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ABSTRACT

We compare the statistics of driven, supersonic turbulabhégh Mach number usingLASH

a widely used Eulerian grid-based code amhNTOM, a Lagrangian smoothed particle hy-
drodynamics (SPH) code at resolutions of up1@? in both grid cellsand SPH particles. We
find excellent agreement between codes on the basic stakistoperties: a slope &f1-%° in

the velocity power spectrum for hydrodynamic, Mach 10 tlebae, evidence in both codes
for a Kolmogorov-like slope of:~5/2 in the variablep!/3v as suggested by Kritsuk et al.
(2007) and a log-normal PDF with a width that scales with Maamber and proportion-
ality constanty = 0.33 — 0.5 in the density variance—Mach number relation. The measured
structure function slopes are not converged in either co8¢ 2 elements.

We find that, for measuring volumetric statistics such aspihweer spectrum slope and
structure function scaling, SPH and grid codes give rougiaimparable results when the
number of SPH particles is approximately equal to the nurobgrid cells. In particular, to
accurately measure the power spectrum slope in the ineatigle, in the absence of sub-grid
turbulence models, requires at lea$2> computational elements in either code. On the other
hand the SPH code was found to be better at resolving densdwsts, giving maximum
densities at a resolution @283 particles that were similar to the maximum densities reswblv
in the grid code a5122 cells, reflected also in the high density tail of the PDF. Wd &PH
to be more dissipative at comparable numbers of computdtedaments in statistics of the
velocity field, but correspondingly less dissipative thamgrid code in the statistics of density
weighted quantities such a%/3v.

For SPH simulations of high Mach number turbulence we finthftdrtant to use suffi-
cient non-lineays-viscosity in order to prevent particle interpenetratioisihocks (we require
Buisc = 4 instead of the widely used default valu®,;s. = 2).

Key words: hydrodynamics — Interstellar Medium (ISM) — methods: nuoar— shock
waves — stars: formation — turbulence

1 INTRODUCTION with which gas is converted into stars (Padoan 1995; Vazque
Semadeni, Ballesteros-Paredes & Klessen 2003; Krumholz& M
Kee 2005; Elmegreen 2008); most likely determines in larae p
the mass distribution of star forming cores (the core massidi
bution, CMD) (Ballesteros-Paredes et al. 2006; Dib et ab80
and possibly the mass distribution of stars themselvesthe Ini-
tial Mass Function (IMF) (Padoan et al. 1997; Padoan & Nordlu
2002; Hennebelle & Chabrier 2008). However, given that ktlig-
ory of turbulence is elusive even in the incompressiblemegapart
from the phenomenology provided by Kolmogorov (1941), ane i
evitably turns to numerical simulations to glean insight.

Dense interstellar molecular clouds are ubiquitously olegkto
have non-thermal line widths implying supersonic intermad-
tions (Zuckerman & Evans 1974). Furthermore the amplituide o
such motions increases with spatial scale in a manner rscaint

of turbulent flows in the laboratory (Larson 1981; Solomoralet
1987; Heyer & Brunt 2004). Understanding the nature andirorig
of such ‘supersonic turbulence’ is therefore key — pertihp&ey

— to understanding star formation (Elmegreen & Scalo 200d¢ M
Low & Klessen 2004; McKee & Ostriker 2007). Turbulence pro-

vides a natural explanation for the clustered and hieraathiature Given the importance of numerical simulations in underdtan
of star formation (Elmegreen & Falgarone 1996); the meakure ing the basic statistics of supersonic turbulence, and tssiple
fractal dimension of interstellar gas (Kritsuk et al. 20G-&der- implications for star formation theory, it is crucial thatsults in-
rath et al. 2009, and references therein); the few percénisgfcy ferred from such simulations are robust with respect toedkfiit
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2 Price & Federrath

numerical methods and codes. This has motivated at leashwo
jor code comparison projects in the last year or so in which bb
the present authors have been involved. The ‘Potsdam cisopar
(Kitsionas et al. 2009) compared simulations of decayirygird-

2 NUMERICAL METHOD
2.1 Equations

We solve the equations of non-self-gravitating hydrodyicam

dynamic turbulence using 7 different codes (3 SPH codes and 4 given by

grid-based codes) at a fixed resolutian > particles for the SPH
codes, an@®56° grid cells for the grid codes). The results showed
generally good agreement on statistics such as the derisig P
and power spectra, similar to earlier studies (Mac Low e1@98;
Klessen et al. 2000). In a similar spirit the KITPO7 compamis

v = Vv, )
ov VP
E + (V . V)V = —7 + fsti'm (2)

compared a large number of grid based and SPH calculations ofwheref;. is a stirring force, the details of which are discussed

decaying turbulence, for both hydrodynamics and MHD, anaea
of resolutions, though the results are yet to be published.

Both of these comparisons are problematic in several réspec
The first is that it is difficult to make a statistical comparisus-
ing decaying turbulence, since the time evolution is lichitend
therefore only a few instantaneous snapshots can be cothpare
stantaneous snapshots however are subject to internfitiehia-
tions that make a head-to-head comparison based on singe ti
slices difficult (Kritsuk et al. 2007; Federrath et al. 2018gc-
ondly, both comparisons start from evolved initial corais, pro-
duced from either a previously driven SPH simulation (Patsplor
a grid-based calculation (KITP) that has to be interpolated/or
downsampled to/from the grid/particles appropriate todffter-
ent codes, with an ensuing loss of accuracy and consistafoyeb
the comparison has even begun (this problem is much worskdor
MHD case where differences in divergence-free representafor
the magnetic field between codes is a further issue).

In this paper, we consider only two codes, an SPH code,
PHANTOM, and a grid-based codelLAsH, which we take to be
broadly representative of the fundamentally differentssés of
code used for star formation studies (the codes are dedciibe
§2). The turbulence in both codes is driven from stationamifoum
initial conditions with exactly the same energy input anividg
pattern over multiple turbulent crossing times. We alsosaber a
range of resolutions1@8?, 256° and5123 in both grid elements
and the number of SPH particles) in order to estimate resolut
requirements and establish where convergence has ocinmweé
code or the other, or neither. In the present work we limiselves
to a study of hydrodynamic turbulence, that is, without negn
fields. This is primarily because the algorithms for Maghgtiro-
dynamics in SPH currently being used for star formation istid
(e.g. Price & Bate 2008) rely on the Euler potentials forrtiataof
the magnetic field, that cannot be used for turbulence stualier
multiple crossing times due to the restricted field repregams
(see Price 2010 for recent progress).

The goals of this paper are to: i) establish whether or naegr
ment can be found between SPH and grid codes on the basg: stati
tics of supersonic turbulence; ii) define resolution crédor var-
ious statistical measures of supersonic turbulence sugrowsr
spectra, PDFs and structure functions; and iii) estabtistrelative
strengths and weaknesses of each method for turbulencesstud
We discuss the numerical methods§id, with the Fourier space
driving discussed i§2.2. Results from both codes are presented in
83 and our findings discussed gd.

L http://kitpstarformation07.wikispaces.com/Star+Fation+Test+Problems

below §2.2). The pressure is related directly to the density via an
isothermal equation of state

®)

where, since the equations are scale-free to all but the Manof
ber, we use:; = 1. We solve (1)-(3) using periodic boundary con-
ditions in the three-dimensional domaity, ~ € [0, 1]. The initial
conditions are a uniform density medium= po = 1 with zero
initial velocities.

We discuss our results in terms of the dynamical time, defined
astq = L/(2M), whereL is the box size and is the RMS Mach
number. However, the absence of a physical scale in theiegaat
means that the results can be arbitrarily scaled to thesietéar
medium by defining length, mass and time scales. For example,
adopting a length scale of 10 pc and a sound speed of 0.2 km/s,
gives the physical time fronty't, according to

L Cs
boysicar = 2.5 Myr <10 pc) (0.2 km/s)

One can similarly set a mass scale by defining the initial idens
to beno ~ 3 x 102 cm™3, i.e., po ~ 1072 gem™? assuming
fully molecular hydrogen gas, giving a total mass in the bbx-o

1.5 x 10* M. For these parameters, the maximum density reached
in our calculations from turbulent fluctuations alonepigq. ~
10717107 gem ™3 or npnae ~ 10° cm=3 (see Fig. 2) for the
highest resolution SPH calculation.

P=clp,

-1 ¢
E.

