Series-parallelization of graphs

Keith Edwards

School of Computing
University of Dundee, U.K.

30 November 2011

Joint work with Graham Farr (Monash University, Australia).
Planarization

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G
Output: set $P \subseteq V(G)$ such that
- the induced subgraph $\langle P \rangle$ is planar,
- $|P|$ is maximum.
Planarization

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G
Output: set $P \subseteq V(G)$ such that

- the induced subgraph $\langle P \rangle$ is planar,
- $|P|$ is maximum.
Planarization

MAXIMUM *INDUCED* PLANAR SUBGRAPH (MIPS)

Input: Graph G
Output: set $P \subseteq V(G)$ such that

- the *induced* subgraph $\langle P \rangle$ is planar,
- $|P|$ is maximum.
Planarization and Series-Parallelization

Equivalent to the Maximum Induced Planar Subgraph problem is the following:

Given a graph G, let $p(G)$ be the minimum number of vertices whose removal leaves a planar graph.

We may also consider $s(G)$, the minimum number of vertices whose removal leaves a series-parallel graph.

We will consider particularly graphs G with maximum or average degree at most d, and look for bounds of the form

$$p(G) \leq c_d |V(G)| \text{ or } s(G) \leq c_d |V(G)|$$
Simple argument for $d = 5$

Split vertices into two sets so that as many edges as possible cross the gap.

If a vertex v has degree 3 within one set, move it to the other side.
Simple argument for $d = 5$

Split vertices into two sets so that as many edges as possible cross the gap.

But then more edges cross the gap, which is impossible.
Simple argument for $d = 5$

Split vertices into two sets so that as many edges as possible cross the gap.

So within each set, every degree is at most two, so each set induces a series-parallel graph. Remove smaller set, so

$$s(G) \leq \frac{1}{2} |V| = \frac{d - 2}{d + 1} |V|.$$

Similar argument for $d = 8, 11, 14, \ldots$, i.e. $d \equiv 2 \pmod{3}$.
Series-Parallel Reductions

Isolated vertex

delete
Series-Parallel Reductions

Isolated vertex
Series-Parallel Reductions

Isolated vertex

Leaf
Series-Parallel Reductions

Isolated vertex delete

Leaf delete
Series-Parallel Reductions

Isolated vertex
- Delete

Leaf
- Delete

Degree 2
- Delete
- Insert (if absent)
Series-Parallel Reductions

Isolated vertex
- Delete

Leaf
- Delete

Degree 2
- Delete
- Insert if absent
Series-Parallel Reductions

Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):
Series-Parallel Reductions

Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):

![Diagram showing series-parallel reduction with a series connection turned into a parallel connection.](image-url)
Series-Parallel Reductions

Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):
Series-Parallel Reductions

Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):

Reduction

Delete vertices to planarize

Replace reduced vertex
Series-Parallel Reductions

Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):

Reduction

Delete vertices to planarize
Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):

Reduction
- Delete vertices
- Replace reduced vertex to planarize

Diagram:
- Initial graph: Three connected vertices
- Reduction: Delete one vertex and replace it
- Planarization: Ensure graph is planar
Series-Parallel Reductions

Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):

Reduction

Delete vertices to planarize
Series-Parallel Reductions

Any set whose deletion makes new graph S-P (or planar) also makes original graph S-P (or planar):

Reduction

Delete vertices to planarize

Replace reduced vertex
Series-Parallel Reductions

Reduced graph
Form reduced graph \(r(G) \) by applying the 3 reduction operations to \(G \) as many times as possible. (True but not obvious that \(r(G) \) is unique).

Properties

- \(r(G) \) has minimum degree at least 3.
- \(r(G) \) is empty if and only if \(G \) is S-P.
- Reducing does not change the minimum number of vertices which must be removed to make the graph S-P (or planar).

\[s(G) = s(r(G)). \]
Series-Parallel Reductions

Example
Series-Parallel Reductions

Example
Series-Parallel Reductions

Example
Making a graph S-P: Upper bound

Theorem

If G has minimum degree at least 3, then

$$s(G) \leq \sum_{v} \frac{d(v) - 2}{d(v) + 1}.$$

Very simple algorithm

$$X := \emptyset$$

while (graph is not empty)

 delete a vertex w of maximum degree

 $$X := X \cup \{w\}$$

 reduce

end while

return X
Series-Parallelization Algorithm

Example

\[R \]
Series-Parallelization Algorithm

Example

![Graph Example]
Series-Parallelization Algorithm

Example
Series-Parallelization Algorithm

Example
Theorem

\[s(G) \leq \sum_v \frac{d(v) - 2}{d(v) + 1}. \]

Proof

Induction on \(n = |V(G)| \).

