ( )
where in the MHD case the energyis constructed using the velocity jump parallel to the liviaing the
particles and the jump in the magnetic field component pelipatar to this line (since these components
are expected to change at shock fronts, although see bejiviviy

. { 30(Va-Fap)? + Qula+ 308[B2 — (Ba- Fan)?]/HoPab, Vab-Tab < O0; (4.82)

QuUa + 2aB[B (Ba- Fan)?]/ HoPab, Vablap > 0;

with a similar equation fog). The appropriate form of the other dissipative terms is tfoemd by
working out the contribution to the thermal energy and reqgithat this contribution be positive definite
(leading to a positive definite increase in entropy). Thetrdloution to the thermal energy equation is
found using

2
du de dv d( B > (4.83)

gt dt Vdr dt \ 2mp

Substituting (4.80) and (4.81), a positive definite conttiitn to the thermal energy from the kinetic and
magnetic terms is given only if the terms in the thermal epeqguation take the form

du ng{ ~ A 5
dt - 50 [(Va-Fap) — (Vp-F +ay(us—u
( >d|$ % 2Pab a ab) (b ab)] u( a b)

0B 2 ~ 2 A

o L0~ (Ba T Fap - LaVl 4.84

where both the kinetic and magnetic terms can be seen to giesitive definite contribution to the
thermal energy since the kernel gradient term is negatifieitte The thermal energy term provides an
artificial thermal conductivity which acts to smooth gradgin the thermal energy. This term is identical
to the hydrodynamic case and has been discussed in de&il5rl and in the numerical tests described
in §3.7.3. The kinetic energy contribution to (4.84) takes threnf given due to the contribution from the
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viscosity term in the momentum equation via (4.83). Sinhiléor the contribution from the magnetic
energy term in (4.81) to result in a positive definite dissgaof the form given in (4.84) requires a
dissipation term in the induction equation, in this casehefform

dB> OBVsig R A
— =P My Bab—rab(Bab-rab M ab - aWap. (4.85)
(dt diss a% 203 | ) :

This term may be written as

OBVsq - S
P2y My B—zsg [Fap X (Bab X Tap)] Fap - OaWab. (4.86)
2p3,

It may be expected that in continuum form this equation sthbel some approximation to

—Ox (nOxB), (4.87)
which for constant) is given by

n [0?B-0(0-B)] (4.88)
Using the second derivative interpolations give§3m2.4 we find that in fact (4.86) is an SPH form of
n {DZB — gm(m - B)} , (4.89)

which is similar to the exact equation with ohmic diffusiy O agvsgh. Since this term is derived from
a jump in the magnetic energy perpendicular to the line npgjrihe particles, the effect is to smooth out
gradients in transverse magnetic field over several smupthingths, just as the viscosity acts to smooth
out gradients in the velocity along the line between theigag

An important point to note is that discontinuities in the metic field can occur in the absence of
compression such that the artificial resistivity term stdag applied uniformly to particles in both com-
pression and rarefaction. In fact the application of aréficesistivity, unlike that of artificial thermal
conductivity, turns out to be a crucial requirement in thmwdation of MHD shocks (this is graphi-
cally illustrated in Figure 4.10), a point which is often deeked in dissipation-based shock capturing
schemes for MHD. For example both Bgrve et al. (2001) and Marm Howes (2003) find it necessary
to explicitly smooth the magnetic field at regular intervadsorder to prevent post-shock oscillations.
Using the artificial resistivity terms described above hssmoothing occurs naturally within the simu-
lation. Similar artificial resistivity terms are require finite-difference codes which are also based on
the differential form of the MHD equations (see for exampkau@t and Korpi 2001, which is based on
Nordlund and Galsgaard 1995).

Dissipation terms using total energy

In the above derivation, it was assumed that only componeintee magnetic field perpendicular to
the line joining the particles would change at a shock frddowever, in a numerical simulation the
assumption of non-zero magnetic divergence may not holdtigxas has already been discussed. In
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particular divergence errors are often created at flow digeoities where fluid quantities are changing
rapidly. It therefore makes good sense to drop the assumpfioon-zero magnetic divergence in the
derivation of the dissipative terms. The assumption th&f tre velocity components parallel to the
line joining the particles will change is also no longer timéhe MHD case since velocity components
transverse to this line will change with a jump in the tramsgemagnetic field. For this reason we
re-derive the dissipative terms with an energy term of thenfo

2

1 B
e = Eorv§+ ayla+ OB zﬂo%ab (4.90)

which involves both the total kinetic and magnetic energiesr the contribution to the entropy to be
positive definite, the terms in the thermal energy equatiastrtake the form

dt - =) ¢ Za(Va—Vp)“+ =——(Ba— Bp)*+ 0u(Ua — Up) ¢ Fap - DaWap, 4.91
<dt>di$ ZmJZPab 2 ( a b) 2H0Pab( a b) u( a b) ab - HaWap ( )

which correspondingly requires dissipation terms in themaotum and induction equations of the form

dv AVsig(Va— Vp)
<_dta> Sm e D (492)
diss
dB aBV59 ~
- = B,—B - U Whp. 4,93
<dt>diss pa%mo 25§b (Ba b) Fab - DaWap ( )

