Model Selection Tutorial #1: Akaike’s Information Criterion

Daniel F. Schmidt and Enes Makalic

Melbourne, November 22, 2008
1 Motivation

2 Estimation

3 AIC

4 Derivation

5 References
We have observed n data points $y^n = (y_1, \ldots, y_n)$ from some unknown, probabilistic source p^*, i.e.

$$y^n \sim p^*$$

where $y^n \in \mathcal{Y}^n$.

We wish to learn about p^* from y^n.

More precisely, we would like to discover the generating source p^*, or at least a good approximation of it, from nothing but y^n.
Statistical Models

- To approximate p^* we will restrict ourselves to a set of potential statistical models.
- Informally, a statistical model can be viewed as a conditional probability distribution over the potential dataspace \mathcal{Y}^n

$$p(y^n|\theta), \ \theta \in \Theta$$

where $\theta = (\theta_1, \ldots, \theta_p)$ is a parameter vector that indexes the particular model.

- Such models satisfy

$$\int_{y^n \in \mathcal{Y}^n} p(y^n|\theta)dy^n = 1$$

for a fixed θ.

Daniel F. Schmidt and Enes Makalic
Model Selection with AIC
An example would be the univariate normal distribution.

\[p(y^n|\theta) = \left(\frac{1}{2\pi\tau} \right)^{\frac{n}{2}} \exp \left(-\frac{1}{2\tau} \sum_{i=1}^{n} (y_i - \mu)^2 \right) \]

where

- \(p = 2 \)
- \(\theta = (\mu, \tau) \) are the parameters
- \(Y^n = \mathbb{R}^n \)
- \(\Theta = \mathbb{R} \times \mathbb{R}_+ \)
Motivation

Estimation

AIC

Derivation

References

Daniel F. Schmidt and Enes Makalic

Model Selection with AIC
Given a statistical model and data y^n, we would like to take a guess at a plausible value of θ.

The guess should be ‘good’ in some sense.

Many ways to approach this problem; we shall discuss one particularly relevant and important method: Maximum Likelihood.
A heuristic procedure introduced by R. A. Fisher
Possesses good properties in many cases
Is very general and easy to understand
To estimate parameters θ for a statistical model from y^n, solve
\[
\hat{\theta}(y^n) = \arg \max_{\theta \in \Theta} \{ p(y^n | \theta) \}
\]
or, more conveniently
\[
\hat{\theta}(y^n) = \arg \min_{\theta \in \Theta} \{ -\log p(y^n | \theta) \}
\]
Example: Estimating the mean parameter μ of a univariate normal distribution

Negative log-likelihood function:

$$L(\mu, \tau) = \frac{n}{2} \log(2\pi \tau) + \frac{1}{2\tau} \sum_{i=1}^{n} (y_i - \mu)^2$$
Example: Estimating the mean parameter μ of a univariate normal distribution.

Negative log-likelihood function:

$$L(\mu, \tau) = \frac{n}{2} \log(2\pi\tau) + \frac{1}{2\tau} \sum_{i=1}^{n} (y_i - \mu)^2$$

Differentiating $L(\cdot)$ with respect to μ yields

$$\frac{\partial L(\mu, \tau)}{\partial \mu} = \frac{1}{2\tau} \left(2n\mu - 2 \sum_{i=1}^{n} y_i \right)$$
Example: Estimating the mean parameter μ of a univariate normal distribution

Negative log-likelihood function:

$$L(\mu, \tau) = \frac{n}{2} \log(2\pi\tau) + \frac{1}{2\tau} \sum_{i=1}^{n} (y_i - \mu)^2$$

Differentiating $L(\cdot)$ with respect to μ yields

$$\frac{\partial L(\mu, \tau)}{\partial \mu} = \frac{1}{2\tau} \left(2n\mu - 2 \sum_{i=1}^{n} y_i \right)$$

