On the size Ramsey number

Dennis Clemens

TUHH
Technische Universität Hamburg

Monash University Melbourne
March 19th 21st 2018

joint work with: (1) Matthew Jenssen, Yoshiharu Kohayakawa, Natasha Morrison, Guilherme O. Mota, Damian Reding, Barnaby Roberts & (2) Meysam Miralaei, Damian Reding, Mathias Schacht, Anusch Taraz
Mit welcher Linie fliegt ihr denn?

Tigerair
Ramsey graphs
Definition: A graph G is Ramsey for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.
Ramsey graphs

Definition: A graph G is Ramsey for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F
Ramsey graphs

Definition: A graph G is Ramsey for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \not\rightarrow K_3$
Ramsey graphs

Definition: A graph G is Ramsey for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \not\rightarrow K_3$
Ramsey graphs

Definition: A graph G is **Ramsey** for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \nrightarrow K_3$

Theorem (Ramsey; 1930)

For every graph F, there is an integer $n \in \mathbb{N}$ such that $K_n \rightarrow F$
Ramsey graphs

Definition: A graph G is **Ramsey** for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \not\rightarrow K_3$

Theorem (Ramsey; 1930)
For every graph F, there is an integer $n \in \mathbb{N}$ such that $K_n \rightarrow F$

Typical questions: Given a graph F. Determine

- $r(F) := \min \{v(G) : G \rightarrow F\}$

 [Ramsey number]
Ramsey graphs

Definition: A graph G is Ramsey for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \not\rightarrow K_3$

Theorem (Ramsey; 1930)
For every graph F, there is an integer $n \in \mathbb{N}$ such that $K_n \rightarrow F$

Typical questions: Given a graph F. Determine

- $r(F) := \min \{v(G) : G \rightarrow F\}$ \hspace{1cm} [Ramsey number]
- $s(F) := \min \{\delta(G) : G \rightarrow F \text{ and } H \not\rightarrow F \text{ for all } H \subsetneq G\}$
Ramsey graphs

Definition: A graph G is **Ramsey** for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \not\rightarrow K_3$

Theorem (Ramsey; 1930)

For every graph F, there is an integer $n \in \mathbb{N}$ such that $K_n \rightarrow F$

Typical questions: Given a graph F. Determine

- $r(F) := \min \{v(G) : G \rightarrow F\}$
 [Ramsey number]
- $s(F) := \min \{\delta(G) : G \rightarrow F \text{ and } H \not\rightarrow F \text{ for all } H \subsetneq G\}$
- $\hat{r}(F) := \min \{e(G) : G \rightarrow F\}$
 [size Ramsey number]
Ramsey graphs

Definition: A graph G is **Ramsey** for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \not\rightarrow K_3$

Theorem (Ramsey; 1930)

For every graph F, there is an integer $n \in \mathbb{N}$ such that $K_n \rightarrow F$

Typical questions: Given a graph F. Determine

- $r(F) := \min \{ v(G) : G \rightarrow F \}$ \hspace{1cm} [Ramsey number]
- $s(F) := \min \{ \delta(G) : G \rightarrow F \text{ and } H \not\rightarrow F \text{ for all } H \subset G \}$
- $\hat{r}(F) := \min \{ e(G) : G \rightarrow F \}$ \hspace{1cm} [size Ramsey number]

(... and other graph parameters)
Ramsey graphs

Definition: A graph G is Ramsey for a graph F, if no matter how one colors the edges of G with 2 colors, one of the color classes contains a copy of F.

Notation: $G \rightarrow F$ to denote that G is Ramsey for F

Typical example: $K_6 \rightarrow K_3$ and $K_5 \not\rightarrow K_3$

Theorem (Ramsey; 1930)

For every graph F, there is an integer $n \in \mathbb{N}$ such that $K_n \rightarrow F$

Typical questions: Given a graph F. Determine

- $r(F) := \min\{v(G) : G \rightarrow F\}$
 \[\text{[Ramsey number]}\]
- $s(F) := \min\{\delta(G) : G \rightarrow F \text{ and } H \not\rightarrow F \text{ for all } H \subset G\}$
- $\hat{r}(F) := \min\{e(G) : G \rightarrow F\}$
 \[\text{[size Ramsey number]}\]

(... and other graph parameters)
Definition (Erdős, Faudree, Rousseau, Schelp; 1978)
The size Ramsey number of a graph F is defined as

$$\hat{r}(F) := \min\{e(G) : G \rightarrow F\}.$$
Definition (Erdős, Faudree, Rousseau, Schelp; 1978)
The size Ramsey number of a graph F is defined as

$$\hat{r}(F) := \min\{e(G) : G \to F\}.$$

Observation: For every graph F we have

$$\hat{r}(F) \leq \binom{r(F)}{2}.$$
Size Ramsey number

Definition (Erdős, Faudree, Rousseau, Schelp; 1978)