Inductive basis: empty graph, \(s(G) = 0 = \) empty sum.

Now let \(G \) be any non-empty graph with min degree \(\geq 3 \ldots \)
Making a graph S-P: Upper bound

Graph G

Delete vertex w of maximum degree

$G' = G - w$

Reduce

$G^* = r(G')$
Making a graph S-P: Upper bound

\[G' = G - w, \quad G^* = r(G') \]

\[
s(G) \leq 1 + s(G') = 1 + s(G^*) \leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)}
\]

\[
\leq 1 + \sum_{v \in V(G')} d''(v) - 2 \quad \frac{d''(v) - 2}{d''(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d''(v) - 2}{d''(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d''(v) - 2}{d''(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
\]
Making a graph S-P: Upper bound

\[G' = G - w, \quad G^* = r(G') \]

\[s(G) \leq 1 + s(G') \]
\[= 1 + s(G^*) \]
\[\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \quad \text{(induction)} \]
\[\leq 1 + \sum_{v \in V(G')} \frac{d''(v) - 2}{d''(v) + 1} \]
\[= 1 + \sum_{v \in V(G'), v \sim w} \frac{d''(v) - 2}{d''(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d''(v) - 2}{d''(v) + 1} \]
\[= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1} \]
Making a graph S-P: Upper bound

\[G' = G - w, \quad G^* = r(G') \]

\[
\begin{align*}
\text{s}(G) & \leq 1 + \text{s}(G') \\
& = 1 + \text{s}(G^*) \\
& \leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \quad \text{(induction)} \\
& \leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1} \\
& = 1 + \sum_{v \in V(G'), \, v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), \, v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1} \\
& = 1 + \sum_{v \in V(G'), \, v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), \, v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
\end{align*}
\]
Making a graph S-P: Upper bound

\[G' = G - w, \quad G^* = r(G') \]

\[
s(G) \leq 1 + s(G')
\]

\[
= 1 + s(G^*)
\]

\[
\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \quad \text{(induction)}
\]

\[
\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
\]
Making a graph S-P: Upper bound

\(G' = G - w, \ G^* = r(G') \)

\[
\begin{align*}
 s(G) & \leq 1 + s(G') \\
 & = 1 + s(G^*) \\
 & \leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \quad \text{(induction)} \\
 & \leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1} \\
 & = 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1} \\
 & = 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
\end{align*}
\]
Making a graph S-P: Upper bound

\[G' = G - w, \quad G^* = r(G') \]

\[
s(G) \leq 1 + s(G') = 1 + s(G^*) \leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \quad \text{(induction)}\]

\[
\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
\]
Making a graph S-P: Upper bound

\[G' = G - w, \ G^* = r(G') \]

\[
s(G) \leq 1 + s(G')
= 1 + s(G^*)
\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \quad \text{(induction)}
\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
Making a graph S-P: Upper bound

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1} \right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= \sum_{v \in V(G)} \frac{d(v) - 2}{d(v) + 1}.
\]
Making a graph S-P: Upper bound

\[= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}\]

\[= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1}\right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}\]

\[= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}\]

\[\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}\]

\[= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}\]

\[= \sum_{v \in V(G)} \frac{d(v) - 2}{d(v) + 1}.\]
Making a graph S-P: Upper bound

\[
= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1} \right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}
\]

\[
= \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}.
\]
Making a graph S-P: Upper bound

\[
\begin{align*}
&= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1} \\
&= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1}\right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1} \\
&\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1} \\
&= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1} \\
&= \sum_{v \in V(G)} \frac{d(v) - 2}{d(v) + 1}.
\end{align*}
\]
Making a graph S-P: Upper bound

\[\begin{align*}
&= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1} \\
&= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1} \right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1} \\
&= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1} \\
&\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1} \\
&= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1} \\
&= \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}.
\end{align*} \]
Making a graph S-P: Upper bound