In the multidimensional case we find that use of (4.93) hasndisadvantages over (4.85) since in
more than one dimension divergence errors can cause tleecextiponent of the magnetic field to jump
slightly. Whether or not to use (4.92) in place of (4.80) ighdly less clear. The application of dissipative
terms to specific discontinuities was discussed at someHeng3.5.2 with regards to artificial thermal
conductivity, where it was found that smoothing of discouiiies in the thermal energy was necessary
only where the discontinuity is not already smoothed by thglieation of artificial viscosity (which
could occur, for example at a contact discontinuity). In pinesent case, since a jump in transverse
velocity canonly occur at a corresponding jump in the transverse magnetit, fieése discontinuities
will already be smoothed by the application of artificialistigity there and so the use of (4.92) may
simply result in excessive dissipation (since it must als@pplied to particles in both compression and
rarefaction, whereas the usual viscosity term is applidg tnparticles in compression). Furthermore
the effect of (4.92) is to diffuse discontinuities corresgimg to the curl of the vector field as well as the
divergence and the expression therefore no longer corssangular momentum and no longer vanishes
for rigid body rotation (since in effect rotational energydonverted into thermal energy). Thus for
simulations involving significant amounts of shear (for rexde in accretion discs) the effects of using
(4.92) would need to be studied quite carefully. It is worthimg that a similar term was used by Morris
(1996).

Signal Velocity

The signal velocity in the MHD case is a simple generalisatibthat given ing3.5.1. The key point is
that it is the relative speed of signals from moving obsenatrthe positions of particlesandb when
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the signals are sent along the line of sight. If there are ngnaidc fields a good estimate of this signal
velocity (c.f.§3.5.1) is

Vsg = Ca+Cp— BVab . fab, (4.94)

wherec, denotes the speed of sound of partialand 8 ~ 1. The signal velocity is larger when the
particles are approaching each other and in practice, feetefof shocks can be included by choosing
B = 2. If there are magnetic fields then a variety of other wavegassible. The fastest wave in a static
medium along the x axis has speed (c.f. Appendix C)

1 B2 B2 \ 2 2B2
i (SrORICE|

Hop W

A natural generalization of (4.94) for the case of magnetild§ is to take

Vsig=Va+Vp— BVab . fab7 (4.96)
where
, 5 1/2
1/, Ba> \/<2 B§> (B Fup)?
Vo= — |2+ 1/ (c2+ gl @ 4.97
V2 (a LoPa TN LoPa (4.97)

with a similar equation for y.

4.5.2 Artificial dissipation switches

Since artificial resistivity is required at discontinugtién the magnetic field, which may occur where
particles are not necessarily approaching each otheficitftiviscosity and resistivity should not be
controlled using the same switch. A similar switch appraterito the artificial resistivity term can be
devised similar to that used in the artificial viscosity anertnal conductivities in the SPH ca$8.6.2).
We evolve the resistive dissipation parametgraccording to

dag 0B

at —T+y (4.98)

where the decay timescatds given in§3.5.2 and in this case the source term is given by

|0 x B| \D-B\)
. = max , ) 4.99
< v HoP ~ /Hop ( )

such that artificial resistivity is applied at large gradgeim the current density as well as at large diver-
gences in the magnetic field (the latter term is required wiign the total energy formulation (4.93) of
the artificial resistivity is used). The source term is camged to have dimensions of inverse time, as
required by (4.98). In the numerical shock tube tests desdrin§4.6.3 we find that using this switch
in conjunction with switches for the viscosity and thermahductivity can result in too little dissipation
at shock fronts due to the fact that the transverse velooityponents are not smoothed when (4.80) is
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used in the artificial viscosity. In this case the artificisistivity must provide sufficient smoothing for

the discontinuities in both magnetic field and transverdecity. For this reason we prefer in general to
control only the viscosity and thermal conductivities gsthe switches and to apply the magnetic term
using a uniformog = 1.

4.6 Numerical tests in one dimension

The numerical scheme described in this chapter has beed t@sh variety of one dimensional problems.
In order to demonstrate that SPMHD gives good results onlg@mub involving discontinuities in the
physical variables we present results of standard probilesed to test grid-base MHD codes (e.g. Stone
et al. 1992; Dai and Woodward 1994; Ryu and Jones 1995; Bals288; Dai and Woodward 1998).
The advantages of SPMHD are the simplicity with which theseiits can be obtained and the complete
absence of any numerical grid.

4.6.1 Implementation

The particles are allowed to move in one dimension only, sttihe velocity and magnetic field are
allowed to vary in three dimensions. This means thatyth@ndz— components of velocity are evolved
using the appropriate force terms and used in the total grmrgthat these velocities are not used to
move the particles (this is rather like regarding the plasias representing planes in one dimension such
that translations in thg— andz— directions have no effect).

We use equal mass particles such that density changes pmumceso changes in particle spacing.
Unless otherwise indicated in this section we integratectiinuity equation (3.43), the momentum
equation (4.33), the total energy equation (4.38) and tHadtion equation (4.20). This is the most
efficient implementation of the SPMHD equations since itdo@t require an extra pass over the particles
to calculate the density via the summation (3.42). Howeyss,of the continuity equation requires some
smoothing of the initial conditions and this is done using #moothing described #§8.7.3, although
initial velocity profiles are not smoothed. Similar resulisthose shown here are also obtained when
the thermal energy equation is integrated instead of tte¢ éotergy. Additionally we note that whilst
evolving the flux per unit mass (4.22) instead of the flux dgr(gi.20) does not exactly maintaih-B =0
in one dimension, the associated errors are small and heacdso find in this case that the results
are similar. Unless otherwise indicated the tests predeimee are all performed with the artificial
viscosity and thermal conductivity controlled using thdtshes discussed i§3.5.2. For the viscosity
the minimum is set tanin, = 0.1 whilst for the artificial thermal conductivity the minimuia zero.
This results in very little dissipation away from shock ftenArtificial resistivity is applied uniformly
with ag = 1. This is required (rather than using the resistivity shjitbecause the transverse velocity
components are not smoothed (that is we retain the use d¥)(dagher than (4.92)). The smoothing
length is set according to the rule (3.67) such that injtial= 1.2(m/p). The anticlumping termg@.4.1)
is used with parameteis= 0.8 andn = 4 with the constant kernel in the denominaiér evaluated at a
fixed radiusg = 1/1.5 as discussed if4.4.1, except where otherwise indicated.
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Scaling