The size Ramsey number of a graph F is defined as

$$\hat{r}(F) := \min \{ e(G) : G \rightarrow F \}.$$

Observation: For every graph F we have

$$\hat{r}(F) \leq \binom{r(F)}{2}.$$

Erdős et. al. (1978) asked for graphs for which equality holds
Size Ramsey number

Definition (Erdős, Faudree, Rousseau, Schelp; 1978)
The size Ramsey number of a graph F is defined as

$$\hat{r}(F) := \min\{e(G) : G \rightarrow F\}.$$usaha

Observation: For every graph F we have

$$\hat{r}(F) \leq \binom{r(F)}{2}.$$usaha

Erdős et. al. (1978) asked for graphs for which equality holds

Theorem (Chvátal; 1978)

$$\hat{r}(K_n) = \binom{r(K_n)}{2}.$$usaha
Size Ramsey number

Definition (Erdős, Faudree, Rousseau, Schelp; 1978)
The size Ramsey number of a graph F is defined as

\[\hat{r}(F) := \min \{ e(G) : G \rightarrow F \} . \]

Observation: For every graph F we have

\[\hat{r}(F) \leq \binom{r(F)}{2} . \]

Erdős et. al. (1978) asked for graphs for which equality holds and for graph sequences for which $\hat{r}(F)$ is of smaller order than $\binom{r(F)}{2}$.

Theorem (Chvátal; 1978)

\[\hat{r}(K_n) = \binom{r(K_n)}{2} \]
Size Ramsey number

Definition (Erdős, Faudree, Rousseau, Schelp; 1978)

The size Ramsey number of a graph F is defined as

$$\hat{r}(F) := \min\{e(G) : G \rightarrow F\}.$$

Observation: For every graph F we have

$$\hat{r}(F) \leq \left(\frac{r(F)}{2}\right)^2.$$

Erdős et. al. (1978) asked for graphs for which equality holds and for graph sequences for which $\hat{r}(F)$ is of smaller order than $\left(\frac{r(F)}{2}\right)^2$.

Theorem (Chvátal; 1978)

$$\hat{r}(K_n) = \left(\frac{r(K_n)}{2}\right).$$

Question (Erdős; 1981)

Is it true that $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n} = \infty$ and $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n^2} = 0$?
Question (Erdős; 1981)

Is it true that \(\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n} = \infty \) and \(\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n^2} = 0 \)?
Size Ramsey number of P_n

Question (Erdős; 1981)

Is it true that $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n} = \infty$ and $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n^2} = 0$?

Theorem (Beck; 1983)

There is a constant $C > 0$ such that for every $n \in \mathbb{N}$ it holds that $\hat{r}(P_n) < Cn$. For short:

$\hat{r}(P_n) = O(n)$.
Size Ramsey number of P_n

Question (Erdős; 1981)

Is it true that $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n} = \infty$ and $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n^2} = 0$?

Theorem (Beck; 1983)

There is a constant $C > 0$ such that for every $n \in \mathbb{N}$ it holds that $\hat{r}(P_n) < Cn$. For short:

$$\hat{r}(P_n) = O(n).$$

- Beck’s proof uses a probabilistic construction (and a large constant C)
Size Ramsey number of P_n

Question (Erdős; 1981)

Is it true that $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n} = \infty$ and $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n^2} = 0$?

Theorem (Beck; 1983)

There is a constant $C > 0$ such that for every $n \in \mathbb{N}$ it holds that $\hat{r}(P_n) < Cn$. For short:

$$\hat{r}(P_n) = O(n).$$

- Beck’s proof uses a probabilistic construction (and a large constant C)
- Alon, Chung (1988) gave an explicit construction of a graph $G \to P_n$ with $e(G) = \Theta(n)$
Size Ramsey number of P_n

Question (Erdős; 1981)

Is it true that $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n} = \infty$ and $\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n^2} = 0$?

Theorem (Beck; 1983)

There is a constant $C > 0$ such that for every $n \in \mathbb{N}$ it holds that $\hat{r}(P_n) < Cn$. For short:

$$\hat{r}(P_n) = O(n).$$

- Beck’s proof uses a probabilistic construction (and a large constant C)
- Alon, Chung (1988) gave an explicit construction of a graph $G \to P_n$ with $e(G) = \Theta(n)$
- Dudek, Prałat (2015) gave a simple (probabilistic) proof showing that $\hat{r}(P_n) < 137n$
Size Ramsey number of P_n

Question (Erdős; 1981)
Is it true that \(\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n} = \infty \) and \(\lim_{n \to \infty} \frac{\hat{r}(P_n)}{n^2} = 0 \)?