4)

2.2 Driving

For driving turbulence we use the same driving routine used i
Schmidt et al. (2006); Federrath et al. (2008, 2010, 2009) an
Schmidt et al. (2009). The driving routine updates a vector o
real values according to an algorithm that generates ant€mns
Uhlenbeck, or “coloured noise” sequence (e.g. Eswaran &Pop
1988). The sequence, is a Markov process that takes the previ-
ous value, weights by an exponential damping factor withvargi
auto-correlation times, and drives by adding a Gaussian random
variable, weighted by a second damping factor, also withetar
tion timet,. For a timesteplt, this sequence can be written as:

Tn+1 =f$7L+U\/ (1_f2)zn (5)

where f = exp(—dt/ts), andz, is a Gaussian random variable
drawn from a Gaussian distribution with unit variance, ans
the desired variance of the Ornstein-Uhlenbeck sequereee(s.
Bartosch 2001). The resulting sequence satisfies the pieperf
zero mean, and stationary RMS equabtdts power spectrum in
the time domain can vary from white nois€(f) = const) to
“brown” noise P(f) x 1/£3).

The physical forcefield is constructed in Fourier spacegisin
the Ornstein-Uhlenbeck process. This allows a simple dposim
tion of the field into a solenoidal (divergence-free) pad arcom-
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pressible (curl-free) part using a Helmholtz decompaositia this
study, we only keep the solenoidal part. Inverse Fourieisfiama-
tion yields the physical solenoidal force field;, used in equation
(2). A more detailed description of the forcing module apglhere
is provided in Federrath et al. (2010).

The time-dependent Fourier modes for constructing the forc
ing patternsfs;;. were calculated and written to a file before the
actual numerical experiments. Both the SPH and the grid ceak
exactly the same forcing sequence from this file. Thus, itgues-
anteed that both codes were using exactly the same forciath at
times during the comparison experiments.

2.3 FLASH (grid)
2.3.1 Hydrodynamics

FLASH (Fryxell et al. 2000; Dubey et al. 2008) is an adaptive-mesh
refinement code (Berger & Colella 1989) that uses the pieszewi
parabolic method (PPM, Colella & Woodward 1984) to solve the
equations of hydrodynamics. The PPM provides a shock dagtur
scheme to keep shocks and contact discontinuities shariodtly
spreading over 2-3 zones), while maintaining third ordeueacy

in smooth flows through a parabolic reconstruction schemthis
study, FLASH v3 was used, which provides a uniform grid mode.
Thus, the overhead in storing and iterating the adaptivéhrhis-
archy was completely removed, which yields a speed-up dbfac

of a few. FLASH is parallelised using the message passing inter-
face (MPI). For the resolutions studied heteg®, 256° and5123

grid cells), 1, 8 and 64 MPI processes respectively were irsad
mode of parallel computation, each calculation taking hiyd 2,
250 and 5000 CPU-hours respectivelyasH has been extensively
tested against laboratory experiments (Calder et al. 28@2pther
codes (Dimonte et al. 2004; Heitmann et al. 2005; Kitsiortad.e
2009).

2.3.2 Tracer particles

FLASH provides an option for Lagrangian tracer particles, which
can be evolved alongside the hydrodynamics. Similar to Sttt p
cles, tracer particles provide information in the Lagramgirame,
but unlike SPH particles, the tracer particles have no faekilon
the hydrodynamics, i.e. the variables on the grid are indegpet of
the tracers. The tracer particles'y andz positions can be any real
number within the computational domain, not bound to the.gri
However, they are moved with the velocity computed on thd.gri
The velocity is interpolated at the exact position of eaelér par-
ticle for each timestep using a first order cloud-in-celéimpblation
scheme. Higher-order interpolation schemes like the gritar-
shaped-cloud scheme can also be used instead. Howeveregdie us
the first-order scheme here, because various tests suggeste
strong dependence of our results on the interpolation seh&hre
tracer particles were moved on the hydrodynamic timestéptive
grid-interpolated velocity using a first-order scheme. Whdlised
128%, 256° and 512° tracer particles at = 0 on a uniform grid
at exactly the same positions as the SPH particles weralisét
in the PHANTOM calculations (se§2.4.4), matching the grid and
SPH resolutions128?, 256® and512%, respectively). Adding the
tracer particles does not add any significant computatiomat-
head to therLASH calculations, apart from the additional memory
requirements.

In order to extract the maximum possible information from
the tracer particles, we have computed — in post-processing
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a density field based solely on the tracer particle positidims

is achieved by assuming they are particles of fixed massddivi
ing the total mass in the simulation by the number of tracetipa
cles) and using the SPH density calculation routine fromaN-
TOM where the density and smoothing length are iterated self-
consistently (based on Egs. 6 and 7). Column-integratedisnrss-
section slice plots of the density field were then producddrathe
PHANTOM results usingsPLASH(Price 2007).

2.4 PHANTOM (SPH)

PHANTOM is a low-memory, highly efficient SPH code written es-
pecially for studying non-self-gravitating problems. Toede is
made very efficient by using a simple neighbour finding scheme
based on a fixed grid and linked lists of particles. The caliohs
shown in this paper have used only the shared meroeynVIP
parallelisation inrPHANTOM, using 4, 8 and 32 processors and re-
quiring 265, 5050 and 120,000 CPU-hours for 1282, 256 and
5123 calculations, respectively. Thus tR86° PHANTOM calcu-
lation was roughly comparable in computational cost toxhg?
FLASH calculation, and similarly for th&28% PHANTOM vs. 256°
FLASH (though some caution is required here due to the differ-
ent machines and architectures used to run each code). One ma
also consider thatHANTOM was found to be roughly an order of
magnitude faster than ‘standard’ SPH codes in the Kitsi@bad.
(2009) turbulence comparison.

2.4.1 Hydrodynamics

For hydrodynamicsPHANTOM implements the full variable
smoothing length SPH formulation developed by Price & Mon-
aghan (2004) and Price & Monaghan (2007), whereby the smooth
ing length,k, and densityp, are mutually dependent via the density
sum (for particlez)

Pa = ZmbWab(h(L)7 (6)
b
which is an exact solution to (1), and the relation
1/3
he=n () ™
Pa
wherem is the particle mass an,, = W(|ra — rpf, ha) IS

the SPH smoothing kernel (see e.g. Monaghan 1992; Price 2004
Monaghan 2005 for reviews of SPH). Equations (6) and (7) are
iterated self-consistently using a Newton-Raphson met®de-
scribed in Price & Monaghan (2007), where in this paper weshav
usedn = 1.2, giving approximately 58 neighbours per particle in a
smooth distribution.

The fact that the smoothing length has a functional depen-
dence on (ultimately) the particle position means that theve-
tives of h can be accounted for in the equations of motion, resulting
in exact conservation of momentum, angular momentum, gnerg
and entropy in the SPH equations.RRANTOM the equations of
motion (2) take the form

dv, o Pa+Qa
- = Xb:mb{ o2 VaWas(ha)
Py + g
+ Qo2 VaWas(h) | + fstir, (8)

where P is the pressureQ) is a dimensionless quantity related to
the smoothing length gradients (see Price & Monaghan 2007 fo
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details) and; represents the artificial viscosity term (discussed be-
low). In the absence of shock dissipatian £ 0) there is zero
numerical dissipation contained in the above equationsaedyy

is conserved to the accuracy of the timestepping scheme e-cher
Kick-Drift-Kick leapfrog integrator equivalent to the \aity Ver-

let method, implemented with individual particle timestepor an
isothermal equation of state the viscosity tegrtherefore repre-
sents the only numerical form of energy loss.

2.4.2 Artificial viscosity

Shocks are treated PHANTOM using a standard artificial viscos-
ity term, though formulated slightly differently to the @w@USPH
expression in order to obtain a more efficient calculatiostdad
of the usual expression we write the artificial viscosityyas (8),
where

_ %aapavsig,a|vab : IA‘(Lb|7 Vab * IA‘(Lb <0 9
qa = IS 9)
0 Vab ' Tab 2 0
wherev,, = v, — v, and we use
VUsig,a = Cs,a + /Bvisc|vab : IA‘ab| (10)

as the maximum signal velocity for hydrodynamics. Theéerm

in the signal velocity provides a non-linear term that waigjier
nally introduced to prevent particle penetration in highddaum-

ber shocks (see e.g. Monaghan 1989). Indeed one of our fsding
from this comparison is that sufficieftviscosity is an important
factor for accurate SPH calculations in the supersoniawegWe
usefyvisc = 4 in this paper, the motivation for which is discussed
further in§3.2.1 and demonstrated in Appendix A.