The magnetic field variable is scaled in units such that tmstemtLi is unity and numerical quantities
are dimensionless. Note that the magnetic flux dersitvas dimensions

[mass|

Bl = m7 (4.100)
whilst tg has dimensions

_ [mass][length]
(o] = chargel2 (4.101)

Choosing mass, length and time scales of unity and spegifyjn= 1 therefore defines the unit of charge.
Re-scaling of the magnetic field variable to physical uretpuires multiplication of the code value by a
constant

1/2
| po[mass| ,
Bphyscal = { [Iength] [time]z} Brumerical - (4-102)
For example, in cgs units, with mass, length and time scdlanity the magnetic flux density in Gauss
is given by

Begs = (47T)l/anumerican (4.103)

4.6.2 Simple advection test

This simple test is described in Evans and Hawley (1988) arfstone et al. (1992) and measures the
ability of an algorithm to advect contact discontinuities square pulse of transverse magnetic field is
setup and advected a distance of five times its width with teegure terms switched off. The current
densityJ is calculated in order to ascertain that the method doesrndupe sign reversals or anomalous
extrema in this quantity. In SPH we compute this quantitygsi

Ja=0xBy= %m)(Ba— Bb) x OaWap. (4.104)

We perform this test simply by using a magnetic pressure ithaegligible compared to the gas
pressure. We setup 100 particles placed evenly along thésxnath constant velocity in the positive
x-direction and use a pulse that is initially 50 particle@pgs wide. The pulse is not initially smoothed
in any way and periodic boundary conditions are enforcedgughost particles (this is also a good test
of the periodic boundary conditions since the particlescarginually crossing the domain).

The SPMHD results are shown in Figure 4.8 after advectingtifee a distance of five times its width
(in this case equivalent to 5 crossings of the computatidoahain). The top panel shows the results
with the artificial dissipation terms turned off. There isspyead in the discontinuities since SPH uses a
Lagrangian derivative which means that the advection isteXde current density, which is analytically
given by a delta function at each discontinuity, is also cota@ very well by the SPH approximation. In
(Eulerian) grid based codes the advection terms must becakpévaluated, resulting in some diffusion
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Figure 4.8: Results of the advection of a square pulse of transverseetiadield 50 particle separations
wide a distance of five times its width. In the absence of gatsie terms the discontinuities are kept
to less than a particle spacing (top) due to the Lagrangianmeaf SPH. The current density (top right)
is also estimated well (analytically this is a delta funoti@t each discontinuity). With the artificial
resistivity turned on a small amount of smoothing is obsgb@ttom panels).

of the pulse as it is advected. In SPH the only diffusion presethat explicitly introduced in the shock
capturing scheme. With the artificial resistivity turned asmall smoothing of the field is observed
(bottom panels), however this still compares favourablthvilie implicit dissipation resulting from the
grid-based advection schemes shown in Stone et al. (1992).

4.6.3 Shock tubes

The first shock tube test we perform was first described by &rWu (1988) and is the MHD analogue
of the Sod (1978) shock tube problef3(7.3). The problem consists of a discontinuity in presstea-
sity, transverse magnetic field and internal energy imjtimicated at the origin. As time develops com-
plex shock structures develop which only occur in MHD beeafghe different wave types. Specifically
the Brio and Wu (1988) problem contains a compound wave stingiof a slow shock attached to a rar-
efaction wave. The existence of such intermediate shocksowatrary to the expectations of earlier
theoretical studies (Brio and Wu, 1988), although moremestudies suggest that these intermediate
states are an artifact of restricting the geometry to onéamiimension whilst allowing the magnetic
field to vary in two dimensions and that such solutions deagidty in more than one spatial dimension
(Barmin et al., 1996). Regardless of its theoretical unid@ipgs, this problem is now a standard test
for any astrophysical MHD code and has been used by manyraufb@. Stone et al. 1992; Dai and
Woodward 1994; Ryu and Jones 1995; Balsara 1998)

We set up the problem using approximately 800 equal masglparin the domairx = [—0.5,0.5].
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Figure 4.9: Results of the Brio and Wu (1988) shock tube test. To the Ffi@origin the initial state is
(p,P,vx, vy, By) = [1,1,0,0,1] whilst to the right the initial state ig, P, v, vy, By) = [0.1250.1,0,0, —1]
with By = 0.75 everywhere angt= 2.0. Profiles of density, pressure,, Wy, thermal energy anBy are
shown at time = 0.1. Points indicate the SPMHD particles whilst the numergcdlition from Balsara
(1998) is given by the solid line.