Theorem (Beck; 1983)
There is a constant \(C > 0 \) such that for every \(n \in \mathbb{N} \) it holds that \(\hat{r}(P_n) < Cn \). For short:
\[
\hat{r}(P_n) = O(n).
\]

- Beck’s proof uses a probabilistic construction (and a large constant \(C \))
- Alon, Chung (1988) gave an explicit construction of a graph \(G \to P_n \) with \(e(G) = \Theta(n) \)
- Dudek, Prałat (2015) gave a simple (probabilistic) proof showing that \(\hat{r}(P_n) < 137n \)

Natural question: For the size Ramsey numbers of which graph sequences do we have linearity in the number of vertices?
Linearity of the size Ramsey number

The path P_n, the cycle C_n, and trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$.

Question (Beck; 1990)
Is $\hat{r}(F)$ linear for all graphs with bounded maximum degree?

Theorem (Rödl, Szemerédi; 2000)
There is a sequence of graphs H with $v(H) = n$, $\Delta(H) = 3$ and such that $\hat{r}(H) = \Omega(n \log \frac{1}{60} n)$.

Theorem (Kohayakawa, Rödl, Schacht, Szemerédi; 2011)
For every $\Delta \in \mathbb{N}$ there is a constant $c = c(\Delta)$ such that the following holds: For every graph F with $v(F) = n$ and maximum degree Δ it holds that $\hat{r}(F) \leq cn^{2 - \frac{1}{\Delta}} \log \frac{1}{\Delta} n$.
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
 - proved by Haxell, Kohayakawa, Łuczak (2008) for the induced size Ramsey number
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
 - proved by Haxell, Kohayakawa, Łuczak (2008) for the induced size Ramsey number using regularity methods (very large constant)
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
 - proved by Haxell, Kohayakawa, Łuczak (2008) for the induced size Ramsey number using regularity methods (very large constant)
 - proved by Javadi, Khoeini, Omidi, Pokrovskiy (2017+) without the regularity lemma
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
 - proved by Haxell, Kohayakawa, Łuczak (2008) for the induced size Ramsey number using regularity methods (very large constant)
 - proved by Javadi, Khoeini, Omidi, Pokrovskiy (2017+) without the regularity lemma:

$$\hat{r}(C_n) \leq \begin{cases}
113482 \cdot 10^6 n & \text{if } n \text{ is odd} \\
2514 \cdot 10^6 n & \text{if } n \text{ is even}
\end{cases}$$

for large enough n.
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
- trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
- trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$
 - almost proved by Beck (1983):
 $$\hat{r}(T) = O(kn \log^{12} n)$$
 - proved by Friedman, Pippenger (1987)

Theorem (Rödl, Szemerédi; 2000)

There is a sequence of graphs H with $v(H) = n$, $\Delta(H) = 3$ and such that $
hat{r}(H) = \Omega(n \log^{1/60} n)$.

Theorem (Kohayakawa, Rödl, Schacht, Szemerédi; 2011)

For every $\Delta \in \mathbb{N}$ there is a constant $c = c(\Delta)$ such that the following holds:

For every graph F with $v(F) = n$ and maximum degree Δ it holds that

$$\hat{r}(F) \leq cn^{2^{\Delta - 1}} \log^{1/\Delta} n.$$
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
- trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$
 - almost proved by Beck (1983):
 \[
 \hat{r}(T) = O(kn \log^{12} n)
 \]
 - proved by Friedman, Pippenger (1987)

\[\Rightarrow\] both papers: universality result
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
- trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
- trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$

Question (Beck; 1990)

Is $\hat{r}(F)$ linear for all graphs with bounded maximum degree?
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...

- the path P_n
- the cycle C_n
- trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$

Question (Beck; 1990)

Is $\hat{r}(F)$ linear for all graphs with bounded maximum degree?

Theorem (Rödl, Szemerédi; 2000)

There is a sequence of graphs H with $v(H) = n$, $\Delta(H) = 3$ and such that

$$\hat{r}(H) = \Omega(n \log^{\frac{1}{60}} n).$$
Linearity of the size Ramsey number

Linearity of the size Ramsey number is known for ...
- the path P_n
- the cycle C_n
- trees T on n vertices of bounded maximum degree $\Delta(T) \leq k$

Question (Beck; 1990)
Is $\hat{r}(F)$ linear for all graphs with bounded maximum degree?