Setting this to zero, and solving for μ yields

$$\hat{\mu}(y^n) = \frac{1}{n} \sum_{i=1}^{n} y_i$$
A more complex model: k-order polynomial regression
Univariate Polynomial Regression

- A more complex model: k-order polynomial regression
- Let each $y(x)$ be distributed as per a univariate normal with variance τ and a special mean

\[\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2 \ldots \beta_k x^k \]

The parameters of this model are $\theta^{(k)} = (\tau, \beta_0, \ldots, \beta_k)$.
A more complex model: \(k \)-order polynomial regression

Let each \(y(x) \) be distributed as per a univariate normal with variance \(\tau \) and a special mean

\[
\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2 \ldots \beta_k x^k
\]

The parameters of this model are \(\theta^{(k)} = (\tau, \beta_0, \ldots, \beta_k) \).

In this model the data \(y^n \) is associated with a \(x^n \) which are known.
A more complex model: k-order polynomial regression

Let each $y(x)$ be distributed as per a univariate normal with variance τ and a special mean

$$\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2 \ldots \beta_k x^k$$

The parameters of this model are $\theta^{(k)} = (\tau, \beta_0, \ldots, \beta_k)$.

In this model the data y^n is associated with a x^n which are known.

Given an order k, maximum likelihood can be used to estimate $\theta^{(k)}$.
A more complex model: k-order polynomial regression

Let each $y(x)$ be distributed as per a univariate normal with variance τ and a special mean

$$\mu(x) = \beta_0 + \beta_1 x + \beta_2 x^2 \ldots \ldots \beta_k x^k$$

The parameters of this model are $\theta^{(k)} = (\tau, \beta_0, \ldots, \beta_k)$.

In this model the data y^n is associated with a x^n which are known

Given an order k, maximum likelihood can be used to estimate $\theta^{(k)}$

But it cannot be used to provide a suitable estimate of order k!
Univariate Polynomial Regression

If we let

\[\hat{\mu}^{(k)}(x) = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2 \ldots \ldots \hat{\beta}_k x^k \]

Maximum Likelihood chooses \(\hat{\beta}^{(k)}(y^n) \) to minimise

\[\hat{\tau}^{(k)}(y^n) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{\mu}^{(k)}(x_i) \right)^2 \]

This is called the \textit{residual variance}.
Univariate Polynomial Regression

- If we let

\[\hat{\mu}^{(k)}(x) = \hat{\beta}_0 + \hat{\beta}_1 x + \hat{\beta}_2 x^2 \ldots \hat{\beta}_k x^k \]

Maximum Likelihood chooses \(\hat{\beta}^{(k)}(y^n) \) to minimise

\[\hat{\tau}^{(k)}(y^n) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - \hat{\mu}^{(k)}(x_i) \right)^2 \]

This is called the residual variance.

- The likelihood function \(L(y^n|\hat{\theta}^{(k)}(y^n)) \) made by plugging in the Maximum Likelihood estimates is

\[L(y^n|\hat{\theta}^{(k)}(y^n)) = \frac{n}{2} \log \left(2\pi \hat{\tau}^{(k)}(y^n) \right) + \frac{n}{2} \]
‘Truth’ : $\mu(x) = 9.7x^5 + 0.8x^3 + 9.4x^2 - 5.7x - 2$, $\tau = 1$
Polynomial fit, $k = 2$, $\hat{f}^{(2)}(y) = 4.6919$
Polynomial fit, $k = 5$, $\hat{\tau}^{(5)}(y) = 1.1388$
Polynomial fit, $k = 10$, $\hat{f}^{(10)}(y) = 1.0038$
Polynomial fit, $k = 20$, $\hat{f}^{(20)}(y) = 0.1612$
A problem with Maximum Likelihood

It is not difficult to show that

\[\hat{\tau}^{(0)} > \hat{\tau}^{(1)} > \hat{\tau}^{(2)} > \ldots > \hat{\tau}^{(n-1)} \]

and furthermore that \(\hat{\tau}^{(n-1)} = 0. \)
It is not difficult to show that

$$\hat{\tau}^{(0)} > \hat{\tau}^{(1)} > \hat{\tau}^{(2)} > \ldots > \hat{\tau}^{(n-1)}$$

and furthermore that $\hat{\tau}^{(n-1)} = 0$.