Initial conditions to the left of the discontinuity (heréaf the left state) are given by, P,vy,vy,By) =
[1,1,0,0,1] and conditions to the right (the right state) are giveriiyP, vy, vy, By) =[0.1250.1,0,0, 1]
with By = 0.75 andy = 2.0. The results are shown in Figure 4.9 at time 0.1. Although no exact solu-
tion is known for this problem, the results compare well wite numerical solution taken from Balsara
(1998) (solid lines). Several points regarding the SPMHIDtsm are worth noting. The first is that the
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slope of the rarefaction wave appears slightly wrong. This woted in the hydrodynamic ca$8.(.3)
and is a result of the smoothing used on the initial conditiokVith no smoothing of the initial con-
ditions this error disappears (Figure 4.11). The secondtpoinote is that no significant post-shock
oscillations are visible, demonstrating that the dissipatierms are effective in smoothing the discon-
tinuities sufficiently. However, some small post-shockiltsttons may be observed in the transverse
velocity profile. This is due to the fact that we do not apply amoothing to the transverse velocity
components. The reason why the effect of this neglect resrfairly small is because the transverse ve-
locity jumps are caused by the jumps in transverse magnelit; firhich are smoothed using the artificial
resistivity terms. This is similar to the effect of neglectithe use of artificial thermal conductivity in
the hydrodynamic cas&3.7.3), where the effects are small because the shock edglemoothed by
the viscosity term. Note, however that the inclusion offigitil resistivity is a crucial requirement since
it provides smoothing both for the magnetic field and for ttamsverse velocity components. This is
graphically illustrated in Figure 4.10 in which we show thenisverse magnetic field profile for this test
both with and without the resistivity term. In the absencentificial resistivity significant post-shock
oscillations are observed, however with the term includexsé are very effectively damped. Similar
effects were noticed by Bgrve et al. (2001) in their MHD shadbe tests using an SPMHD algorithm,
where the procedure adopted was to smooth the field at reigtgavals using an averaging procedure.
The inclusion of artificial resistivity terms removes theeddor such smoothing.

t=0.1

0.5

-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4

Figure 4.10: Transverse magnetic field profile in the Brio and Wu test. & dbsence of artificial
resistivity significant post-shock oscillations are obserin the magnetic field (left), whilst these are
very effectively damped when artificial resistivity is inded (right).

A second calculation of this problem is shown in Figure 4.11 this case however we apply no
smoothing whatsoever to the initial conditions and caleuthe solution using the density summation
(3.69), the total energy equation (4.57) and the inductimuraéon (4.54). The results may be compared
with Figure 4.9. The unsmoothed initial conditions resalaismall fluctuation at the contact disconti-
nuity in the transverse velocity profile. However, the racéibn wave agrees very well with the Balsara
(1998) solution and the compound wave in particular is $icgtly less spread out than in the previ-
ous results. The consistent update of the smoothing lenigthdensity (discussed i§3.3.4) results in
some extra iterations of the density, although typicallymare than two and only for a small number of
particles.

In the second shock tube test (Figure 4.12), we demonshatesefulness of the dissipation switches
by considering a problem which involves both a fast and slowck. We consider the Riemann problem



4.6 Numerical tests in one dimension 105

Q.
X
>
O = — -
o A~
N~ |
> (9]
m 3 PO —

H
s
% |

|
o
o
o
©
o

|
o
o
o
o
o

X X

Figure 4.11: Results of the Brio and Wu (1988) shock tube test with no sinogtof the initial con-
ditions. In this case the density summation, total energyatign and the induction equation usiBg
have been used, incorporating the variable smoothing hetegins. The rarefaction profile in this case
agrees very well with the numerical solution from Balsar@9@) (solid line) and the compound wave is
substantially less smoothed. Small oscillations may beiesl in the transverse velocity components
as we do not apply any artificial viscosity to these compamnent
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Figure 4.12: Results of the MHD shock tube test with left st@pe P, vy, vy, By) = [1,1,0,0,1] and the
right state(p, P, vy, vy, By) = [0.2,0.1,0,0, 0] with By = 1 andy =5/3 at timet = 0.15. The problemillus-
trates the formation of a switch-on fast shock and the smiutontains both a fast and slow shock. Solid
points indicate the SPMHD patrticles whilst the exact solutis given by the solid line. The artificial
dissipation switches are used to control the applicatioartficial viscosity and thermal conductivity.
Without these switches the fast shock is significantly dasimpe

with left state(p, P, vy, vy, By) = [1,1,0,0,1] and the right statép, P,vy,Vvy,By) = [0.2,0.1,0,0,0] with

Bx = 1 andy = 5/3. This test has been used by Dai and Woodward (1994), Ryuares J1995) and
Balsara (1998) and illustrates the formation of a switchast shock (so called because the transverse
magnetic field is zero ahead of the shock and ‘switches onindetine shock front). Similarly to the
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Figure 4.13: Pressure profile in the MHD shock tube test shown in Figur@ #ith the kernel in the
denominator of the anticlumping terw, evaluated at the average particle spacing (in this caseggiv
Wi(r/h) =W(1/1.2)) (left), and at a radius\y(r/h) = W(1/1.5). The exact solution is given by the
solid line. In the former case the anticlumping term can poadsignificant errors in the shock profile
around the contact discontinuity, whilst these are smathagnitude in the latter case.

Figure 4.14: Velocity profiles in the MHD shock tube test shown in Figurg2lusing the Morris (1996)
formalism §4.4.2). Results are very similar to those shown in Figur@ 4rid agree well with the exact
solution (solid line), although the oscillations around glow shock are slightly worse in this case.