The artificial viscosity described above is essentiallysme
as the Monaghan (1997) formulation with a slightly differexer-
aging of the density and signal velocity. We use the Morris &rivl
aghan (1997) switch to reduce dissipation away from shaoks,
which the dissipation parameteris evolved according to a source
and decay equation

dog

dt

Qg — Qmin

Ta = ha/(0Cs) (11)

+ Sa,
Ta
where we have used = 0.1, S = max(0, —V-V), &min = 0.05,
enforcedamq. = 1.0, and given all particles = amir initially.

2.4.3 Boundary conditions

Periodic boundary conditions are implemented#nrNTOM by di-
rectly finding neighbours across the periodic boundary aitek-
acting with a distance in each direction calculated acoort

, (12)

. Ta — T
(za — xp) = min | (za — xp), (|a — x| — L) a7b|
b

|za —

whereL is the box size in the corresponding direction. This gives
a significant memory saving since memory does not have to-be as
signed to the storage of ghost particles.

2.4.4 |Initial conditions

The SPH particles were set up initially on a regular cubitidet
using equal mass particles, identical to the setup usecéot a-
grangian tracer particles in tlre ASH calculations §2.3.2).
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Figure 1. Mass-weighted RMS Mach number as a function of time for the
six calculations, as indicated in the legend. The time diaius similar for
both the SPH and the grid code and for all resolutions up tét;, where

all calculations show deviations from each other of orderif%M /M
though with no systematic trends with either code or resmiut
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Figure 2. Maximum density as a function of time in the calculations us-
ing PHANTOM (SPH, black lines) andLASH (grid, red lines) at resolutions
of 1283, 2563 and 5123 particles/grid cells, as indicated. The evolution
shows strong time variability, a consequence of the intiéemty inherent

in the log-normal probability distribution function (ireasingly higher den-
sities have correspondingly smaller probabilities). Treximum density is
therefore also a strong function of resolution in each cédel283 parti-
cles the SPH code resolves maximum densities similar t@thokieved at
5123 on the grid.

3 RESULTS

Both codes have been run using the same driving pattern fdy-10
namical times# = 0.5 in code units) and at a resolution 0283,
2562 and512°% elements. For the grid code, this resolution is fixed
spatially throughout the evolution, giving fixed resolutim vol-
ume but variable resolution in mass, whilst for the SPH cdae t
particles move following the fluid motion, giving equal rag®mn

in mass but variable resolution in volume. The two methods ar
therefore very nicely complementary for assessing thésstat of
supersonic turbulence for different quantities which mayetiher
mass or volume-weighted. It should be noted that whilst-geded
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calculations of ISM turbulence have been run at much higeer r
olutions — up 1020483, see Kritsuk et al. 2007, with resolutions
of 1024* even in early simulations of decaying turbulence (Porter
et al. 1998) —, our use of 134,217,728 SPH particie2?) rep-
resents the highest resolution turbulence simulationoperéd to
date with an SPH code, over an order of magnitude higher tiean t
“high resolution” calculation (10 million particles) in Basteros-
Paredes et al. (2006) and two-and-a-half orders of magntigher
than the~200,000 particles used for many of the runs in that pa-
per and elsewhere (Klessen et al. 2000; Vazquez-Sematlahi e
2003).

3.1 Time evolution of global variables

The time variation of the mass-weighted RMS Mach number &nd o

Supersonic Turbulence: Grid vs. SPH5

SPLASH visualisation tool (Price 2007) whilst the grid based re-
sults have been integrated through the grid. We show theritien
through thez-direction in the codes.

At early times the calculations show clear agreement in the
location of individual shockst(= 1t4, top row) and in the devel-
opment of large scale structureés= 2t,, second row). By = 4t4
(fourth row) there is no longer clear correspondence eveheat
largest scales between codes, in agreement with the obisgeve
ations in the time evolution of the RMS Mach number around thi
time (Fig. 1).

In terms of resolution, high-density structures appeatebet
resolved in the SPH calculations at the same number of canput
tional elements. However, the grid results tend to showebetso-
lution of features in low density regions, as one might exgewe
in SPH the resolution is preferentially shiftedayfrom low den-

the maximum gas density are shown in Figures 1 and 2, computedSity régions towards high density regions.

at every timestep for both codes. The mass-weighted RMS Mach = """ ot ) _ -
¢ of individual shock structures within the first dynamicahés (top

number in SPH is simply the square root of the average value o
v?/c2 on the particles, whilst irFLASH this has been computed
using the RMS value gfv?/(poc?), to correspond to the SPH av-
erage.

The Mach number evolution (Fig. 1) is similar in both codes
and at all resolutions up to aroundt4, at which point all cal-
culations show variations of order 5% from each other. Naurcle
trends either between codes or with resolution are apparetit
cating that the variation observed is due to the stochaatiare of
fully-developed turbulence producing different thougtistically
similar evolution (see Fig. 3 for the evidence for this in then-
sity field). It is these intermittent fluctuations that makebulence
code comparisons based on snapshot-to-snapshot conmpdiffso
cult, because the instantaneous turbulence field will dyitikerge
between different codes in the fully developed regime bseaf
the chaotic nature of the turbulence (see projections doesslor
t 2 2tq comparing the SPH and grid results).

The evolution of maximum density (Fig. 2) shows strong time
variability in all six calculations, similar to the resulshown in
Kritsuk et al. (2007, Fig. 2) and Federrath et al. (2009, Rig.
For isothermal flows arbitrarily large density fluctuatiozen be
produced, though with vanishingly small probability as tenin-
ferred from the log-normal form of the PDF. This simply reftec
the highly intermittent nature of the density fluctuationssuper-
sonic, turbulent flows. The maximum density is a clear fuorctf
resolution in each code, showing no signs of convergencenas
might expect seeing as we are sampling the very highest daia p
in the PDF. The results also demonstrate the evidently higlass
resolution in the SPH code: 28° particles the maximum density
resolvable in SPH is roughly similar to that resolvedsa®® on
the grid. Usings123 SPH particles the maximum density resolved
at RMS Mach 10 is roughly three-and-a-half orders of magiaitu

above the mean density which one might therefore expect to be

similar to the mass resolution in2848> grid-based calculation.

3.2 Density field
3.2.1 Projected density fields

The projected column density fields at the highest resaiyi®2®)

are shown folPHANTOM, FLASH and the density field computed
from the FLASH tracer particles in Fig. 3 (left, middle and right
columns, respectively), at intervals &ft = 1t, for the first four
dynamical times. The column density plots for SPH have been
produced directly from the particles to a 2D pixel map using t

© 2009 RAS, MNRASDOQ, 1-16

The excellent agreement between codes in the development

row) enabled us to make a very detailed comparison of feahge
tween codes which proved to be very helpful in the comparnson
cess. In particular it highlighted that, with the parametse were
initially using, some of the dense structures created bgdfesion

of one or more shocks were rapidly losing definition in the SPH
results, resulting in a noisy density field that was rathdikarthe
grid results (this is shown in more detail in Appendix A). Tgreb-
lem could be easily traced to be caused by particles pemgfrat
“overshooting” the shock front in these high Mach numberc&ko

a problem which the non-linedt (von-Neumann-Richtmyer) term
in the SPH artificial viscosity (Egs. 9-10) was designed &vpnt
(see Monaghan 1989). The problem was thus easily fixed by us-
ing a larger value foB,:s.. We have therefore use@,;sc = 4
throughout the paper, rather than the nomifiak. = 2 which is
widely used — and sufficient— for low Mach number calculasion

It should be noted that this makes very little differencehim dver-

all dissipation rate since the linear viscosity texa) ominates the
numerical dissipation rate almost everywhere except gtsteong
divergence in the velocity field (where particle penetmaian oc-
cur).

Comparing the projected column density fields calculated us
ing the tracer particles in theLASH calculation (right column) to
the grid-based density field (centre column), showing a thea
sub-grid structures, suggests that the tracer partiches the abil-
ity to provide a truly staggering improvement in resolutiarthe
density field. The improved resolution is all the more rerahik
considering that the tracer particles are merely adveciéu the
grid-based velocity field at essentially no extra compatei ex-
pense.

