A Universal Bijection for Catalan Families

R. Brak

School of Mathematics and Statistics
University of Melbourne

October 25, 2018
Catalan Numbers

\[C_n = \frac{1}{n+1} \binom{2n}{n} \]

1, 2, 5, 14, 42, 132, 429, ...

\[C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i} \]

\[G(z) = \sum_{n\geq0} C_n z^n, \quad G = 1 + zG^2 \]
A few Catalan families

Examples of C_3 objects

F_1 – Matching brackets and Dyck words

```
{}{{}} {{}} {{}}
```

F_2 – Non-crossing chords the circular form of nested matchings

F_3 – Complete Binary trees and Binary trees

F_4 – Planar Trees
$F_5 -$ Nested matchings or Link Diagrams

$F_6 -$ Non-crossing partitions

$F_7 -$ Dyck paths
F_8 – Polygon triangulations

F_9 – 321-avoiding permutations

123, 213, 132, 312, 231.

F_{10} – Staircase polygons
F_{11} – Pyramid of heaps of segments

F_{12} – Two row standard tableau

F_{13} – Non-nested matchings
F_{14} \rightarrow \text{Frieze Patterns: } n - 1 \text{ row periodic repeating rhombus}

\[
\begin{array}{ccccccc}
... & 1 & 1 & ... & 1 & ... & \\
... & a_{1} & a_{2} & ... & a_{n} & ... & \\
... & b_{1} & b_{2} & ... & b_{n} & ... & \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\
... & r_{1} & r_{2} & ... & r_{n} & ... & \\
... & 1 & 1 & ... & 1 & ... &
\end{array}
\]

with

\[
s, \quad t \quad \text{and} \quad st - ru = 1
\]

\[
u
\]

12213, 22131, 21312, 13122, 31221.
The Catalan Problem

- Over 200 families of Catalan objects:
- Regular trickle of new families ...

- Floor plans (2018)
How to prove Catalan: Focus on bijections

Problem I: Too many bijections.

Assume 200 families: F_1, F_2, F_3, \ldots

$\Rightarrow \binom{200}{2} = 19900$ possible bijections
Better: Biject to a common family

Which family F_s?

Even better:
Problem II: Proofs can be lengthy

Dyck words \leftrightarrow Staircase polygons (Delest & Viennot 1984)

Problem III: Uniqueness:

If $|A| = |B| = n$ then $n!$ possible bijections.

Why choose any one?
Solution to all three problems:

- Replace “bijection” by “isomorphism”
- What algebra?
- Magma

Definition (Magma – Bourbaki 1970)

A magma defined on \(\mathcal{M} \) is a pair \((\mathcal{M}, \star)\) where \(\star \) is a map

\[
\star : \mathcal{M} \times \mathcal{M} \to \mathcal{M}
\]

called the product map and \(\mathcal{M} \) a non-empty set, called the base set.

- No conditions on map.
Additional definitions

- **Unique factorisation magma**: if product map \star is injective.
- **Magma morphism**: Two magmas, (\mathcal{M}, \star) and (\mathcal{N}, \bullet) and a map

$$\theta : \mathcal{M} \to \mathcal{N}$$

satisfying

$$\theta(m \star m') = \theta(m) \bullet \theta(m') .$$

- **Irreducible elements**: Elements not in the image (range) of the product map.
Example magma

\[
\begin{array}{c|cccccc}
* & 1 & 2 & 3 & 4 & 5 & \ldots \\
\hline
1 & 5 & 7 & 10 & 3 & 16 & 22 \\
2 & 6 & 9 & 4 & 15 & 21 & \ddots \\
3 & 8 & 4 & 14 & 20 & 27 & \ddots \\
4 & 11 & 13 & 19 & 26 & \ddots \\
5 & 12 & 18 & 25 & \ddots \\
\vdots & 17 & 24 & \ddots & \ddots & \ddots & \ddots \\
\end{array}
\]

- ii) Not a unique factorisation magma: \(4 = 2 \times 3 = 3 \times 2\).
- iii) Two “irreducible” elements: 1, 2 absent.
Let X be a non-empty finite set. Define the sequence $W_n(X)$ of sets of nested 2-tuples recursively by:

$$W_1(X) = X$$

$$W_n(X) = \bigcup_{p=1}^{n-1} W_p(X) \times W_{n-p}(X), \quad n > 1,$$

$$W_X = \bigcup_{n \geq 1} W_n(X).$$

Let $W_X = \bigcup_{n \geq 1} W_n(X)$.