previous test we set up the simulation using approximatey @rticles in the domair= [—-0.5,0.5].
The results are shown in Figure 4.12 at tilme 0.15 and compare well with the exact solution given
by Ryu and Jones (1995) (solid lines). The advantages of idspdtion switch are apparent in this
problem since it contains both a fast and slow shock. In a rith & uniform viscosity parameter
a = 1.0 everywhere the fast shock is significantly damped. In Egul2 we see that the fast shock is
well resolved. Some small oscillations in the transverdecity profile are observed behind the slow
shock, as in the Brio and Wu (1988) problem. This problem akseful in the SPMHD case because
the magnetic field strength is sufficient to produce a negativess, meaning that the simulation is
unstable to the tensile instability in the absence of theclamping term §4.4.1). Thus it can be used
to investigate the effects of the anticlumping term on thecklprofile. Figure 4.13 shows the pressure
profile in the second shock tube problem with anticlumpingapeetersn = 4 and € = 0.8 with the
kernel evaluated at the average particle spacing (in tisis a&V(r /h) =W/(1/1.2)) and using the kernel
evaluated a¥V(r/h) =W(1/1.5) (as discussed if4.4.1). In the former case the anticlumping term can
produce significant errors in the shock profile around theamirdiscontinuity, whilst these remain small
in magnitude in the latter case. The velocity profiles fos tivioblem using the Morris (1996) formalism
(84.4.2) are shown in Figure 4.14. The results are very sintvldénose shown in Figure 4.12 and agree
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well with the exact solution (solid line), suggesting thkistapproach does not significantly degrade
the shock-capturing ability of the scheme, although théllagons around the slow shock are slightly
worse in this case. This problem is also stabilised in a gmphnner by subtracting the constaBg)(
component of the magnetic field as describe@d.4.

The third test illustrates the formation of seven discaiitias in the same problem (Figure 4.15). The
left state is given by(p, P, vx,Vy,Vz,By,B,) = [1.08,0.95,1.2,0.01,0.5,3.6/(4m)%/2,2/(4m)Y/?] and the
right state(p, P, vx, Vy, Vz, By, B;) = [1,1,0,0,0,4/(4m)Y/2,2/(4m)Y/?] with By = 2/(4m)'/? andy = 5/3.
Since the velocity in the x-direction is non-zero at the ltang, we continually inject particles into the
left half of the domain with the appropriate left state pndigs. The resolution therefore varies from
an initial 700 particles to 875 particlestat 0.2. The results are shown in Figure 4.15 at time 0.2.
The SPMHD solution compares extremely well with the exalitgmn taken from Ryu and Jones (1995)
(solid line) and may also be compared with the numericaltemiun that paper and in Balsara (1998).
The thermal energy and density profiles are slightly impdolrg our use of the total energy equation.
Again the rarefaction waves are quite smoothed due to thethimg applied to the initial conditions.

The fourth test (Figure 4.16) is similar to the previous i@rsexcept that an isothermal equation of
state is used. The left state is given(ipyvy, vy, Vz, By, B;) = [1.08,1.2,0.01,0.5,3.6/(4m)%/2 2/ (4m)Y/?]
and the right statép, vx, vy, Vz, By, B,) = [1,0,0,0,4/(4m)%2 2/(4m)Y/?] with By = 2/(4m)%2 and an
isothermal sound speed of unity. Results are shown in Figd@at time = 0.2 and compare very well
with the numerical results given in Balsara (1998) (solig)i

The fifth test shows the formation of two magnetosonic ratédas. The left state is given by
(p,Pvy,vy,By) = [1,1,—1,0,1] and the right state byp,P,vy,vy,By) = [1,1,1,0,1] with By =0 and
y = 5/3. Results are shown in Figure 4.17 at time 0.1 and compare extremely well with the exact
solution from Ryu and Jones (1995) (solid line). Outflow badany conditions are used such that the res-
olution varies from an initial 500 particles down to 402 pdets att = 0.1 in the domairk = [—0.5,0.5].
The artificial dissipation switches are used although vigthg Hissipation occurs in this simulation since
the artificial viscosity is only applied for particles appohing each other. With unsmoothed initial con-
ditions we therefore observe some oscillations behinddhefaction waves, which are removed in this
case by smoothing the initial discontinuity slightly. Asted in Monaghan (1997b) use of the density
summation also improves the results for this type of problem

The next test is a one dimensional version of a test used irdimensions by Toth (2000). In one
dimension the problem has also been studied by Dai and Waddi@894), Ryu and Jones (1995) and
Lee Harvey Oswald (1963). The left state is given(pyP, vy, vy, By) = [1,20,10,0,5/(4m)*/?] and to
the right by(p, P, vy, vy, By) = [1,1,—10,0,5/(4m)2] with By = 5.0/(4m)¥/? andy = 5/3. Results are
shown in Figure 4.18 at time= 0.08. The resolution varies from an initial 400 particles udl@z0
particles at = 0.08 in the domairk = [—0.5,0.5].and compare well with the exact solution given by
Ryu and Jones (1995) (solid line), although overshootsdririmsverse magnetic field are observed (and
hence also in the transverse velocity component). A smaliufation is also observed in the transverse
velocity component at the contact discontinuity. Resulthis test using the variable smoothing length
terms are shown in Figure 4.19 and in this case the the owashio transverse magnetic field and
velocity observed in Figure 4.18 are no longer present.