Theorem (Rödl, Szemerédi; 2000)
There is a sequence of graphs H with $v(H) = n$, $\Delta(H) = 3$ and such that
$$\hat{r}(H) = \Omega(n \log^{\frac{1}{60}} n).$$

Theorem (Kohayakawa, Rödl, Schacht, Szemerédi; 2011)
For every $\Delta \in \mathbb{N}$ there is a constant $c = c(\Delta)$ such that the following holds:
For every graph F with $v(F) = n$ and maximum degree Δ it holds that
$$\hat{r}(F) \leq cn^{2-\frac{1}{\Delta}} \log^{\frac{1}{\Delta}} n.$$
Powers of paths

Definition:
Let \(F = (V, E) \) be a graph. The \(k \)-th power \(F^k \) of \(F \) is defined on the same vertex set as \(F \) with edges given as follows:

\[uv \in E(F^k) : \iff \text{dist}_{F}(u, v) \leq k \]

Problem (Conlon; 2016)
Find out whether the size Ramsey number of \(P_k n \) is linear in \(n \).

Theorem (C., Jenssen, Kohayakawa, Morrison, Mota, Reding, Roberts; 2017+)
\(\hat{r}(P_k n) = O(n) \) and \(\hat{r}(C_k n) = O(n) \)
Powers of paths

Definition: Let $F = (V, E)$ be a graph. The k-th power F^k of F is defined on the same vertex set as F with edges given as follows:

$$uv \in E(F^k) : \iff \text{dist}_F(u, v) \leq k$$
Powers of paths

Definition: Let $F = (V, E)$ be a graph. The *k-th power* F^k of F is defined on the same vertex set as F with edges given as follows:

$$uv \in E(F^k) : \Leftrightarrow \text{dist}_F(u, v) \leq k$$

![Diagram of a path P_7]
Powers of paths

Definition: Let $F = (V, E)$ be a graph. The k-th power F^k of F is defined on the same vertex set as F with edges given as follows:

$$uv \in E(F^k) \iff \text{dist}_F(u, v) \leq k$$

Problem (Conlon; 2016)

Find out whether the size Ramsey number of P^k_n is linear in n.

Theorem (C., Jenssen, Kohayakawa, Morrison, Mota, Reding, Roberts; 2017+)

$$\hat{r}(P^k_n) = O(n)$$ and $$\hat{r}(C^k_n) = O(n)$$
Powers of paths

Definition: Let $F = (V, E)$ be a graph. The k-th power F^k of F is defined on the same vertex set as F with edges given as follows:

$$uv \in E(F^k) \iff \text{dist}_F(u, v) \leq k$$
Powers of paths

Definition: Let $F = (V, E)$ be a graph. The k-th power F^k of F is defined on the same vertex set as F with edges given as follows:

$$uv \in E(F^k) \iff \text{dist}_F(u, v) \leq k$$

Problem (Conlon; 2016)

Find out whether the size Ramsey number of P^k_n is linear in n.

Theorem (C., Jenssen, Kohayakawa, Morrison, Mota, Reding, Roberts; 2017+)

\[\hat{r}(P^k_n) = O(n) \] and \[\hat{r}(C^k_n) = O(n) \]
Powers of paths

Definition: Let $F = (V, E)$ be a graph. The k-th power F^k of F is defined on the same vertex set as F with edges given as follows:

$$uv \in E(F^k) :\iff \text{dist}_F(u, v) \leq k$$

Problem (Conlon; 2016)

Find out whether the size Ramsey number of P_n^k is linear in n.

Theorem (C., Jenssen, Kohayakawa, Morrison, Mota, Reding, Roberts; 2017+)

$$\hat{r}(P_n^k) = O(n)$$
Powers of paths

Definition: Let \(F = (V, E) \) be a graph. The \(k \)-th power \(F^k \) of \(F \) is defined on the same vertex set as \(F \) with edges given as follows:

\[
uv \in E(F^k) \iff \text{dist}_F(u, v) \leq k
\]

Problem (Conlon; 2016)

Find out whether the size Ramsey number of \(P^k_n \) is linear in \(n \).

Theorem (C., Jenssen, Kohayakawa, Morrison, Mota, Reding, Roberts; 2017+)

\[
\hat{r}(P^k_n) = O(n) \quad \text{and} \quad \hat{r}(C^k_n) = O(n)
\]
Proof for $\hat{r}(P^n_k) = O(n)$
Proof for $\hat{r}(P^n_k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property

"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"
Proof for $\tilde{r}(P_n^k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property
"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"

(between large sets there is always an edge)
Proof for $\hat{r}(P_n^k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property
"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"

take k-the power H^k of H
Proof for $\hat{r}(P_n^k) = O(n)$

\[H \]

(start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property
"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"

\[H^k \quad (k = 2) \]

take k-the power H^k of H
Proof for $\hat{r}(P^n_k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property
“for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$”

take k-the power H^k of H
(it will turn out later that $H^k \to (P_n, P_n^k)$)
Proof for $\hat{r}(P_n^k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property "for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"

take k-the power H^k of H

(it will turn out later that $H^k \rightarrow (P_n, P_n^k)$)

take "complete-t-blow-up" $(H^k)_t$ of H^k:
Proof for $\hat{r}(P_{n}^{k}) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property
"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_{H}(S, T) > 0$"

take k-the power H^{k} of H
(it will turn out later that $H^{k} \rightarrow (P_{n}, P_{n}^{k})$)

take "complete-t-blow-up" $(H^{k})_{t}$ of H^{k}:
Proof for $\hat{r}(P_n^k) = O(n)$