3.2.2 Cross section slices

Column density plots such as those shown in Fig. 3 in general
tend to highlight dense features, since all structuresgatba line
of sight contribute to the projected field (which also tenalbé
the case in observations). The features in column densitg pke
therefore reflected by statistics such as the PDF (Figs. &r8)
guantities such as the maximum density (Fig. 2). Howeveu-vol
metric quantities such as the volume filling factor of the enial
and the velocity field, reflected in statistics such as powwecta
and structure functions, are better illustrated by cressien slices.
For this reason we show cross section slices of density ahitie
plane of the computational domain £ 0.5), showing a resolution
study of the initial shock development at 1 dynamical timig (B)
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SPH, 512° grid, 512° ’ griditracers, 512°

log column density

Figure 3. Projected column density in tirHANTOM (SPH, left) and-LASH (grid, centre) calculations at a resolutionsdf2? particles/grid cells, showing the
evolution over the first few dynamical times (top to bottotogether with the density computed from the tracer parficsitions in therLASH calculation
using an SPH density estimate (right panel). After 1 dynaittime (top row), there is clear correspondence in indialdshock structures between the SPH
and the grid code, whilst after 2 dynamical times (second) there are similar large scale features. However by 3 or 4uyeal times (third and fourth
row) only a weak correlation even between large scale featisrobserved. Dense features are in general better résplttee SPH calculations at equivalent
resolutions (in a number of particles=number of grid ce#lsse), whilst the grid-based calculations tend to bettalve features in low density regions (see
also Fig. 5). The increased resolution of sharp featurebdrtracer particle density fields (right column, comparedewtre column) suggest a remarkable
ability for the tracer particles to provide information ambsgrid scales at essentially zero additional computationst.
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SPH, 128° grid, 128° gfid tracers, 128°_

/

Y

log density

SPH, 256° grid, 256°

SPH, 512° ’ grid, 5123

Figure 4. Cross section slice of the density at the box midplane-(0.5) after 1 dynamical time, for three different resolutiongg>, 256 and5123 in grid
cells/particles, top to bottom) usirrgHANTOM (SPH, left),FLASH (grid, centre) and for the density calculated from the trazaticles in the grid calculation
using an SPH summation (right panels).

log density

SPH, 512°

Figure 5. Cross section slice of the density at the box midplane-(0.5), as in Fig. 4 but here shown after 10 dynamical times and stgpenly the highest
resolution calculations5(123). The FLASH calculations (grid, centre) shows better resolution in temsity regions compared ®HANTOM (SPH, left). In
evolved snapshots the tracer particles appear strongdjeckd in high density regions and almost completely alisemt the voids (right panel).
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and a comparison of the evolved snapshots at the end of the sim
lations ¢/ts = 10), showing only the highest resolution (Fig. 5).
The plots show the density field usimrgiaANTOM (left columns in
Figs. 4 and 5)FLASH (centre column in both Figs.) and for the
tracer particle density field computed from theasH calculations
(right columns).

Figs. 4 and 5 show clearly that the grid results are better re-
solved in low density regions. The resolution in the SPHuwalc
tions is concentrated towards high density regions whitheia-
tively little of the volume. Comparing individual shock sttures
in Fig. 4 shows that in general the shocks have better deimiti
in FLASH, with the shock widths in the highest resolutibAAN-
TOM calculation similar to those obtained 26 in FLASH. This
is as might be expected given the relative crudeness of theksh
capturing scheme (artificial viscosity) in the SPH code careg
to the PPM shock capturing scheme (Colella & Woodward 1984)
employed inFLASH. In the more evolved snapshots (Fig. 5), the
grid results show many well-defined shock features in lowsdgn
regions that are much less well resolved in the SPH calcmsti

Some numerical artefacts are visible in the lowest resmiuti
SPH calculations in the earliest snapshot(1t4, top left panel of
Fig. 4) due to the “breaking” of the initial regular lattice avhich
the particles were placed as it is distorted by the flow. ggtngly
similar artefacts are visible — and more accentuated — irctive
resolution tracer particle plots (top right panel). TheBeats are
not obviously visible either in the SPH or the tracer pagticht
higher resolution (middle and bottom rows of Fig. 4) or attat
times (Fig. 5) once the particles have adopted a more ‘ratarra
rangement. There are no obvious artefacts at low resolurtitime
grid based calculation.

Density slices calculated from the tracer particles irrihesH
calculation are shown in the rightmost panels of Figs. 4 andifig
the SPH density summation (6) iterated self-consistenitiy the
smoothing length according to (7). Comparison with the-paded
density field at 1 dynamical time, the tracer particles apfeaub-
stantially increase the resolution in high density regioMhilst
most of the features have close correspondence to thosdeviisi
the grid slices (centre column of Fig. 4), it is notable thalease
shock structure appears in the lower part of tfie; = 1 snap-
shots at all resolutions that is completely absent from buSPH
and grid density fields. The absence of this feature ever 2it
in the centre column of Fig. 4, yet clearly presentlag® in the
tracer particles, suggests that it may be an artefact oétnaarti-
cles clustering below the grid scale. At later times (rigah@l of
Fig. 5) this is even more evident by the fact that the traceti-pa
cles are strongly concentrated in high density regions argely
evacuated from low density regions (i.e., large parts ofpidueels
are saturated at the density floor of the plot due to the albsehc
a contribution from tracer particles even with iterated sthing
lengths).

The difference between the density slices and column den-
sity plots shows that in generdipr similar numbers of compu-
tational elementgnot the same as equal computational expense),
SPH codes are better at resolving dense structures (Higdtidy
projections through the volume), whilst grid codes aredrett re-
solving volumetric structures (highlighted by slices tgbuhe vol-
ume).

3.3 Probability Distribution Functions

Many studies have demonstrated that the density probaditri-
bution function (PDF) in supersonic turbulence is well eanted

by a log-normal distribution (e.g. Padoan et al. 1997; Ra&so

Vazquez-Semadeni 1998; Klessen 2000; Kritsuk et al. 2B6d:

errath et al. 2008; Lemaster & Stone 2008; Federrath et 4D)20
Inp—

ie.,
1 o)
exp [——( np) }dlnp. (13)

2
where the mean of the logarithm of densityp is related to the
standard deviatios of In p by

p(Inp)dnp =

To? o

np=—0%/2. (14)

The appearance of a log-normal form in isothermal flows can be
understood analytically as a consequence of the multipleaen-

tral limit theorem assuming that individual density peo@ations
are independent and random (Vazquez-Semadeni 1994; Rassot
Vazquez-Semadeni 1998; Nordlund & Padoan 1999). In physic
terms this means that density fluctuations at a given locaie
constructed by successive passages of shocks with a jumip amp
tude independent of the local density (Ballesteros-Paredel.
2007; Kritsuk et al. 2007; Federrath et al. 2010). Furtheetbe
width of the PDF forln p is found to be related to the rms Mach
number according to

o =1In (1 + b2./\/12) , (15)

where the factob ~ 1/2 has been suggested by early numeri-
cal experiments (e.g. Padoan et al. 1997). More recentlisii

et al. (2007) find a much lower value 6f~ 0.26 whilst Beetz

et al. (2008) findb = 0.37. Brunt (2010) has also recently mea-
suredb = 0.5 & 0.05 in the Taurus Molecular Cloud, based on a
method for inferring the 3D variance from 2D observationgetie
oped by Brunt et al. (2010). Federrath et al. (2008) and Fatter
et al. (2010) reconcile these results by showing that thahaad

the PDF depends not only on the RMS Mach number but also on
the relative degree of compressible and solenoidal modéisein
forcing, with b = 0.33 appropriate for purely solenoidal forc-
ing and b=1 for purely compressive forcing. Lemaster & Stone
(2008) — performing calculations at a range of Mach numbers
— suggest that the relationship (15) should be adjustedinfind
o? = —0.721n (1 + 0.5M?) + 0.20 from a three-parameter fit
for hydrodynamic turbulence. For the purposes of the corspar

at hand we simply fit the PDFs using a single paramiebased on
Egs. (13)—(15).

3.3.1 Volume weighted PDFs

Time-averaged PDFs af = In(p/po) for the three SPH calcula-
tions and three grid calculations are shown in Figures 6,d78&n
The plots show the time average of individual PDFs computed a
intervals of At = t4/10, starting from2t4 when turbulence is rea-
sonably well established (see Figures 1, 3). This givesah 681
snapshots used in the averaging procedure. For referenceme
pute the PDF for each code with a bin width of 0.Zirp, with the
first bin starting af1n p) min = —12.