The final test, taken from Dai and Woodward (1994) and BalgE38a8), illustrates the formation of
two fast shocks, each with Mach number 25.5, presenting addimg benchmark for any numerical
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Figure 4.15: Results of the MHD shock tube test with left sta{@,P, vy, Vy,Vz,By,B;) =
[1.08,0.95,1.2,0.01,0.5,3.6/(4m)¥/%,2/(4m)*?] and right state (p,Pvx,Vy,VzBy,B;) =
[1,1,0,0,0,4/(4m)Y/2,2/(4m)%?] with By = 2/(4m)Y/? and y = 5/3 at timet = 0.2. This prob-
lem illustrates the formation of seven discontinuitiese Bxact solution is given by the solid line whilst
points indicate the positions of the SPMHD particles.
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Figure 4.16: Results of the isothermal MHD shock tube test with initialft lestate
given by (p,vx,Vy,Vz,By,B;) = [1.08,12,0.01,0.53.6/(4m%2/(4m¥? and right state
(P,P,vx,Vy,V,By,B;) = [1,0,0,0,4/(4m)%/2,2/(4m)Y/?] with By = 2/(4m)*? and an isothermal
sound speed of unity at timte= 0.2. This problem illustrates the formation of six disconttias in
isothermal MHD. Solid points indicate the position of theM##D particles which may be compared
with the exact solution given by the solid line.
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Figure 4.17: Results of the MHD shock tube test with left stgte P, vy, vy, By) = [1,1,—1,0,1] and right
state(p, P, vy, vy, By) = [1,1,1,0,1] with By = 0 andy =5/3 at timet = 0.1. This problem illustrates the
formation of two magnetosonic rarefactions. The exactt8mius given by the solid line whilst points
indicate the position of the SPMHD patrticles.
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Figure 4.18: Results of the MHD shock tube test with initial conditionghe left of the shock given by
(pv P7VXaVY7 By) = [17 207 107 07 5/(47-[)1/2] and to the rlght bxpv P7VX7VY7 By) = [1a 1) 7107 07 5/(47-[)1/2]
with B, = 5.0/(4m)'/2 andy = 5/3. Results are shown at tinhe= 0.08 and compare well with the exact
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Figure 4.19: Results of the MHD shock tube test shown in Figure (4.18) whth density calculated
by summation and using the variable smoothing length teResults compare extremely well with the
exact solution (solid line). In particular the overshoottransverse magnetic field and velocity observed
in Figure 4.18 are no longer present.
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Figure 4.20: Results of the MHD shock tube test with left stat@,P vx,vy,vz,By,B;) =
[1,1,36.87,-0.155 —0.0386 4/(4m)Y/2,1/(4m)*/?] and right state (p,Pvx,Vy,VzBy,B;) =
[1,1,—36.87,0,0,4/(4m)Y2 1/(4m) /3] with By = 4.0/(4m)Y? and y = 5/3. Results are shown
at timet = 0.03. This problem illustrates the formation of two extremsisong fast shocks of Mach
number 25.5 each. Solid points indicate the position of tR&l $articles whilst the exact solution
is given by the solid line. The overshoots in density, pressind magnetic field are a result of our
integration of the continuity equation and neglect of temglating to the gradient of the smoothing
length.
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Figure 4.21: Results of the MHD shock tube test shown in Figure 4.20 with diensity calculated
by summation and using the variable smoothing length teifhg. overshoots in density, pressure and
magnetic field observed in Figure 4.20 are no longer presahtlze spikes in the transverse velocity
components at the contact are much smaller in magnitude.
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Figure 4.22: Transverse velocity profiles in the MHD shock tube test showfigure 4.20 using the
Morris (1996) formalism 44.4.2), also with the variable smoothing length terms. Alseraor in the
intermediate states around the contact discontinuity $2oked in this case due to the non-conservation
of momentum on the anisotropic force terms. However, therésrquite small.

scheme. The left state {, P, vy, Vy,Vz,By,B,) = [1,1,36.87, —0.155 —0.0386 4/ (4m)Y/2,1/(4m)Y/?]
with right state(p, P, vy, Vy, Vz, By, B;) = [1,1,~36.87,0,0,4/(4m)%?,1/(41)*/?] with B, = 4.0/ (4m)*/2

andy = 5/3. Results are shown in Figure 4.20 at titne 0.03. Inflow boundary conditions are used
such that the resolution varies from an initial 400 partialg to 1286 particles at= 0.03 in the do-
mainx = [—0.5,0.5]. The results compare extremely well with the exact solu(gniid line) given by
Dai and Woodward (1994) and with the numerical solution ity Dai and Woodward (1994) and
Balsara (1998), especially given the extreme nature of thblem. The spikes in transverse velocity
components are due to the fact that firstly, no smoothingpsiegbto the initially discontinuous velocity
profiles in this case, and secondly that these componentsgrémplicitly smoothed in the simulation
by the application of artificial resistivity to the transsermagnetic field components. The overshoots
in density and pressure are absent when the density is asdduby direct summation. As in the previ-
ous test, the overshoots in magnetic fields are no longemaasevhen the variable smoothing length
terms are included (Figure 4.21). Using the variable smogtlength terms the spikes observed in the
transverse velocity components at the contact discomyiawé also much smaller. The results of this test
using the Morris (1996) formalisng4.4.2) are shown in Figure 4.22, also using the variable s
length terms (although the average of the normalised kgmaglients is used in the anisotropic force, as
described irg4.4.2). In this case a small error in the intermediate sttegnd the contact discontinuity
is observed due to the non-conservation of momentum on fketewpic force terms. However the error
is quite small even for this somewhat extreme problem.

