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THE FU ORIONIS PHENOMENON!

Lee Hartmann and Scott J. Kenyon

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge,
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Figure I Schematic picture of FU Ori objects. FU Ori outbursts are caused by disk accretion
increasing from ~ 10~/ Mg yr~! to ~10™* Mg yr~!, adding ~ 10~% M, to the central T Tauri
star during the event. Mass is fed into the disk by the remanant collapsing protostellar envelope
with an infall rate < 107 Mg yr~'; the disk ejects roughly 10% of the accreted material in a
high-velocity wind.
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Main mode of mass
growth for young stars”?
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THE RISE TIME PROBLEM
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The rise of FU Ori systems on a time-scale
less than even the dynamical time-scale at
1au implies that the sudden increase in
dissipation at the onset of outburst must occur
at radii < 1 au (Clarke, Lin & Pringle 1990)

To explain the fastest rise times of a
year, the eruption must involve disc
regions smaller than one au [because
disc evolution will occur on timescales
much longer than an orbital period
(Hartmann & Kenyon 1996)



POSSIBLE EXPLANATIONS

Disc thermal instability (Clarke et al. 1990; Bell & Lin 1994;

T SN
Bell+1995; Kley & Lin 1999)

S

Binary-disc interaction? (Bonnell & Bastien 1992). Possibly
triggering thermal instability?

Dlsk TTaun star
\_//
Planet-disc interaction triggering thermal instability (Clarke Q/’x

dM/dt (disk) ~ 10 «— 10" 7

// \\

dM/dt (wind) ~ 10"! dM/dt (acc) dMy/dt (infall) ~ 107 st

& Syer 1996; Lodato & Clarke 2004)

Tidal disruption of young, massive planets (Nayakshin &
Lodato 2012)

Pile-up of material due to dead zones/layered accretion

(Martin, Lubow & Livio 2012; Martin & Livio 2014; 10* E T T T T T T T

Kadam+2020; Vorobyov+2020) o - a -

Accretion outbursts in self-gravitating discs (Bae+2014) % - ) ‘. .
S -

Sudden increase in turbulence due to transition between g' ~ 7

gravitational instability and magnetic instability (Martin & g 3

Lubow 2013; Martin & Livio 2014) s 0F ¢ E
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e Tidal effects from a
companion induce enhanced

accretion rates

“Accretion rates can exceed
10~ Mg /yr”

But need very close
encounter (< 1 au) for fast

rise?




FU ORI IS A BINARY!
Wang et al. (2004)

,,'-,. FU Ori N
"M~O3 0.5 M,

““}5 ’

FU Ori S
M~ 1.1 MQ

FiG. 1.—PSF-subtracted images of FU Ori, (a) in the J and (b) in the K, band. North is up, and the east is to the left. The positions of FU Ori, FU Ori S, and
the visual companion of the PSF reference star are indicated with numbers 1-3 in (b). The image scale is marked in (b).

“..the primary in the FU Ori binary system is in fact FU Ori S,
rather than FU Oiri itself”

..but period ~ 2700 yr it on circular orbit at 225 au.

Binarity seems irrelevant to the 1 yr onset of outburst.



FU ORI IS AN INTERACTING BINARY!
Scattered light imaging: Liu et al. (2016); Takami et al. (2018); Perez et al. (2020)
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FU ORI WEIRDNESS
Beck & Aspin (2012); Perez et al. (2020)

FU Ori
L ~ 200 L@

FU Ori Compared to Spectral Standards

M ~03—0.5M,

@'4 ~4x 107 M, /yr

ELL Ot S
L~2—3L®

M~ 12M,

M ~2x107°M/yr

Poor spectral fits: FU Ori N fit
by M-dwarf spectra in IR but a
G-type giant in optical??
(Beck & Aspin 2012)

ALMA continuum image at 1mm (Perez+2020)



POSSIBLE EXPLANATIONS
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* Disc thermal instability (Clarke et al. 1990; Bell & Lin \
1994; Bell+1995; Kley & Lin 1999)
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YOU ARE LOOKING
AT THE WRONG STAR!
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e Binary-disc interaction”? (Bonnell & Bastien 1992)

!