For the grid results the volume weighted PDF is constructed
simply by binning the grid cells according to the valuelop. To
obtain a volume weighted PDF in SPH it is necessary to weight
the contribution of each particle by the volume element eiased
with that particlen / p, which for equal mass particles is simply in-
versely proportional to the density. To construct the PDRvege-
fore bin each particle according to the valudwp and add a con-
tribution of 1/p to the bin, normalising the resultant PDF such that
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Figure 6. Time-averaged Probability Distribution Function (PDF)thé
logarithm of the density field = In p from the PHANTOM (SPH, black
lines other than dotted) areLAsH (grid, red lines) calculations, each at
resolutions ofl 283, 2563 and5123 particles/grid cells. The PDFs are av-
eraged over 81 snapshots evenly spaced betwggn= 2 andt/ty; = 10.
Here we show the PDFs on a linear scale to highlight the changesi-
tion of the peak value as a function of resolution. We have pletted, as
dotted black lines, the best fit (to the peak) log-normalrilistions from
equations (13) and (15) usirlg= 0.5 (best fitting the5123 grid results)
andb = 0.33 (best fitting the5123 SPH results). The SPH and grid results
show complementary trends with resolution.

-
j=3
(o)} L
g
<
S I
<
= I
£ 20
en
E I
3/
A

In (@/Q0)

Figure 7. Probability Distribution Function (PDF) df p, as in Fig. 6, but
here shown on a logarithmic scale. The PDFs are log-normgbdal ap-
proximation for~ 3 — 4 orders of magnitude in density either side of the
mean, demonstrated by the best fit log-normal distributiditied to the
peak in Fig. 6) given by the dotted black lines using: 0.5 andb = 0.33

to fit the 5123 grid (solid red line) and 123 SPH (solid black line) results
respectively.

the integral over all bins (i.e, the total probability) isityn This
is different to the procedure used to construct density Pfibdfs
SPH particles used both in the Potsdam comparison (Kitsiehal.
2009) (see however Fig. 11 in Kitsionas et al. 2009) and byipus
authors (e.g. Vazquez-Semadeni et al. 2003; Klessen 2086;
Low et al. 1998), whereby the SPH results were first interedla
to a grid and a PDF constructed as above for the grid-basatiges
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Figure 8. Time averaged PDFs, as in Figures 6 and 7 but here showing the
tails of the distributions at very low and very high densiti€he SPH code
(black lines other than dotted) resolves the PDF to mucheniglensities
than the grid code (red lines), though the grid results spwadingly extend
further into the low density regime. The log-normal distitibns (dotted
black lines) are no longer a good approximation to the distion very far
from the mean, in particular in the high density tail (wheme 2563 and

5123 SPH results appear to show convergence).

The main disadvantage to interpolating to the grid is thatgart

of the high density tail of the SPH calculation that fallsdvelthe
grid scale is removed. To retain this tail requires that PEHesuld
not be constructed from SPH particles by interpolating to a,grid
though this is a perfectly valid procedure for computingwoétric
guantities such as power spectra (24).

The PDFs thus constructed (Fig. 7) show clearly a log-normal
distribution in agreement with many previous calculatiand with
theoretical expectations (see above). Whilst the restdtbmadly
similar for all calculations in the central regions arouhd tnean
density and in overall shape, clear differences may alstberued
between codes and with resolution, particularly in thestafl the
distribution (Fig. 8). At the low density end (Fig. 8) thedresults
tend to show a wide, low density tail, with probability deres
decreasingwith resolution. By contrast, the SPH results show a
narrower low density tail with probability densities thatrease
with resolution.

Whilst both codes appear to be converging towards each,other
it is clear that neither is well converged at the low densitygl e
(p/po < 0.01) at least for the resolutions used in this paper. Thus
the low density tail should not be used to fit the PDF width from
either grid or SPH codes alone at these resolutions. Ingteadea-
sure the PDF width using the best fit around the mean value (i.e
based on Fig. 6). The resulting best fit log-normal distiing are
plotted as dashed lines in Fig. 6, correspondiny $00.33 for the
512% SPH results and = 0.5 for the 512% grid results. As it turns
out, the best fitting log-normal distributions also provagood fit
to the low density tails (Figures 7 and 8), though the sameis n
true at very high density (see Fig. 8).

At the high density end the trend with resolution for both
codes is for the PDF in the high density tail to increase #lygh
increasing the PDF width. The AsH results show a stronger trend
with resolution at high densities and appear to convergautdsthe
PHANTOM results, with rough equivalence between fe? grid
based results and thH@8> SPH results in resolving the high den-
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sity tail, similar to what is observed for the evolution of xmaum
density in Fig. 2. Interestingly, the SPH results appeaveaed
between th&56° and512° calculations for densities up to around
p/po ~ 10° (though not to the best fit log-normal, see below), with
the primary effect of the additional resolution&t2® being to ex-
tend the tail to lower probabilities (but with similar ovénaidth).

That the SPH results appear close to converged between theé

2562 and 512° and that the grid results are converging towards
them suggests that a value lof~ 0.35 — 0.4 would be the con-
verged value. This is similar to the results of Beetz et 2008

for solenoidal forcing § = 0.37), and close to the prediction of
b = 1/3 for solenoidal forcing from the heuristic model for the
parameter presented in Federrath et al. (2008) and Fedetrat.
(2010).

The reason for the discrepancy at high density merits some
consideration given the importance of this regime in refato star
formation. The most straightforward conclusion is that¢baver-
gence we find is merely incidental and that performing caliohs
at higher resolution would resolve the remaining discrepa@er-
tainly, resolution requirements on the PDF become greatégher
Mach numbers because of the stronger time-variability nt#ils
of the distribution. This is evident from the strong flucioas in
pmaz (Fig. 2) that are up to an order of magnitude larger than the
fluctuations shown in Figure 2 of Kritsuk et al. (2007). Theray
also be differences due to the random forcing algorithm.dn p
ticular Federrath et al. (2010), using the same (solenpidat-
ing algorithm employed here, also find a small deviation fltogi
normality at the high density end, though smaller than wedinde
they employ1024® elements and a lower Mach number (Mach 6).
They also found strong deviations from log-normality wheroe-
pressible forcing was applied, indicating that the PDF ghlden-
sities is quite sensitive to the forcing employed. Fedargtal.
(2010) discuss intermittency as a cause of non-Gaussian&BF
They quantify and discuss the Mach number—density coioakat
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Figure 9. Velocity power spectragtﬁ), shown compensated dy? as an
average ove®1 snapshots evenly spaced betwegty = 2 andt/t; = 10
for the SPH (solid, black) and grid (dashed, red) calcutetiat the three
different resolutions, as indicated. For calculationsramve256 compu-
tational elements in either code the results in the scalinge? < k < 11
are consistent with a slope slightly shallower than Burgeakie of k—2,
betweenk —1-93 andk —1-°8 depending on whether or not thie< k& < 11
region is interpreted as inertial range or a bottleneckceffe

phenomenology for incompressible turbulence. Superstoinizi-
lence is generally found to have a power spectrum closerdo th
completely pressure-free shock-dominated turbulenceymed by
solving Burgers’ equation3 = 2, implying dominance of the non-
linear advection ternfv - V)v over the pressure gradient in the
equation of motion. A value consistent with the observegp&ar
(1955) slope for the IMF ofV (m)dlogm o« m~*3dlogm re-

as the key to non-Gaussian PDFs (see Vazquez-Semadeni 1994guiresg ~ 1.75, which Padoan & Nordlund (2002) suggest arises

Passot & Vazquez-Semadeni 1998). Falgarone et al. (1994 a
Hily-Blant et al. (2008) also find strong intermittent fluations

in their molecular cloud observations and attribute the@fiinda-
mental property of turbulence, i.e., intermittency (seg,,&he &
Leveque 1994).

In principle it is also possible to compute the PDFs from the
tracer particle density field calculated with the SPH sunwnat
However we find that the resulting PDFs show a strong deviatio
from a log-normal distribution, particularly in the highrdsgty tail
(much stronger than those seen in Fig. 8 and in the opposée-di
tion), due to the manner in which tracer particles tend tetelu
in high density regions at later times (see discussio§Bi2.2 and
right panels in Fig. 5).