4.6.4 MHD waves

The usefulness of the variable smoothing length terms canta demonstrated, as in the hydrodynamic
case (3.7.2), by the simulation of linear waves. The equoataf magnetohydrodynamics admit three
‘families’ of waves, the so called slow, Alfvén and fast vweayappendix C). The tests presented here are
taken from Dai and Woodward (1998). We consider travellimgvsand fast MHD waves propagating

in a 1D domain, where the velocity and magnetic field are albwo vary in three dimensions. We
usey = 5/3 for the problems considered here. The perturbation iniyeissapplied by perturbing the
particles from an initially uniform setup (since we use dquass particles). Details of this perturbation
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Figure 4.23: Results for the 1D travelling fast wave problem. Initial ddions are indicated by the
dashed line. Results are presented after 10 periods folations with 32, 64, 128, 256 and 512 parti-
cles. The fast wave speed in the gas is very close to unitytwkiaccurately reproduced by the SPMHD
solution (ie. the numerical solution is in phase with thei@hiconditions). The artificial dissipation

terms are turned on but controlled using the switches de=tin§3.5.2 and4.5.2 which dramatically
reduces their effects away from shocks. The wave is steeightly by nonlinear effects.

are given in 3.7.2 and the amplitudes for the other quastdie derived in appendix C. We leave the
artificial dissipation terms on for this problem using thecodgsity, thermal conductivity and resistivity
switches. This is to demonstrate that the switches aret@fein turning off the artificial dissipation in
the absence of shocks. The variable smoothing length téin3.6) do not affect the wave profiles but
inclusion of these terms gives very accurate numerical gpeeds.
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Figure 4.24: Results for the 1D travelling slow wave problem. Initial ditions are indicated by the
dashed line and results are presented after 10 periodsnfioiations with 32, 64, 128, 256 and 512
particles. The slow wave speed in the gas is very close ty,usich that the numerical solution at

t = 10 should be in phase with the initial conditions. This islwepresented by the SPMHD solution
for the higher resolution runs. The artificial dissipatiemts are turned on but we have used the switches
described irg3.5.2 andg4.5.2 which dramatically reduce their effects away fromcitso The wave is
steepened slightly by nonlinear effects.

The fast wave is shown in Figure 4.23, with the dashed linengithe initial conditions. The initial
amplitude is 0.55% as in Dai and Woodward (1998). Resultslaogn at t=10 for five different simu-
lations using 32, 64, 128, 256 and 512 particles in the xetloa. The properties of the gas are set such
that the fast wave speed is very close to unity, meaning tteasolution at = 10 should be in phase



4.6 Numerical tests in one dimension 119

with the initial conditions. Figure 4.23 demonstrates tihé is accurately reproduced by the SPMHD
algorithm. The effects of the small amount of dissipatioesgint can be seen in the amount of damping
present in the solutions. The small amount of steepeningrebd in the wave profiles is due to nonlinear
effects and agrees with the results presented by Dai and Wrdd 1998).

The slow MHD wave is shown in Figure 4.24, again with the dddime giving the initial conditions.
The perturbation amplitude is 0.6% as in Dai and Woodwar®&)L9Results are again showntat 10
at resolutions of 32, 64, 128, 256 and 512 patrticles.In thgedhe properties of the gas being set such
that the slow wave speed in the medium is very close to urggirameaning that the solutiontat 10
should be in phase with the initial conditions. We see in Fégd.24 that this is reproduced by the
SPMHD solution for the higher resolution runs. The artifidizsipation terms are again turned on using
the switches. The wave is slightly overdamped in this caseesive construct the artificial dissipation
using the fastest wave speéd .5) which in this case is approximately three times the vmepagation
speed. This means that the convergence of the wave ampidwdeds the linear solution with increasing
resolution is quite slow for this problem.

4.6.5 Magnetic toy stars

As was noted in the previous chapter, for codes designedrolaie self-gravitating gas it is useful to
provide numerical benchmarks which do not involve fixed lwauies. As such a class of exact solutions
to the hydrodynamic equations with a force proportionaln® to-ordinates was described§8.7.6,
referred to as ‘Toy Stars’. I1§3.7.6 the exact solutions for the non-linear oscillatiohthe Toy Star was
used to benchmark the purely hydrodynamic SPH algorithm.

The exact non-linear solution for the toy star describegBi7.6 may be easily extended to the MHD
case. The simplest case is to assume that the only non-zempooent of the magnetic field is in the
y—direction. In this case the induction equation (4.7) become

dBY B ov*

L (4.105)

which shows thaBY [1 p. The one dimensional equation of motion for the magneticstay therefore
becomes

dvX 10 B? 2
- <P+2—Ilo>_Q X (4.106)

whereB? = (BY)2. By assuming the same constant of proportionality betvg¥eamndp for each particle

such thatB¥ = agp, the exact solution for the MHD system is exactly the samedka hydrodynamic

case (fory = 2), except that the constalidtis replaced by

/ 02

K=K+ — 4.107
210 ( )

such that the effective pressupgincluding both gas and magnetic pressures) is specifieardiog to

P = K'p?. The exact solution is then calculated by solving the omyirtifferential equations (3.143)-

(3.145) as described KiB.7.6.
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Figure 4.25: Results of the non linear, magnetic Toy star simulation withial conditions v=x, p =
(1-x%), B =p/v2 (le. A=C=H =1, 0 =1/v2 andy = 2), shown after approximately three
oscillation periods. Equal mass particles are used withriabi initial separation, whilst the magnetic
field is chosen such that gas pressure and magnetic presswegual in magnitude.

For the SPMHD solution, the magnetic case the magnetic fielel/olved using the SPH form of
equation (4.20) with the magnetic field and velocity allow@dary in two dimensions whilst the particles
are constrained to move along the x-axis. Weyset2 and choose the magnetic field strength such that
the ratio of gas to magnetic pressufes= 1, ie.B = (0,1/v/2p,0). For this simulation we apply a small
amount of artificial viscosity using the switch in order targathe small oscillations resulting from the
rapid movement of the outer edges. Results are shown ind-iy@5 att = 10.68, corresponding to
approximately three oscillation periods in this case. Athanhydrodynamic case the agreement with the
exact solution (solid line) is extremely good.