Start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property "for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"

Take k-the power H^k of H

(it will turn out later that $H^k \rightarrow (P_n, P_n^k)$)

Take "complete-t-blow-up" $(H^k)_t$ of H^k:

- replace each vertex by a clique of size $r(K_t)$, called cluster
Proof for $\hat{r}(P_n^k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property
"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"

take k-the power H^k of H
(it will turn out later that $H^k \to (P_n, P_n^k)$)

take "complete-t-blow-up" $(H^k)_t$ of H^k:
- replace each vertex by a clique of size $r(K_t)$, called cluster
- replace each edge by a complete bipartite graph
Proof for $\hat{r}(P_n^k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property

"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S, T) > 0$"

take k-the power H^k of H

(it will turn out later that $H^k \rightarrow (P_n, P_n^k)$)

take "complete-t-blow-up" $(H^k)_t$ of H^k:

- replace each vertex by a clique of size $r(K_t)$, called cluster
- replace each edge by a complete bipartite graph

Note: $e((H^k)_t) = O(n)$

$(t = t(k) \text{ is chosen as a large constant})$
Proof for $\hat{r}(P_n^k) = O(n)$

start with a graph H on $\Theta(n)$ vertices, with $\Delta(H) = \Theta(1)$ and the property
"for every disjoint sets $S, T \subset V(H)$ with $|S|, |T| \geq \gamma n$ it holds that $e_H(S,T) > 0$"

take k-the power H^k of H
(it will turn out later that $H^k \to (P_n, P_n^k)$)

take "complete-t-blow-up" $(H^k)_t$ of H^k:
- replace each vertex by a clique
of size $r(K_t)$, called cluster
- replace each edge by a complete bipartite graph

Theorem:
$(H^k)_t$ is Ramsey for P_n^k.
Proof for $\hat{r}(P^k_n) = O(n)$

Theorem: $(H^k)^t$ is Ramsey for P^k_n.

take "complete-t-blow-up" $(H^k)^t$ of H^k:
• replace each vertex by a clique
 of size $r(K_t)$, called cluster
• replace each edge by a complete
 bipartite graph

$\bullet \quad (H^k)^t$
Proof for $\hat{r}(P_n^k) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given.

take "complete-t-blow-up" $((H^k)_t)$ of H^k:
- replace each vertex by a clique
 of size $r(K_t)$, called cluster
- replace each edge by a complete
 bipartite graph

Theorem:

$(H^k)_t$ is Ramsey for P_n^k.
Proof for $\hat{r}(P_{n}^{k}) = O(n)$

Theorem: $(H^{k})_{t}$ is Ramsey for P_{n}^{k}.

Proof: Let a 2-colouring χ of $E((H^{k})_{t})$ be a given. In each cluster find a m.c. copy of K_{t}.

- take "complete-t-blow-up" $(H^{k})_{t}$ of H^{k}:
 - replace each vertex by a clique of size $r(K_{t})$, called cluster
 - replace each edge by a complete bipartite graph

Theorem:

$(H^{k})_{t}$ is Ramsey for P_{n}^{k}.
Proof for $\hat{r}(P^n_k) = O(n)$

Theorem: $(H_k)^t$ is Ramsey for P^n_k.

Proof: Let a 2-colouring χ of $E((H^k)^t)$ be a given. In each cluster find a m.c. copy of K_t.

- take "complete-t-blow-up" $(H^k)^t$ of H^k:
 - replace each vertex by a clique of size $r(K_t)$, called cluster
 - replace each edge by a complete bipartite graph

Theorem:

$(H^k)^t$ is Ramsey for P^n_k.

Proof

![Diagram of a graph and its Ramsey properties](image-url)
Proof for $\hat{r}(P_{n}^{k}) = O(n)$

Theorem: $(H^{k})_{t}$ is Ramsey for P_{n}^{k}.

Proof: Let a 2-colouring χ of $E((H^{k})_{t})$ be a given. In each cluster find a m.c. copy of K_{t}.

(between large sets there is always an edge)

\[H \]

\[H^{k} \quad (k = 2) \]

\[(H^{k})_{t} \]

colouring χ
Proof for $\hat{r}(P_n^k) = O(n)$

Theorem: $(H^k)_t$ is Ramsey for P_n^k.

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t. W.l.o.g. half of all clusters have a blue copy of K_t.

Diagram:
- H
- H^k ($k = 2$)
- $(H^k)_t$
- Colouring χ
Proof for $\hat{r}(P^k_n) = O(n)$

Theorem: (H^k_t) is Ramsey for P^k_n.