3.4 Power spectra

Padoan & Nordlund (2002) derive a relationship between thgsm
distribution of dense cores to the slope of the kinetic epeayver

spectrum in supersonic, super-Alfvénic turbulence vartiation
N(m)dlogm m =34 dlogm, (16)

whereg is the slope of the kinetic energy power spectrum assumed

to be a power law of the form
E(k) < k77, 17)

where 8 would be~ 5/3 according to the Kolmogorov (1941)

from supersonic MHD turbulence in the super-Alfvénic regi

Recently Kritsuk et al. (2007) have suggested that Kol-
mogorov scaling may be applicable for highly compressibte t
bulence by assuming that the mean volume energy transker rat
pv?v/l, is constant, implying thaf(k) o k~°/3 holds for the
variablew = (p'/®v) rather than simply for the velocity. We thus
consider power spectra of both quantities.

We have computed the power spectra for each code directly
from gridded data using the same analysis script for botlesod
For the SPH code, this means that the results have first bespdon
lated to grids of siz&56%, 512% and5122 cells for the1283, 2563,
5123 particle calculations respectively. The interpolatios baen
performed using a routine from ttePLASHvisualisation code, the
details of which are described in Price (2007). The maindliaa-
tage of interpolating SPH data to a grid is that any resatuiio
the SPH code on scales smaller than the grid scale is loss. Thi
is most obvious when comparing quantities such as the mawimu
density on the particle data compared to the maximum debsity
the interpolated grid. For example the maximum densityrjpae
lated onto a512° grid (max(p/po) ~ 3 — 4 x 10%) is a factor
of ~ 3 — 4 lower than the maximum density from the particles
(max(p/po) ~ 1 — 2 x 10%) for snapshots from thg12> SPH
calculation, which would remove some of the informatiomfrthe
high density tail of the PDF as discussed above. Whether br no
the interpolation procedure affects the power spectrurcuéation
can be determined simply by comparing the results from paier
tions to different sized grids. We find that for the power speq,
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Figure 10.Density-weighted velocity power spectra, as in Fig. 9 butlie
guantity (p1/3v) instead of the velocity field. There is tentative evidence
of a flat portion in the compensated spectra at resolutionses563 in
either code, suggesting a small scaling range in the redich 8 & <

6 (dotted line) consistent with a Kolmogorov-like=5/3 scaling for this
quantity as suggested by Kritsuk et al. (2007). This alsgesty thab123
particles/grid cells is the minimum resolution requiretr@ndetermine the
power spectrum slope in the inertial range in either code ééso Federrath
et al. 2010, Fig. C.1).
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Figure 11.Power spectra, as in Figs. 9 and 10, but here for the dendity fie
computed as the spectrum of the density fluctuatigms= p — p. Clearly
the SPH code provides increased resolution in the denslty diehigh &
compared to the grid-based code for the same number of catignal el-
ements. The spectra have been compensatéd though it is evident that
the slope of the density spectrum is not well described bygleipower-
law.

as one might expect given that it is a volumetric measurentieait
power spectra are identical for different grid sizes apannfi’s
very close to the grid scale.

Power spectra

(18)

for an arbitrary vector fieldv are constructed from the 3D Fourier
transform,
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The angle-averaged power spectrum was then obtained btatie s
dard procedure of summing IE(in bins according to the norm of
the wavenumbetk| (as in e.g. Kitsionas et al. 2009).

(19)

3.4.1 Volume weighted velocity power spectra

The velocity power spectrum (that is, wheve= v), averaged over

81 snapshots as described above for the PDFs, is shown — com-
pensated by:> — in Fig. 9 for the three SPH calculations (solid
black lines) and for the three grid calculations (dashedlirezt).

The results, similar to previous studies, show a peak atrilieng
scalek ~ 2, a power law slope (flat in these compensated spectra)
betweenk ~ 4 and up tok ~ 12 in the highest resolution calcu-
lations and an extended dissipative tail at lakg8oth codes show

a power law slope close to the pressure-free Burgers moole¢ sl

of k2. The trend with resolution is for both codes to tend towards
a slightly shallower slope, with the highest resolutiorcoédtions
consistent withv k~19% — =198 for both codes a8122, depend-

ing on whether or not the results for< k£ < 12 are interpreted as
inertial range or as a bottleneck effect. The extent of thvegqudaw
scaling range of the velocity power spectrum appears to be ve
similar in both codes at equivalent (number of grid cells anu
ber of particles) resolutions, though the SPH results shéaster
drop-off towards highek in the dissipative tail in agreement with
the results by Kitsionas et al. (2009).

These results are entirely consistent with the power lapesio
obtained in Figure 2 of Padoan et al. (2007). However thefedif
strongly from the low resolution SPH and TVD results shown in
Fig. 2 of Ballesteros-Paredes et al. (2006), shown compethsa
Fig. 8 of Padoan et al. (2007). In particular our SPH resuits
power law slopes consistent with= 2 or shallower which is in
stark contrast to thg = 2.7 — 2.9 obtained by Ballesteros-Paredes
et al. (2006), albeit at lower Mach numbers (6 and 3 respalgiv
This can be understood primarily as an effect of the numiemsa
olution, since we observe a significantly steeper slope mlau
resolution SPH calculations shown in Fig. 9. As noted in tteok
duction however, the resolution in our ‘low’ resolution SB&icu-
lation, employing 2.1 million particles, is already an ardémag-
nitude higher than than the 200, 000 particles used for most of
the calculations in Ballesteros-Paredes et al. (2006Y (pleeform
one ‘high’ resolution calculation using 10 million particles, the
power spectrum of which is not shown in their paper, though it
is used to derive a core mass distribution). We also find &xel
agreement between both the SPH and grid-based results vghich
in contrast to Ballesteros-Paredes et al. (2006) where gasured
slopes differ between their codes which had been attribiatélde
very different properties of the SPH and TVD schemes usdukiin t
paper.

3.4.2 Density weighted velocity power specis& {v)

Fig. 10 shows the time-averaged power spectrum, computed as
above, of the quantityy = p'/3v, which according to the hy-
pothesis of Kritsuk et al. (2007) is the quantity that for etgonic
turbulence should show a Kolmogorov-like scalingkof/?. We

have therefore compensated the spectra®y in order to assess
whether or not this can be supported on the basis of our @alcul
tions. The spectra in Fig. 10 show similar generic featurghadse
observed in Fig. 9.



12 Price & Federrath

The lower resolution calculationd48% and 256°) in both
codes show slopes that appear shallower thas 5/3, though
the convergence of both codes is towards a steeper slopeesith
olution. In particular th&122 calculations with both codes show a
small, flat region in the compensated spectrum betwieens and

points. A more efficient calculation can be made by seleatimyg
a subsample of points. We achieve this by randomly seleating
fixed number of points (either grid cells or particles) anchpat-
ing the pair-wise interaction of these sample points wittpaints
in the computational domain, with a constraint to achieweilar

k ~ 6 that may be interpreted as a resolved inertial range (shown sampling of all lags. For the structure function calculasiove typ-

by the dotted black line) consistent with the Kritsuk et 20@7)
scaling, with a ‘bottleneck effect’ fat > 6 extending into the dis-
sipative tail. For the grid code, this is consistent withfindings of
Kritsuk et al. (2007) and Federrath et al. (2010) #ist® is roughly
the minimum resolution required to resolve the inertiaigenand
we conclude that a similar requirement holds for SPH.
Interestingly, the difference between codes in rate of afbp
in the high# dissipative tail for thep'/3v spectrum is the reverse
of what occurs for the velocity field alone (comparing to Fy.
That is, forp'/3v the grid-based results drop off much faster at

ically use~ 250,000 sample points. For the SPH results we have
firstly computed structure functions by interpolating the+-Sdata

to a grid, as described above for the power spectra. Whilsetin
sures that the analysis step is identical to the grid-baesdts, this
procedure has the disadvantage that the SPH densities kit ve
ties are smoothed by the interpolation step. For compavisomave
therefore computed structure functions also directly fitbm par-
ticle data. In the particle version we iterate the strucfuretions

to completion by progressively increasing the number ofgam
points by a factor of 2 and check that the error between thé fina

high-k than the SPH code, whereas the SPH code drops off fasterresult and the structure functions using half the numberofe

in the velocity spectrum. We interpret this as being due éoféitt
that SPH has bettenassresolution for equal numbers of compu-
tational elements (reflected in the density field) but worskeime
resolution (reflected in the velocity field). This is furtreident in
the spectrum of the density field alone, discussed below.