« Accretion outbursts In self-gravitating discs (Bae+2014)

e Sudden increase in turbulence due to transition
between gravitational instability and magnetic instability
(Martin & Lubow 2013; Martin & Livio 2014)

Outburst is on the LOW MASS object § S

s

dM/dt (wind) ~ 107" dM/dt (acc) dM/dt (infall) ~ 107 =t




FU ORIONIS AS A FLYBY?
Cuello et al. (2019, 2020)

PHANTOM

e [Locally isothermal
simulations with
prescribed radial
temperature profile

e Simulating dust-gas
mixture with different
grain sizes



FU ORIONIS AS A FLYBY?
Cuello et al. (2019, 2020)
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Also need to account for temperature evolution during the flyby



FU ORIONIS AS A FLYBY

Borchert, Price, Pinte & Cuello (2022)

(c) 2021 Elisabeth Borchert




FU ORIONIS AS A FLYBY

Borchert, Price, Pinte & Cuello (2022)

(c) 2021 Elisabeth Borchert

Similar idea by Vorobyov et al. (2021) but kyr timescales



TEMPERATURE EVOLUTION

Live-coupling of MCFOST Monte Carlo radiation transport code for temperature evolution

(c) 2021 Elisabeth Borchert R 1




FU ORIONIS AS A FLYBY

Borchert, Price, Pinte & Cuello (2022)

(c) 2021 Elisabeth Borchert ‘

Audio thanks to: https://github.com/erinspace/sonify




HOW TO ACCRETE LIKE HELL

High M occurs when accretion flows are misaligned!
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WHAT ELSE CAN YOU EXPLAIN?

FU Ori Compared to Spectral Standards

M-dwarf star with
Teff ~ 6000K ©
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Poor spectral fits: FU Ori N fit
by M-dwarf spectra in IR but a |
G-type giant in optical?? |
(Beck & Aspin 2012) 5
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see also Zhu et al. (2007) fit to SED
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The ALMA Early Science view of FUor/EXor objects. I. Through
the looking-glass of V2775 Ori*

n The ALMA Early Science View of FUor/EXor objects. II. The Very

The ALMA Early Science View of FUor/EXor objects. III. The Slow
. and Wide Outflow of V883 Ori *

PA ~ 120°
1~38.3°+1.0

p.1 The ALMA Early Science View of FUor/EXor objects. IV.

1Rese

4ot Misaligned Outflows in the Complex Star-forming
ek Environment of V1647 Ori and McNeil’s Nebula

David A. Principe,? 3* Lucas Cieza, > 3 Antonio Hales, 4 > Alice Zurlo, 2 3



MOVING SNOW LINES?
Cieza et al. (2016)

LETTER

doi:10.1038/nature18612

Imaging the water snow-line during a protostellar
outburst

Lucas A. Ciezab2, Simon Casassus®?, John Tobin#, Steven P. Bos?, Jonathan P, Williams®, Sebastian Perez?3, Zhaohuan Zhu®,
Claudio Caceres®’, Hector Canovas®’, Michael M. Dunham®, Antonio Hales?, Jose L. Prieto"!°, David A. Principe"?,
Matthias R. Schreiber®’, Dary Ruiz-Rodriguez!* & Alice Zurlo»?3

e \Water snow line moves to
~40 au during the outburst
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MOVING SNOW LINES
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WHAT IF THERE WERE DISCS
AROUND BOTH STARS?

prograde, no disc prograde, same prograde, opposite - retrograde, opposite T retrograde, same
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t=140 yrs

t=175 yrs

t=193 yrs

Borchert et al.
(2022, submitted)
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DID THE SOLAR SYSTEM HAVE A FLYBY?
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Chondrules in meteorites
Image credit: Elli Borchert
Meteorite credit: Andy Tomkins



STEALING PLANETS?

t=0 yrs
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SUMMARY

FU Orionis shows strong observational evidence of being an
iInteracting binary

Can explain fast rise in M with disc-penetrating stellar flyby with
periastron separation of ~10-20 au, consistent with current separation
and differential motion

- Low mass star goes into sustained outburst, as observed
No requirement for thermal or other disc instabilities

Can explain spectral weirdness, it's a low mass star with very high
surface temperature (> 5000 K)

Other phenomenology of outbursting young stars looks promising

Possible implications for solar system, lots of other things to try!