Proof: Let a 2-colouring χ of $E((H^k_t))$ be a given. In each cluster find a m.c. copy of K_t.

W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$, reduce: H to $F := H[W]$

H^k to F^k

(H^k_t) to F' induced by the blues K_t's

(colouring χ)

(between large sets there is always an edge)
Theorem: \((H^k)_t \) is Ramsey for \(P^k_n \).

Proof: Let a 2-colouring \(\chi \) of \(E((H^k)_t) \) be a given. In each cluster find a m.c. copy of \(K_t \).

W.l.o.g. half of all clusters have a blue copy of \(K_t \).

Set \(W := \{ v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t \} \),

reduce: \(H \) to \(F := H[W] \)

\(H^k \) to \(F^k \)

\((H^k)_t \) to \(F' \) induced by the blues \(K'_t \)s
Proof for $\hat{r}(P^k_n) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t. W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$, reduce: H to $F := H[W]$, H^k to F^k, $(H^k)_t$ to F' induced by the blues K'_t's

Theorem:

$(H^k)_t$ is Ramsey for P^k_n.

F \subset H

(between large sets there is always an edge)

$F^k \subset H^k$

$F' \subset (H^k)_t$

colouring χ
Proof for $\hat{r}(P_k^n) = O(n)$

Theorem: $(H^k)_t$ is Ramsey for P_k^n.

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t. W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$, reduce: H to $F := H[W]$, H^k to F^k, $(H^k)_t$ to F' induced by the blues $K_t's$.

Define an auxiliary colouring χ' of $E(F^k)$:
Proof for $\hat{r}(P_n^k) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t.

W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$,

reduce: H to $F := H[W]$

H^k to F^k

$(H^k)_t$ to F' induced by the blues K'_ts

Define an auxiliary colouring χ' of $E(F^k)$:

colour $e = uv$ blue if between the corresponding blue K_t-copies in F'

there is a blue copy of $K_{2k,2k}$, otherwise colour $e = uv$ red.

Theorem:

$(H^k)_t$ is Ramsey for P_n^k.
Proof for $\hat{r}(P_n^k) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t.

W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$,

reduce: H to $F := H[W]$
H^k to F_k^k
$(H^k)_t$ to F' induced by the blues $K_t's$

Define an auxiliary colouring χ' of $E(F^k)$:

colour $e = uv$ blue if between the corresponding blue K_t-copies in F' there is a blue copy of $K_{2k,2k}$,
otherwise colour $e = uv$ red.

Theorem:

$(H^k)_t$ is Ramsey for P_n^k.

Proof for $\hat{r}(P^k_n) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t.

W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$,

reduce: H to $F := H[W]$

H^k to F^k

$(H^k)_t$ to F' induced by the blues K_t'

Define an auxiliary colouring χ' of $E(F^k)$:

colour $e = uv$ blue if between the corresponding blue K_t-copies in F'
there is a blue copy of $K_{2k,2k}$,
otherwise colour $e = uv$ red.

Theorem:

$(H^k)_t$ is Ramsey for P^k_n.
Proof for $\hat{r}(P_n^k) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t.

W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$,

reduce: H to $F := H[W]$

H^k to F^k

$(H^k)_t$ to F' induced by the blues K'_ts

Define an auxiliary colouring χ' of $E(F^k)$:

- colour $e = uv$ blue if between the corresponding blue K_t-copies in F'
- otherwise colour $e = uv$ red.

Theorem:

$(H^k)_t$ is Ramsey for P_n^k.

Diagram:

- $F \subset H$
- $F^k \subset H^k$
- colouring χ'
- $F' \subset (H^k)_t$
- colouring χ
Proof for $\hat{r}(P_k^n) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t.

W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$,

reduce:

- H to $F := H[W]$
- H^k to F^k
- $(H^k)_t$ to F' induced by the blues K'_ts

Define an auxiliary colouring χ' of $E(F^k)$:

- colour $e = uv$ blue if between the corresponding blue K_t-copies in F'
- otherwise colour $e = uv$ red.

Theorem:

$(H^k)_t$ is Ramsey for P_k^n.
Proof for $\hat{r}(P_k^n) = O(n)$

Proof: Let a 2-colouring χ of $E((H^k)_t)$ be a given. In each cluster find a m.c. copy of K_t.

W.l.o.g. half of all clusters have a blue copy of K_t.

Set $W := \{v \in V(H) : \text{cluster } C(v) \text{ has blue } K_t\}$, reduce: H to $F := H[W]$

H^k to F^k

$(H^k)_t$ to F' induced by the blues K'_ts

Define an auxiliary colouring χ' of $E(F^k)$:

- colour $e = uv$ blue if between the corresponding blue K_t-copies in F'
- otherwise colour $e = uv$ red.