3.4.3 Density power spectra

Fig. 11 shows the power spectra of the density field, compased
the spectrum of density fluctuatiodg = p — p such that the in-
tegral under the power spectrum gives the density variatdst

not well fit by a single power law we show the spectra compeaksat
by k2 to facilitate the comparison. The overall shape of the spect
is similar between codes on large scales (stglihough it is clear
that the SPH code shows a much higher resolution in the gensit
field, falling much more slowly at higk compared to the grid re-
sults at comparable resolutions and explaining the resuliy. 10

as intermediate between Figures 9 and 11. The SPH density spe
trum at128* particles appears better resolved than 266 grid
spectrum though not as well resolved as 3he* grid spectrum,
lying somewhere between the two.

3.5 Structure Functions
We have measured the structure functions,
Sp(l) = (lw(r +1) — w(r)[") (20)

from our calculations, where in this paper we show ordersoup t
i.e.,p = 1,2,3,4 and5 and the variablew is either the velocity
w = v or the quantityw = (p'/3v) as for the computation of
the power spectra in the previous section. We compute gitifly
three dimensional structure functions (rather than theaqmate
‘directionally split’ versions used e.g. in the KITP comisan) by
sampling pairs of either grid cells or SPH particles, corimuuthe
relative velocity difference and adding the result (thechltte value
to the powerp) to the appropriate hin corresponding to the spatial
separation of the points (the “lag” — given here in compotei
units i.e. in terms of the box length L). Dividing by the totaimber
of contributions to each bin produces the average, as itetiday
the angle brackets..). We have computed the structure functions
for both the transversem perpendicular to the ling joining the
pair of points) and longitudinal( parallel tol) components ofv
in each case.

Calculation of the structure functions is computationaiky
pensive, in principle requiring a summation ov@fN?) pairs of

points is small (typically we require the RMS error on theHagt
order structure function to be 1%). In practise this produces a
similar sample size to that used for the grids i.e., a few heshd
thousand sample points for5a2* calculation, but can be more ef-
ficient if the velocity field is well ordered (e.g. at early &s).

3.5.1 \elocity structure functions

The structure functions for the velocity fielé/(= v) at all com-
puted ordersyg = 1..5) are shown in the left hand side of Fig. 12
for the 512* calculations with both codes. The structure functions
show the same general features in both codes, showing sluges
appear power-law like in the range- 0.03 to! ~ 0.3 (though see
below), a flat structure around the driving range3(< 1 < 0.5)
and a fall-off in the dissipative tail (< 0.03). The transverse struc-
ture functions appear flatter around the driving scale coeths
the longitudinal version, consistent with the fact that eedused
purely solenoidal forcing. Differences between codes ipaip-
pear in the dissipative tail, as observed also in the powectsp
(Figures 9 and 10). In the velocity structure functions, ih e
velocity power spectrum, it appears that the SPH resultffl
faster in the dissipative tail (comparing solid and dotkaaklines
in the left hand part of Fig. 12), though the results computied
rectly from the particles (dashed lines) appear to show w&eslo
fall-off, indicating that at least some of this may be an fate of
the interpolation procedure. However the structure fumsticom-
puted directly from the particles also show much shalloiepes
at the lowest ordergp(= 1..4), so it is not clear that the structure
functions computed in this manner are truly comparable.

3.5.2 Density weighted velocity structure functiop¥' {v)

Following Kritsuk et al. (2007), we have also computed gtite
functions forw = (p*/3v). These are shown on the right hand side
of Fig. 12, showing — given the above — only the versions com-
puted identically from a grid (i.e., interpolated in the SP&ke).
Again, the qualitative features are in good agreement liviee
two codes — in particular the structure functions fdr®v show

a power-law scaling range over a much wider range of disgnce
0.01 <1 < 0.3. Aswas the case for the power spectra (see Fig. 10),
with the density-weighting the grid code (solid lines) ssanfaster
fall-off in the dissipative tail compared to the SPH codesfuzd
lines), in contrast to the pure velocity version (compartimg right
hand and left hand panels in Fig. 12).
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Figure 12. Structure functionsS,, = (|w(r + ) — w(r)|?P) as a function of spatial separation (the 1&g for ordersp = 1,2,3,4 and5, showing the time
average ove81 snapshots evenly spaced fregn= 2 to ¢, = 10 in each case. Structure functions are shown for the lonigigdi¢w || 1, top) and transverse
(w L 1, bottom) components of the velocity field; = v (left) and for the mass-weighted velocity = p!/3v (right). The results from theLAsH (grid)

5123 calculation are given by the dashed red lines whilstthenTom (SPH) results a5123 are shown by the solid black lines, where these have first been
interpolated to 123 grid in order to be analysed identically to the grid restRssults for the velocity field computed directly from the Siticles for the

5123 calculation are plotted on the left figure using dashed bliagls.
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Figure 13. Time-average of the measured structure function stppevhereS,, « IS¢ for the transverse velocity (left) and/3v (right), averaged frons1
snapshots evenly spaced betwegty, = 2 andt/t; = 10, and plotted as a function of the structure function ondeFhe solid black lines correspond to
the PHANTOM (SPH) calculations whilst the red dashed lines corresportierFLASH (grid) calculations, each shown at 3 different resoluti¢the slopes
decrease with resolution in both codes). Error bars showi ¢herrors in the time-average of the measured slope. The poméig time average of the

structure functions themselves are shown in the lower pasfefig. 12.
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3.6 Structure function scaling

A more quantitative analysis can be made by performing & leas
squares fit to determine the structure function slgpassuming
S, o 1 for each ordep. The results of such a fit to the time-
averaged structure functions shown in Fig. 12 — performext av
fixed Al in the range).1 < | < 0.15 (see below) — are shown in
Fig. 13. Plotted are the fitted slogg at each order as a function
of p, for both the velocity structure functions (left panel) ahe
density-weighted versions (right panel). The results ftbemSPH
code, computed from the grid-interpolated structure fionst are
shown in black, whilst theLAsH (grid) results are shown in red. In
order to quantify the time variability in the value of the 3 we
have also computed the standard deviation in the struatictibn
slope at each order computed for each of the 81 snapshotssest
above. Thd — ¢ deviations are plotted as the error bars in Fig. 13.

For the velocity structure functions (left panel of Fig. 1/&a-
sonable agreement between codes is seemingly obtainde:fovd
lowest order structure functiong & 1 and2) at the highest res-
olution employed %122, though see below). The grid code (red,
dashed lines) appears close to (though not fully) self-eqyed at
these orders (but not for > 2) whilst the SPH code (solid, black
lines) appears only close to convergence at the lowest.drdersit-
uation appears slightly better for tp&/3-weighted structure func-
tions (right panel of Fig. 13), where the grid code (red, éadmes)
shows apparent convergence in the slopes yp-to3 between the
256 and 5122 calculations. The SPH results (black, solid lines)

Boldyrev (2002) theory, though the relative scaling we haea-
sured does compare reasonably well to the parameters sedges
by Schmidt et al. (2008).

4 DISCUSSION AND CONCLUSIONS

In this paper we have performed a detailed comparison ofétiss
tics of supersonic turbulence using high resolution nuca¢gimu-
lations with two fundamentally different codes:AsH, an Eulerian
grid-based code anBHANTOM, a Lagrangian particle-based SPH
code. Despite the very different numerical methods we firgeim-
eral very good agreement between the codes on the many sispect
of supersonic turbulence, though it is clear that neithelecshows
results that are fully converged 5t2% except for a small scaling
range in the velocity power spectrum with both codes and some
dication of convergence near the peak and at the high desrsity
of the PDF in the SPH case.