From this it is obvious that attempting to estimate k using Maximum Likelihood will fail, i.e. the solution of

$$\hat{k} = \arg \min_{k \in \{0, \ldots, n-1\}} \left\{ \frac{n}{2} \log 2\pi \hat{\tau}^{(k)}(y^n) + \frac{n}{2} \right\}$$

is simply $\hat{k} = (n - 1)$, irrespective of y^n.
Some solutions ...

- The minimum encoding approach, pioneered by C.S. Wallace, D. Boulton and J.J. Rissanen

- The minimum discrepancy estimation approach, pioneered by H. Akaike
AIC is based on estimating the Kullback-Leibler (KL) divergence.

The Kullback-Leibler divergence

\[
KL(f \| g) = - \int_{\gamma^n} f(y^n) \log g(y^n) dy^n + \int_{\gamma^n} f(y^n) \log f(y^n) dy^n
\]

- Cross-entropy,
- Entropy

Cross-entropy, \(\Delta(f \| g) \), is the ‘expected negative log-likelihood’ of data coming from \(f \) under \(g \).
Cross-entropy for polynomial fits of order $k = \{0, \ldots, 20\}$
Akaike’s Information Criterion

- Problem: KL divergence depends on knowing the truth (our p^*)

- Akaike’s solution: Estimate it!
The AIC score for a model is

$$AIC(\hat{\theta}(y^n)) = - \log p(y^n|\hat{\theta}(y^n)) + p$$

where p is the number of free model parameters.

Using AIC one chooses the model that solves

$$\hat{k} = \arg \min_{k \in \{0,1,...\}} \left\{AIC(\hat{\theta}^{(k)}(y^n))\right\}$$
Under certain conditions the AIC score satisfies

\[E_{\theta^*} \left[\text{AIC}(\hat{\theta}(y^n)) \right] = E_{\theta^*} \left[\Delta(\theta^* \mid \mid \hat{\theta}(y^n)) \right] + o_n(1) \]

where \(o_n(1) \to 0 \) as \(n \to \infty \)

In words, the AIC score is an \textit{asymptotically unbiased} estimate of the cross-entropy risk

This means it is only valid if \(n \) is ‘large’
Properties of AIC

- AIC is good for prediction
- AIC is an *asymptotically efficient* model selection criterion
- In words, as $n \to \infty$, with probability approaching one, the model with the minimum AIC score will also possess the smallest Kullback-Leibler divergence
- It is not necessarily the best choice for *induction*
AIC is an asymptotic approximation; one should consider whether it applies before using it.
Conditions for AIC to apply

- AIC is an asymptotic approximation; one should consider whether it applies before using it.
- For AIC to be valid, n must be large compared to p.

Conditions for AIC to apply

- AIC is an asymptotic approximation; one should consider whether it applies before using it.
- For AIC to be valid, \(n \) must be large compared to \(p \).
- The true model must be \(\theta^* \in \Theta \).
AIC is an asymptotic approximation; one should consider whether it applies before using it.

For AIC to be valid, n must be large compared to p.

The true model must be $\theta^* \in \Theta$.

Every $\theta \in \Theta$ must map to a unique distribution $p(\cdot | \theta)$.
AIC is an asymptotic approximation; one should consider whether it applies before using it.

For AIC to be valid, n must be large compared to p.

The true model must be $\theta^* \in \Theta$.

Every $\theta \in \Theta$ must map to a unique distribution $p(\cdot | \theta)$.

The Maximum Likelihood estimates must be consistent and be approximately normally distributed for large n.
AIC is an asymptotic approximation; one should consider whether it applies before using it.

For AIC to be valid, \(n \) must be large compared to \(p \).