4.7 Summary

In this chapter we have derived the basic formalisms nepe$sathe simulation of magnetic fields
using the Smoothed Particle Hydrodynamics method. All eftéchnical difficulties described in the
introductory section have been addressed to a level whete satisfactory solutions can be obtained
for many astrophysical problems, although many improvemtnthe algorithm could still be made. Of
these the most important is to implement a cleaning proeefdurthe magnetic divergence and hence we
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devote chapter 5 to this topic.

Reviewing this chapter, the equations of magnetohydraayceg in the continuum limit were de-
scribed ing4.2.1, paying particular attention to the consistent fdation of these equations in the pres-
ence of magnetic monopoles, since theB = 0 constraint cannot be maintained exactly in all discreti-
sations in any numerical scheme. Conserved quantitiesvdaio be monitored in addition to the usual
hydrodynamic quantities were discussed2.2. In§4.3 SPH formulations of the MHD equations
were presented. The equations of motion and energy wengedeself-consistently from a variational
principle using the discrete forms of the continuity anduicitibn equations as constraints, using a form
of variational principle similar to that used to derive afigtive formulations of the SPH equations in
§3.4. In the MHD case this was shown to remove the ambiguity thesinclusion or neglect of terms
proportional told- B in the induction and momentum equations which has beenigfgkd recently by
several authors. The derivation showed that a monopolsereimg form of the induction equation is in
fact consistent with a conservative formulation of the motam and energy equations. Furthermore the
derivation from a variational principle guarantees cdesisy between the discrete formulations of these
equations. Consistent alternative formulations of the SPMequations were given if4.3.4, similar
to those derived in the SPH cagi8@). Other formulations of the magnetic force terms whieleh
been used for SPMHD were also discussed briefl§4i3.5, the main disadvantage to these formalisms
being the lack of momentum conservation which leads to mehe poor results on problems involving
shocks. The consistent formulation of the SPMHD equatianerporating a variable smoothing length
was discussed if4.3.6, which, as in the hydrodynamic case are shown to leattteased accuracy in
a wide range of problems, including linear wavg4.6.4) and shock tube§4.6.3).

A one dimensional stability analysis for the self-consistrmulation of SPMHD derived i1§4.3
was presented ig¢.4. This somewhat limited stability analysis was suffitierhighlight the instability
in the momentum conserving form of the equations of motioicvibccurs at short wavelengths under
negative stresses and leads to a clumping effect betwetd@mr An approach to remove this instability
was described i§4.4.1, following the ideas of Monaghan (2000) in which a fiictis short range force
is added which counteracts the clumping effect. This foaded the form of an artificial stress which
is proportional to the anisotropic component of the totaksst, which is the interpretation given by
Monaghan (2000). I84.4.1 an alternative interpretation was given in terms ofaification to the
kernel gradient used in the anisotropic force term. Thirprietation considerably simplified the stability
analysis including the anticlumping term presentegdid.1, which demonstrated that whilst (for fixed h)
the term very effectively removes the instability, one disantage is an error in the numerical wave speed
which grows with increasing negative stress. This error stewsvn to be reduced significantly (although
not removed) by a small modification to the anticlumping terhich changes the kernel shape at a fixed
r/hrather than in relation to the average particle separatimvever a major caveat to the anticlumping
approach is that the formalism was not found to be stablelfoakies of negative stress in the case of a
variable smoothing length. Various alternative approactere therefore suggested. An approach which
can be used in many practical situations is to simply subtag constant component of the magnetic
field from the gradient term representing the anisotropicdd4.4.4). For situations where this cannot
be used, an alternative approach suggested by Morris (1§94)2) was found to also give good results
on the shock tube tests described4n6.3.

In §4.5 dissipative terms were formulated in order to simulatévshocks. The terms are a natural
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generalisation of the formalism of Monaghan (1997b) giventhe hydrodynamic case §8.5. The
dissipation terms were derived under a minimum of assumgtiy assuming a dissipation in the total
energy equation which involves a jump in the total energy r@ugiiring that this term result in a pos-
itive definite contribution to the entropy. Under only thée® assumptions a discrete formulation for
a dissipative term in the induction equation was obtaineavinvolves the SPH formulations of the
second derivative given i§8.2.4. This term was shown to provide an artificial resistiun addition to
the artificial viscosity and artificial thermal conductivitlerived in the hydrodynamic case. A slightly
modified version of these dissipative terms which accouwntguimps in the component of the magnetic
field along the line joining the particles (due to non-zerognetic divergence) and velocities perpen-
dicular to this line (providing a shear viscosity componems also presented. A switch to control the
application of artificial resistivity was given §#%.5.2, although it was noted that in the absence of a shear
viscosity term it is better to apply artificial resistivitynfiormly so as to provide sufficient smoothing of
the discontinuities in both the magnetic field and transveedocity.

Finally, detailed one dimensional numerical tests wersgmted irt4.6. In particular the algorithm
has been tested on a wide range of standard test problemdausedchmark recent grid-based MHD
codes. A simple advection test was first considefdd6(2), before considering a wide range of shock
tube problems demonstrating the shock-capturing abilityhe algorithm §4.6.3). In particular the
shock tube tests highlighted the fact that artificial réstgtis a crucial requirement in order to prevent
post-shock oscillations in the magnetic field. For high Maomber shocks, the density (although only
where the continuity equation is integrated) and magnetid fire observed to overshoot the exact so-
lution slightly, although this error is removed by the irgibn of the variable smoothing length terms
which provide a normalisation to the kernel gradient. Thygoathm was also tested against small am-
plitude both fast and slow MHD wave&4.6.4) and shown to give good results although somewhat slow
convergence on these problems due to the dissipative terms.