Define the product map $\circ : W_X \times W_X \to W_X$ by

$$m_1 \circ m_2 \mapsto (m_1, m_2)$$

The pair (W_X, \circ) is called the **standard free magma** generated by X.
Elements of \mathcal{W}_X for $X = \{\epsilon\}$:

$$
\begin{align*}
\epsilon, \quad (\epsilon, \epsilon), \quad (\epsilon, (\epsilon, \epsilon)), \quad ((\epsilon, \epsilon), \epsilon), \\
(\epsilon, (\epsilon, (\epsilon, \epsilon))), \quad ((\epsilon, (\epsilon, \epsilon)), \epsilon), \quad (\epsilon, ((\epsilon, \epsilon), \epsilon)), \\
(((\epsilon, \epsilon), \epsilon), \epsilon), \quad ((\epsilon, \epsilon), (\epsilon, \epsilon)) \ldots
\end{align*}
$$

Three ways to write products:

$$
\begin{align*}
\epsilon\epsilon\epsilon\star\star, \quad \star\epsilon\star\epsilon\epsilon \quad \text{and} \quad (\epsilon\star(\epsilon\star\epsilon))
\end{align*}
$$

all give

$$(\epsilon, (\epsilon, \epsilon)) .$$
We need one additional ingredient to make connection with Catalan numbers.

Definition (Norm)

Let (\mathcal{M}, \star) be a magma. A **norm** is a super-additive map

$$\| \cdot \| : \mathcal{M} \to \mathbb{N}$$

- Super-additive: For all $m_1, m_2 \in \mathcal{M}$
 $$\| m_1 \star m_2 \| \geq \| m_1 \| + \| m_2 \|.$$
- If (\mathcal{M}, \star) has a norm it will be called a **normed magma**.
- Standard Free magma norm: if $m \in W_n$ then $\| m \| = n$.
- eg. $\| (\epsilon, (\epsilon, \epsilon)) \| = 3$.

Norm
With a norm we now get:

Proposition (Segner 1761)

Let $\mathcal{W}(X)$ be the standard free magma generated by the finite set X. If

$$W_\ell = \{ m \in \mathcal{W}_\epsilon : \| m \| = \ell \}, \quad \ell \geq 1,$$

then

$$|W_\ell| = |X|^{\ell} C_{\ell-1} = |X|^{\ell} \frac{1}{\ell} \left(\frac{2\ell - 2}{\ell - 1}\right), \quad (2)$$

and for a single generator, $X = \{\epsilon\}$, we get the Catalan numbers:

$$|W_\ell| = C_{\ell-1} = \frac{1}{\ell} \left(\frac{2\ell - 2}{\ell - 1}\right). \quad (3)$$
Main theorem

Theorem (RB)

Let \((\mathcal{M}, \star)\) be a unique factorisation normed magma. Then \((\mathcal{M}, \star)\) is isomorphic to the standard free magma \(\mathcal{W}(X)\) generated by the irreducible elements of \(\mathcal{M}\).

Proof

- Use norm to prove reducible elements have finite recursive factorisation.
- Use injectivity to get bijective map to set of reducible elements.
- Morphism straightforward.

Definition (Catalan Magma)

A unique factorisation normed magma with only one irreducible element is called a **Catalan magma**.
If we can define a product

\[\ast_i : \mathbb{F}_i \times \mathbb{F}_i \rightarrow \mathbb{F}_i \]

on a set \(\mathbb{F}_i \) and:
- show \(\ast_i \) is injective,
- has one irreducible element
- and define a norm, then
\(\mathbb{F}_i \) is a Catalan magma and \(\mathbb{F}_i \) isomorphic to \(W(\varepsilon) \):

\[\Gamma_i : \mathbb{F}_i \rightarrow W(\varepsilon) \]

and thus
- \(\Gamma_i \) is in bijection,
- norm partitions \(\mathbb{F}_i \) into Catalan number sized subsets,
- the bijection is recursive,
- and embedded bijections, Narayana statistic correspondence, ...
Universal Bijection

- The proof is constructive and thus gives

\[\Gamma_i : \mathbb{F}_i \rightarrow W(\varepsilon) \]

explicitly.