The true model must be \(\theta^* \in \Theta \).

Every \(\theta \in \Theta \) must map to a unique distribution \(p(\cdot|\theta) \).

The Maximum Likelihood estimates must be consistent and be approximately normally distributed for large \(n \).

\(L(\theta) \) must be twice differentiable with respect to \(\theta \) for all \(\theta \in \Theta \).
Some models to which AIC can be applied include...

- Linear regression models, function approximation
- Generalised linear models
- Autoregressive Moving Average models, spectral estimation
- Constant bin-width histogram estimation
- Some forms of hypothesis testing
When not to use AIC

- Multilayer Perceptron Neural Networks
 - Many different θ map to the same distribution
When not to use AIC

- Multilayer Perceptron Neural Networks
 - Many different θ map to the same distribution
- Neyman-Scott Problem, Mixture Modelling
 - The Maximum Likelihood estimates are not consistent
When not to use AIC

- **Multilayer Perceptron Neural Networks**
 - Many different θ map to the same distribution

- **Neyman-Scott Problem, Mixture Modelling**
 - The Maximum Likelihood estimates are not consistent

- **The Uniform Distribution**
 - $L(\theta)$ is not twice differentiable
When not to use AIC

- Multilayer Perceptron Neural Networks
 - Many different θ map to the same distribution
- Neyman-Scott Problem, Mixture Modelling
 - The Maximum Likelihood estimates are not consistent
- The Uniform Distribution
 - $L(\theta)$ is not twice differentiable
- The AIC approach may still be applied to these problems, but the derivations need to be different
Application to polynomials

- **AIC criterion for polynomials**

\[
AIC(k) = \frac{n}{2} \log 2\pi \hat{\tau}(k) (\mathbf{y}^n) + \frac{n}{2} + (k + 2)
\]
AIC selects $\hat{k} = 3$
For some model types it is possible to derive improved estimates of the cross-entropy

Under certain conditions, the ‘corrected’ AIC (AICc) criterion

\[
AIC_c(\hat{\theta}(y^n)) = -\log p(y^n|\hat{\theta}(y^n)) + \frac{n(p + 1)}{n - p - 2}
\]

satisfies

\[
E_{\theta^*} \left[AIC_c(\hat{\theta}(y^n)) \right] = E_{\theta^*} \left[\Delta(\theta^* \parallel \hat{\theta}(y^n)) \right]
\]

In words, it is an exactly unbiased estimator of the cross-entropy, even for finite \(n \)
Application to polynomials

- AICc criterion for polynomials

\[
AIC_c(k) = \frac{n}{2} \log 2\pi \hat{\tau}^{(k)}(y^n) + \frac{n}{2} + \frac{n(k + 2)}{n - k - 3}
\]
Using AICc

- Tends to perform better than AIC, especially when n/p is small
- Theoretically only valid for homoskedastic linear models; these include
 - Linear regression models, including linear function approximation
 - Autoregressive Moving Average (ARMA) models
 - Linear smoothers (kernel, local regression, etc)
- Practically, tends to perform well as long as the model class is suitably regular
Some theory

- Let k^* be the true number of parameters, and assume that the model space is nested.
- Two sources of error/discrepancy in model selection.
 - Discrepancy due to approximation:
 - Main source of error when underfitting, i.e. when $\hat{k} < k^*$.
 - Discrepancy due to estimation:
 - Source of error when exactly fitting or overfitting, i.e. when $\hat{k} \geq k^*$.
Discrepancy due to Approximation

![Graph showing the discrepancy between the true curve and the best fitting cubic curve.](image-url)
Discrepancy due to Estimation

![Graph showing discrepancies due to estimation.](image)
The aim is to show that

\[E_{\theta^*} \left[L(y^n|\hat{\theta}) + \rho \right] = E_{\theta^*} \left[\Delta(\theta^*||\hat{\theta}) \right] + o_n(1) \]
The aim is to show that

$$E_{\theta^*} \left[L(y^n|\hat{\theta}) + p \right] = E_{\theta^*} \left[\Delta(\theta^*||\hat{\theta}) \right] + o_n(1)$$