Theorem:

$(H^k)_t$ is Ramsey for P_k^n.

Proof for $\hat{r}(P_n^k) = O(n)$

$F \subset H$

(between large sets there is always an edge)

$F^k \subset H^k$

colouring χ'

$F' \subset (H^k)_t$

colouring χ

no blue $K_{2k,2k}$
Proof for $\hat{r}(P_n^k) = O(n)$

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

$F \subset H$

(between large sets there is always an edge)

$F^k \subset H^k$

colouring χ'

$F' \subset (H^k)_t$

no blue $K_{2k,2k}$

colouring χ
Proof for $\hat{r}(P_n^k) = O(n)$

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

Lemma 2:
If χ' on $E(F^k)$ has a blue copy of P_n, then χ has a blue copy of P_n^k in H_t^k.

Lemma 3:
If χ' on $E(F^k)$ has a red copy of P_n^k, then χ has a red copy of P_n^k in H_t^k.
Proof for $\hat{r}(P_n^k) = O(n)$

Any 2-colouring χ' of $E(F_k)$ has a blue copy of P_n or a red copy of P_k^n.

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F_k)$ has a blue copy of P_n or a red copy of P_k^n.

Lemma 2:
If χ' on $E(F_k)$ has a blue copy of P_n, then χ has a blue copy of P_k^n in H_t^k.

Lemma 3:
If χ' on $E(F_k)$ has a red copy of P_k^n, then χ has a red copy of P_k^n in H_t^k.
Proof for $\hat{r}(P^n_k) = O(n)$

\[F \subset H \]

(between large sets there is always an edge)

\[F^k \subset H^k \]

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P^k_n.

\[F' \subset (H^k)_t \]

Lemma 2:
If χ' on $E(F^k)$ has a blue copy of P_n, then χ has a blue copy of P^k_n in H^k_t.

Lemma 3:
If χ' on $E(F^k)$ has a red copy of P^k_n, then χ has a red copy of P^k_n in H^k_t.
Proof for $\hat{r}(\mathcal{P}_n^k) = O(n)$

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.
Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k + 1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

(between large sets there is always an edge)
Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k + 1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

Proof: Extend χ' by colouring non-edges on $V(F^k)$ red.
Proof for $\hat{r}(P^k_n) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k + 1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P^k_n.

Proof: Extend χ' by colouring non-edges on $V(F^k)$ red. Suppose that there is no blue copy of P_n.

(between large sets there is always an edge)
Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017): Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k+1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma): Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

Proof: Extend χ' by colouring non-edges on $V(F^k)$ red. Suppose that there is no blue copy of P_n. By Pokrovskiy's Theorem find a huge red balanced complete $(k+1)$-partite graph.
Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k+1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F_k)$ has a blue copy of P_n or a red copy of P_n^k.

Proof: Extend χ' by colouring non-edges on $V(F_k)$ red. Suppose that there is no blue copy of P_n. By Pokrovskiy's Theorem find a huge red balanced complete $(k+1)$-partite graph. Using only the edges from $F \subset H$ find a copy of P_n.

\[F \subset H \]

(between large sets there is always an edge)

\[F^k \subset H^k \]

colouring χ'

\[F' \subset (H^k)_t \]

colouring χ

\[\text{no blue } K_{2k,2k} \]
Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k + 1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring $\chi' \neq E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

Proof: Extend χ' by colouring non-edges on $V(F^k)$ red.
Suppose that there is no blue copy of P_n.
By Pokrovskiy's Theorem find a huge red balanced complete $(k + 1)$-partite graph. Using only the edges from $F \subset H$ find a copy of P_n.

Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k + 1)$-partite graph (vertex-disjoint).
Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k + 1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

Proof: Extend χ' by colouring non-edges on $V(F^k)$ red. Suppose that there is no blue copy of P_n.
By Pokrovskiy's Theorem find a huge red balanced complete $(k + 1)$-partite graph. Using only the edges from $F \subset H$ find a copy of P_n.

Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k+1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

Proof: Extend χ' by colouring non-edges on $V(F^k)$ red.
Suppose that there is no blue copy of P_n.
By Pokrovs'kiy's Theorem find a huge red balanced complete $(k+1)$-partite graph. Using only the edges from $F \subset H$ find a copy of P_n.
Then use the edges from F^k to finish a red copy of P_n^k.

Proof for $\hat{r}(P_n^k) = O(n)$

Theorem (Pokrovskiy, 2017):
Let $E(K_m)$ be coloured with red/blue. Then $V(K_m)$ can be covered by k blue paths and a red balanced complete $(k + 1)$-partite graph (vertex-disjoint).

Lemma 1 (Key Lemma):
Any 2-colouring χ' of $E(F^k)$ has a blue copy of P_n or a red copy of P_n^k.