- Furthermore, the bijection is “universal” – same (meta) algorithm for all pairs of families.

\[\mathbb{F}_j \xrightarrow{\pi} W_{\varepsilon j} \]
\[\downarrow \Gamma_{i,j} \qquad \downarrow \theta_{i,j} \]
\[\mathbb{F}_i \xleftarrow{\mu} W_{\varepsilon j} \]

(4)

- Morphism implies recursive: \(\Gamma(m_1 \ast m_2) = \Gamma(m_1) \bullet \Gamma(m_2) \).
Example: Dyck path Magma

- Dyck Paths

- Product

- Generator: \(\varepsilon = \circ \) (a vertex).

- Examples

- Norm = Number of up steps + 1
Example: Triangulation Magma

- Polygon Triangulation’s

- Product:

- Generator $\epsilon = \mathbb{1}$

- Examples:

- Norm = (Number of triangles) + 1
Example: Frieze pattern Magma (Conway and Coxeter 1973)

\[\mathbb{F}_{14} \] – Frieze Patterns: \(n - 1 \) row periodic repeating rhombus

\[
\begin{array}{cccccc}
\ldots & 1 & 1 & \ldots & 1 & \ldots \\
\ldots & a_1 & a_2 & \ldots & a_n & \ldots \\
\ldots & b_1 & b_2 & \ldots & b_n & \ldots \\
\ldots & \ddots & \ddots & \ddots & \ddots & \ddots \\
\ldots & r_1 & r_2 & \ldots & r_n & \ldots \\
\ldots & 1 & 1 & \ldots & 1 & \ldots
\end{array}
\]

\[r \]

with \(s \), \(t \) and \(st - ru = 1 \)

\[u \]

\[12213, \ 22131, \ 21312, \ 13122, \ 31221. \]
Product: \(a_1, a_2, \ldots, a_n \ast b_1, b_2, \ldots, b_m = c_1, c_2, \ldots, c_{n+m-1}\)

where

\[
c_i = \begin{cases}
 a_1 + 1 & i = 1 \\
 a_i & 1 < i < n \\
 a_n + b_1 + 1 & i = n \\
 b_i & n < i < n + m - 1 \\
 b_m + 1 & i = n + m - 1
\end{cases}
\]

\(c_i\)

(5)

Generator: \(\varepsilon = 00\).

Examples:

\[
\begin{align*}
00 \ast 00 &= 111 \\
00 \ast 111 &= 1212 \\
111 \ast 00 &= 2121 \\
111 \ast 111 &= 21312
\end{align*}
\]

Norm = (Length of sequence) – 1
Bijections

- First, factorise path to its generators

\[
\begin{align*}
\text{Path} & \quad = \quad \text{Path} \\
& \quad = \quad \text{Path} \\
& = (\circ \ast_7 \circ) \ast_7 (\circ \ast_7 \circ)
\end{align*}
\]

- then change generators and product rules: \(\ast_7 \rightarrow \ast_8 \):

\[
(\circ \ast_7 \circ) \ast_7 (\circ \ast_7 \circ) \quad \mapsto \quad (\bullet \ast_8 \bullet) \ast_8 (\bullet \ast_8 \bullet)
\]

- then re-multiply:

\[
(\bullet \ast_8 \bullet) \ast_8 (\bullet \ast_8 \bullet) = \quad \ast_8
\]

- which gives the bijection

\[
\begin{align*}
\text{Path} & \quad \mapsto \quad \text{Path}
\end{align*}
\]
Similarly, if we perform the same multiplications for matching brackets:

\[
(\emptyset \star_1 \emptyset) \star_1 (\emptyset \star_1 \emptyset) = \{\} \star_1 \{\} = \{\} \{\} \{\}
\]

or for nested matchings,

\[
\quad
\]

Thus we have the bijections:
Magmatisation of Catalan families gives “universal” recursive bijection.

Also, embedded bijections, Narayanaya statistic etc.

Adding a unary map gives Fibonacci, with binary map gives Motzkin, Schröder paths etc.

Current projects:
- Extending to coupled algebraic equations eg. pairs of ternary trees
- Reformulating the “symbolic” method.

– Thank You –