We find good agreement in the fact that hydrodynamic turbu-
lence at Mach 0 has a velocity power spectrum with a slope around
E(k) « k=%, very close to Burger's value aB(k) o k™2,
confirming many previous results using only grid-based s¢de.
Padoan et al. 2007; Federrath et al. 2010). At the highesiutasn
employed, both codes support the idea that the power spectiu
the mixed quantity'/v shows a Kolmogorov-like scaling in the
power spectrum of®/3 as proposed by Kritsuk et al. (2007). Both
codes agree that the PDF of the logarithm of the density slzows

appear to show On|y a small Change between the measured s|opedistributi0n that is Iog-normal to gOOd approximation fandities

at all orders between th256° and512° results, though given the
remaining disagreement between codes evéxi 2it it is not clear
that true convergence has been reached in either.

around3 — 4 orders of magnitude either side of the mean density,
with the factorb relating the width to the Mach number measured
to lie betweerb = 0.33 to b = 0.5, with the converged value ex-

The somewhat large caveat to the results shown in Fig. 13 is pected to lie somewhere aroubd- 0.4. However, both codes also

our finding that the determined slope depends strongly oretinge
of scales Al = lynaz — Lmin) USed to perform the least squares fit.
This is discussed in more detail in Appendix B and demoretrat
by Fig. B1 that shows the dependence pbn the employed\[ for
the transverse structure functions. It is clear from thé¢ flaat the
measured slope steepensss increased that relatively little true
power-law scaling range is apparent in either code at tlwutsns
employed. This is particularly true for the velocity stnure func-
tions (left panel of Fig. B1) where either a very shaiti(< 0.02)
scaling range exists or none at all. The situation is maHgiira-
proved for the density-weighted structure functions (rigéinel of

show that there are significant deviations from a log-noristti-
bution at high density, as also found by Federrath et al.@01

Our conclusions regarding resolution and computational re
quirements are as follows:

(i) For measuring volumetric statistics such as the powecsp
trum slope and structure function scaling, we find that SPHl an
grid codes give roughly comparable results when the number o
SPH particles is approximately equal to the number of gritsce
This means that SPH codes are not well suited to measuririg suc
guantities since for this kind of problem an SPH code will lag s
nificantly more expensive than a uniform-grid implemeratatat

Fig. B1), where the measured slope is less dependent on the fit similar numbers of computational elements (we find the cbtte

ting range (also apparent from Fig. 13). However there remai
significant dependence akil even for the lowest order = 1. Fur-
thermore, it is clear that any nominal convergence betwasesi
and512? results in individual codes seen in Fig. 8ly occurs if a
relatively short range ih (Al < 0.05,i.e.0.1 <1 < 0.15) is used
to perform the fit (and, as noted above, the measured slogbsin
range also do not agree between codes). It is thereforeutiiff
assert that either code produces a resolved scaling irr ¢ithee-
locity or density weighted structure functionsaaty orderat these
resolutions.

Given the above, we have not attempted a detailed compari-

son with phenomenological models for the structure fumcsical-
ing, such as those proposed by She & Leveque (1994) (rewised f
supersonic turbulence by Boldyrev 2002 and Schmidt et &80
Nevertheless, although the true structure function sgakmains

to be determined, it is clear that the scaling for botand p'/v
does not match either the Kolmogorov (1944, ¢ p/3) or Burg-

ers (, = 1 for p > 1) expectations, and also does not match the

SPH calculations witlPHANTOM similar to the cost of running the
grid code ELASH) at twice the resolution, i.e., witk56° particles
~ 5123 grid cells in terms of CPU time).

(ii) On the other hand the SPH code was found to be better at
resolving dense structures, giving maximum densities asalu-
tion of 128° particles that were similar to the maximum densities
resolved in the grid code atl23 cells, reflected also in the high
density tail of the PDF. SPH is therefore a more efficient méth
this regard, which is an important reason why it is frequentied
for studying star formation (for which a grid based code nespu
adaptive mesh refinement, adding a significant computdtowes-
head).

(iiiy At comparable resolutions Npar¢ Neens), SPH
(PHANTOM) appears to be more dissipative (steeper dissipative tails
in the power spectrum and structure functions) in the vefdi@ld,
but the reverse is true for the statistics of the densitygiveid
quantity p'/3v where the grid KLASH) results appear more dis-
sipative. We attribute the former to the greater sophistioaof the

~
~
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shock capturing scheme in the grid-based code, and the tatte
the better resolved power in the density field provided bySRéi
code.

(iv) The absolute values of the structure function slopesnat
converged in either grid or SPH &123, requiring much higher
resolution in order to make a meaningful comparison withisga
models.

(v) Inorder to accurately simulate supersonic turbulencef?H
itis important to ensure that sufficiefitviscosity is applied to pre-
vent particle interpenetration in shocks. At Mach 10 we nequ
Buise = 4 instead of the usuad, ;s = 2.

(vi) We find that calculation of the sub-grid density fieldfro
the tracer particle distribution using an SPH summationsigunif-
icantly enhance the resolution of high density structuremfthe
grid-based results. However it is unclear whether or nosthés-
tics of these sub-grid structures can be used in a meaningiyl
because of the manner in which tracer particles tend toerlust
high density regions.

The above conclusions mean that the differences between the
SPH and grid based results discussed by Padoan et al. (2007),
least in terms of the power spectrum slope, can be underst®od
a consequence of the low resolution employed in the SPH cal-
culations rather than being due to an intrinsic difficultyttwihe
method. Given this, it is also likely that the conclusionavdn by
Ballesteros-Paredes et al. (2006) regarding the presencther-
wise of an emergent power law slope in the core mass disiwitbut
should also be treated with caution. As a follow-up to thipgya
it would be interesting to examine the properties of densenpk
(or ‘cores’) in our calculations using a clump-finding aligom in
a similar manner to Ballesteros-Paredes et al. (2006) adddPa
et al. (2007) to see whether or not these differences canb&so
reconciled by improved resolution in the SPH results.
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APPENDIX A: EFFECT OF g—VISCOSITY IN THE SPH
CALCULATIONS

Fig. Al shows the results of thra@8® particle SPH calculations
after 2 dynamical times usin@yisc = 1 (top), Bvise = 2 (Mid-
dle) andBy,isc = 4 (bottom) in the SPH artificial viscosity term
(9)-(10). At this high Mach number using.:sc < 4 means that
particle interpenetration can occur at the shock frongs, (particles
overshoot the shock), resulting in excess noise in the tefisid
compared to the grid-based results and compared to the SBltkre
at higherg,;s.. In particular the shocks appear mwstharperand
well-defined at highe8,;s., somewhat counter intuitively since we
are adding more viscosity. Using}:s. = 4 shows good agreement
with the grid-based shock structures (c.f. Figs. 3 and 4).

APPENDIX B: EFFECT OF FITTING RANGE ON THE
MEASURED STRUCTURE FUNCTION SLOPE

The best-fit structure function slopes,, computed from a least-
squares fit to the transverse velocity and density-weigstiedture

Figure Al. Effect of beta viscosity in the SPH calculations. From left t
right: column density at/ty = 2 in 1283 SPH calculations using,;sc =
1, Byise = 2 andByisec = 4. With B,;s. < 2 particle penetration occurs

in the shocks at these high Mach numbers, causing them talé&isetion.
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Figure B1. The dependence of the measured structure function glppe
the range in scales (lag) over which the least squares fitetdirtne aver-
aged structure function is performed, wheéké = [,,40 — limin and we
have used a fixetl,,o = 0.15. The measured slope, shown for the three
lowest-order structure functionp (= 1,2, 3) shows a strong dependence
on the adopted fitting range, particularly for the velocityisture functions
(left panel) and to a lesser extent for the density-weiglitéd3v) versions
(right panel). Thus, although the slopes appear to conviergedividual
codes for a fixedAl, there remains a strong dependencednindicating
that at a scaling range of constajt is not resolved in either code at the
resolutions employed.

functions shown in Fig. 13, are shown in Fig. B1 as a functibn o
the range in the lag\l = l,02 — Imin Used to perform the fitting.
To produce the Figure we initially adopted a fixgg.., = 0.15,
based on visual inspection of Fig. 12 for the transverse, Gas®
performed the fit down t8,,;», = lmax — Al, plotting the result-
ing slope as a function ahl. The results show a strong steepen-
ing of the measured slope as the fitting range is increased, in
cating that the slope is not well-fitted by a single power:lave
p*/3-weighted structure functions (right panel) show a wealer d
pendence o\ than for the pure velocity equivalents (left panel),
though the results from the two codes even in this case ddwet s
convergence with each other. Convergence in each indivahae

is only obtained if a relatively short fitting rang&l < 0.05 is
adopted, but it is clear that the converged value will nénadess
change if a differenf\l is used. Neither can it be asserted that the
adoptedAl should be changed with resolution, since it is not clear
that any scaling range has been resolved even at the higisest r
lution adopted in either code (making the “correct” chaise= 0

for the numerical resolutions tested in this code compajiso
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