Proof: Extend χ' by colouring non-edges on $V(F^k)$ red. Suppose that there is no blue copy of P_n.
By Pokrovskyiys Theorem find a huge red balanced complete $(k + 1)$-partite graph. Using only the edges from $F \subset H$ find a copy of P_n.
Then use the edges from F^k to finish a red copy of P_n^k.

Diagram:
- $F \subset H$
- $(F^k) \subset H^k$
- $F' \subset (H^k)_t$

(colouring χ')

(colouring χ)

(no blue $K_{2k,2k}$)

(between large sets there is always an edge)
Open problems and work in progress

Problem 1 (What about grids?):
Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n.
If k is a fixed constant, then the previous result implies $\hat{r}(G_{k,n}) = O(n)$.

Now, let $G_{d,n}$ be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+): For any $d \geq 2$, is it true that $\hat{r}(G_{d,n}) = O(n^d)$?

Theorem (C., Miralaei, Reding, Schacht, Taraz; 2018+): $\hat{r}(G_{2,n}) = O(n^3 + o(1))$.
Open problems and work in progress

Problem 1 (What about grids?): Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n.
Open problems and work in progress

Problem 1 (What about grids?): Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n. If k is a fixed constant, then the previous result implies

$$\hat{r}(G_{k,n}) = O(n).$$
Open problems and work in progress

Problem 1 (What about grids?): Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n. If k is a fixed constant, then the previous result implies

$$\hat{r}(G_{k,n}) = O(n).$$

Now, let G_n^d be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

![Grid graphs](image)
Open problems and work in progress

Problem 1 (What about grids?): Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n. If k is a fixed constant, then the previous result implies

$$\hat{r}(G_{k,n}) = O(n).$$

Now, let G_n^d be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+)

For any $d \geq 2$, is it true that $\hat{r}(G_n^d) = O(n^d)$?
Problem 1 (What about grids?): Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n. If k is a fixed constant, then the previous result implies

$$\hat{r}(G_{k,n}) = O(n) .$$

Now, let G^d_n be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+)

For any $d \geq 2$, is it true that $\hat{r}(G^d_n) = O(n^d)$?
Open problems and work in progress

Problem 1 (What about grids?): Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n. If k is a fixed constant, then the previous result implies

$$\hat{r}(G_{k,n}) = O(n).$$

Now, let G_d^d be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+)

For any $d \geq 2$, is it true that $\hat{r}(G_d^d) = O(n^d)$?

Theorem (C., Miralaei, Reding, Schacht, Taraz; 2018+)

$$\hat{r}(G_d^2) = O(n^{3+o(1)})$$
Open problems and work in progress

Problem 1 (What about grids?): Let $G_{k,n}$ be the grid graph of size $k \times n$, i.e. the cartesian product of the paths P_k and P_n. If k is a fixed constant, then the previous result implies

$$\hat{r}(G_{k,n}) = O(n).$$

Now, let G^d_n be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+)

For any $d \geq 2$, is it true that $\hat{r}(G^d_n) = O(n^d)$?

Theorem (C., Miralaei, Reding, Schacht, Taraz; 2018+)

$$\hat{r}(G^2_n) = O(n^{3+o(1)})$$
Open problems and work in progress

Problem 1 (What about grids?): Let G_n^d be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+)
For any $d \geq 2$, is it true that $\hat{r}(G_n^d) = O(n^d)$?

Theorem (C., Miralaei, Reding, Schacht, Taraz; 2018+)

$\hat{r}(G_n^2) = O(n^{3+o(1)})$
Open problems and work in progress

Problem 1 (What about grids?): Let G_n^d be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+)

For any $d \geq 2$, is it true that $\hat{r}(G_n^d) = O(n^d)$?

Theorem (C., Miralaei, Reding, Schacht, Taraz; 2018+)

$\hat{r}(G_n^2) = O(n^{3+o(1)})$

Problem 2 (What about more than 2 colours?):
Denote with $\hat{r}_q(F)$ the size Ramsey number in case of colourings with q colours. It is still true that

$\hat{r}_q(P_n^k) = O(n)$?
Open problems and work in progress

Problem 1 (What about grids?): Let G^d_n be the d-dimensional grid, obtained by taking the cartesian product of d copies of P_n.

Question (CJKMMRR; 2017+)
For any $d \geq 2$, is it true that $\hat{r}(G^d_n) = O(n^d)$?

Theorem (C., Miralaei, Reding, Schacht, Taraz; 2018+)
$\hat{r}(G^2_n) = O(n^{3+o(1)})$

Problem 2 (What about more than 2 colours?):
Denote with $\hat{r}_q(F)$ the size Ramsey number in case of colourings with q colours. It is still true that $\hat{r}_q(P^k_n) = O(n)$?

Problem 3 (What about hypergraphs?):
How large is the size Ramsey number of tight paths and tight cycles?
Thanks for your attention!