Constructing (0, 1)-matrices with large minimal defining sets

Nicholas Cavenagh, Reshma Ramadurai University of Waikato Let $R = (r_1, r_2, \ldots, r_m)$ and $S = (s_1, s_2, \ldots, s_n)$ be vectors of non-negative integers such that $\sum_{i=1}^m r_i = \sum_{j=1}^n s_j$. Then $\mathcal{A}(R, S)$ is defined to be the set of all $m \times n$ (0,1)-matrices with r_i 1's in row *i* and s_j 1's in column *j*, where $1 \le i \le m$ and $1 \le j \le n$.

The Gale-Ryser Theorem for dummies

A matrix M is the unique element of $\mathcal{A}(R,S)$ if and only if a curve \mathcal{C} of non-positive gradient can be drawn with all the O's above \mathcal{C} and all of the 1's below the curve \mathcal{C} . We say that a partially filled-in (0, 1)-matrix D is a *defining* set for M if M is the unique member of $\mathcal{A}(R, S)$ such that $D \subseteq M$.

Given a (0, 1)-matrix M, the size of the smallest defining set in M is denoted by scs(M). We define:

$$scs(\mathcal{A}(R,S)) = min\{scs(M) \mid M \in \mathcal{A}(R,S)\}.$$

We also define

$$\max(\mathcal{A}(R,S)) = \max\{\operatorname{scs}(M) \mid M \in \mathcal{A}(R,S)\}.$$

We define $A_{n,x} = \mathcal{A}(R_{n,x}, S_{n,x})$ to be the set of $n \times n$ (0,1)matrices with constant row and column sum x. Elements of $A_{n,x}$ may also be thought of as *frequency squares* **Theorem.** (Cavenagh, 2013). Any defining set D in a matrix from $A_{n,x}$ has size at least min $\{x^2, (n-x)^2\}$.

Corollary. $scs(A_{2m,m}) = m^2$.

Our main new result is the following:

Theorem. (Cavenagh and Ramadurai, 2017) If m is a power of two, $\max cs(A_{2m,m}) = 2m^2 - O(m^{7/4})$.

The analogous question has been considered for Latin squares.

Theorem. (Ghandehari, Hatami and Mahmoodian, 2005): Every Latin square of order n has a defining set of size at most $n^2 - \frac{\sqrt{\pi}}{2}n^{9/6}$ and that for each n there exists a Latin square L with no defining set of size less than $n^2 - (e + o(1))n^{10/6}$. **Theorem.** The set D is a defining set of a (0, 1)-matrix M if and only if $D \subset M$ and the rows and columns of $M \setminus D$ can be rearranged so that there exists curve C of non-positive gradient such that there are only 0's in $M \setminus D$ above C and only 1's in $M \setminus D$ below C.

	0	1	0	0	1	1	0	1
	0	0	1	0	1	0	1	1
	0	0	0	1	0	1	1	1
$x_1 = 0$	1	0	1	1	0	0	1	0
$x_2 = 1$	0	0	1	0	1	0	1	1
$x_3 = 1$	0	0	0	1	0	1	1	1
$x_1 + x_2 = 1$	0	1	1	0	0	1	1	0
$x_1 + x_3 = 0$	1	0	1	0	0	1	0	1
$x_2 + x_3 = 1$	0	0	1	1	1	1	0	0
$x_1 + x_2 + x_3 = 1$	0	1	1	1	0	0	0	1

The matrix M(0, 1, 1, 1, 0, 1, 1), k = 3.

Theorem. For each choice of V, $\Delta(V) \leq m^{3/2}$, where $m = 2^k$.

Let k = 2. Then B is given below.

Lemma. Let R and C be any subsets of the rows and columns, respectively, of B. Then the difference between the number of 0's and the number of 1's in the submatrix defined by $R \times C$ is at most $2m^{3/2} + m$.