Note that (under certain conditions)

$$E_{\theta^*} \left[\Delta(\theta^*||\hat{\theta}) \right] = \Delta(\theta^*||\theta_0) + \frac{1}{2} (\hat{\theta} - \theta_0)' J(\theta_0) (\hat{\theta} - \theta_0) + o_n(1)$$
The aim is to show that

$$E_{\theta^*} \left[L(y^n|\hat{\theta}) + p \right] = E_{\theta^*} \left[\Delta(\theta^*||\hat{\theta}) \right] + o_n(1)$$

Note that (under certain conditions)

$$E_{\theta^*} \left[\Delta(\theta^*||\hat{\theta}) \right] = \Delta(\theta^*||\theta_0) + \frac{1}{2} (\hat{\theta} - \theta_0)^' J(\theta_0)(\hat{\theta} - \theta_0) + o_n(1)$$

... and

$$\Delta(\theta^*||\theta_0) = E_{\theta^*} \left[L(y^n|\hat{\theta}) \right] + \frac{1}{2} (\hat{\theta} - \theta_0)^' H(\hat{\theta})(\hat{\theta} - \theta_0) + o_n(1)$$
The aim is to show that

$$E_{\theta^*} \left[L(y^n | \hat{\theta}) + p \right] = E_{\theta^*} \left[\Delta(\theta^* || \hat{\theta}) \right] + o_n(1)$$

Note that (under certain conditions)

$$E_{\theta^*} \left[\Delta(\theta^* || \hat{\theta}) \right] = \Delta(\theta^* || \theta_0) + \frac{1}{2}(\hat{\theta} - \theta_0)' J(\theta_0) (\hat{\theta} - \theta_0) + o_n(1)$$

... and

$$\Delta(\theta^* || \theta_0) = E_{\theta^*} \left[L(y^n | \hat{\theta}) \right] + \frac{1}{2}(\hat{\theta} - \theta_0)' H(\hat{\theta}) (\hat{\theta} - \theta_0) + o_n(1)$$

Where

$$J(\theta_0) = \left[\frac{\partial^2 \Delta(\theta^* || \theta)}{\partial \theta \partial \theta'} \right]_{\theta = \theta_0}, \quad H(\hat{\theta}) = \left[\frac{\partial^2 L(y^n || \theta)}{\partial \theta \partial \theta'} \right]_{\theta = \hat{\theta}}$$
Since

\[\frac{1}{2} E_{\theta^*} \left[(\hat{\theta} - \theta_0)' J(\theta_0)(\hat{\theta} - \theta_0) \right] = \frac{p}{2} + o_n(1) \]

\[\frac{1}{2} E_{\theta^*} \left[(\hat{\theta} - \theta_0)' H(\hat{\theta})(\hat{\theta} - \theta_0) \right] = \frac{p}{2} + o_n(1) \]
Since
\[
\frac{1}{2}E_{\theta^*} \left[(\hat{\theta} - \theta_0)' J(\theta_0)(\hat{\theta} - \theta_0) \right] = \frac{p}{2} + o_n(1)
\]
\[
\frac{1}{2}E_{\theta^*} \left[(\hat{\theta} - \theta_0)' H(\hat{\theta})(\hat{\theta} - \theta_0) \right] = \frac{p}{2} + o_n(1)
\]

Then, substituting
\[
E_{\theta^*} \left[\Delta(\theta^* || \hat{\theta}) \right] = \left(E_{\theta^*} \left[L(y^n | \hat{\theta}) \right] + \frac{p}{2} + o_n(1) \right) + \frac{p}{2} + o_n(1)
\]
\[
= E_{\theta^*} \left[L(y^n | \hat{\theta}) + p \right] + o_n(1)
\]
\[
\text{AIC}(\hat{\theta})
\]
References