From this we obtain a result for average degree $d \geq 2$:

Theorem

Let G be a connected graph of average degree at most d. Then

$$s(G) \leq \frac{d - 2}{d + 1} |V(G)|.$$

For series-parallelization, this is best possible, because K_{d+1} is regular of degree d and we have to remove $d - 2$ vertices to avoid a K_4 subgraph.
From this we obtain a result for average degree $d \geq 2$:

Theorem

Let G be a connected graph of average degree at most d. Then

$$s(G) \leq \frac{d - 2}{d + 1} |V(G)|.$$

Connectedness is necessary:

13 vertices, 14 edges, average degree $\frac{28}{13}$.

$$\frac{d - 2}{d + 1} |V| = \frac{26}{41} < 1,$$ but $p(G) = 1$, $s(G) = 2$.
Fragmentability

...is about removing few vertices so as to break graphs into small pieces.
Fragmentability

...is about removing few vertices so as to break graphs into small pieces.
Fragmentability

remove few vertices: \(\leq \varepsilon \) of the vertices of the graph,

...to leave small pieces: \(\leq C \) vertices in each component

A graph is \((C, \varepsilon)\)-fragmentable if, by removing some fraction \(\leq \varepsilon \) of its vertices, you can leave components all of size \(\leq C \).

A class of graphs is \(\varepsilon \)-fragmentable if there is a constant \(C \) so that every graph in the class is \((C, \varepsilon)\)-fragmentable.

The lowest (infimum) possible \(\varepsilon \) is the coefficient of fragmentability of the class.
Fragmentability

remove few vertices: \(\leq \varepsilon \) of the vertices of the graph,

\ldots \text{to leave small pieces:} \quad \leq C \text{ vertices in each component}

A graph is \((C, \varepsilon)\)-\textit{fragmentable} if, by removing some fraction \(\leq \varepsilon \) of its vertices, you can leave components all of size \(\leq C \).

A class of graphs is \(\varepsilon \)-\textit{fragmentable} if there is a constant \(C \) so that every graph in the class is \((C, \varepsilon)\)-\textit{fragmentable}.

The lowest (infimum) possible \(\varepsilon \) is the \textit{coefficient of fragmentability} of the class.
remove few vertices: $\leq \varepsilon$ of the vertices of the graph,

\ldots to leave small pieces: $\leq C$ vertices in each component

A graph is (C, ε)-fragmentable if, by removing some fraction $\leq \varepsilon$ of its vertices, you can leave components all of size $\leq C$.

A class of graphs is ε-fragmentable if there is a constant C so that every graph in the class is (C, ε)-fragmentable.

The lowest (infimum) possible ε is the coefficient of fragmentability of the class.
Fragmentability

remove few vertices: \(\leq \varepsilon \) of the vertices of the graph,

\(\ldots \) to leave small pieces: \(\leq C \) vertices in each component

A graph is \((C, \varepsilon)\)-fragmentable if, by removing some fraction \(\leq \varepsilon \) of its vertices, you can leave components all of size \(\leq C \).

A class of graphs is \(\varepsilon\)-fragmentable if there is a constant \(C \) so that every graph in the class is \((C, \varepsilon)\)-fragmentable.

The lowest (infimum) possible \(\varepsilon \) is the coefficient of fragmentability of the class.
Fragmentability

remove few vertices: \(\leq \varepsilon \) of the vertices of the graph,

... to leave small pieces: \(\leq C \) vertices in each component

A graph is \((C, \varepsilon)\)-fragmentable if, by removing some fraction \(\leq \varepsilon \) of its vertices, you can leave components all of size \(\leq C \).

A class of graphs is \(\varepsilon \)-fragmentable if there is a constant \(C \) so that every graph in the class is \((C, \varepsilon)\)-fragmentable.

The lowest (infimum) possible \(\varepsilon \) is the coefficient of fragmentability of the class.
Series-parallelization and fragmentability

Series-parallelization is useful for breaking graphs into small pieces.
Given G, with max/ave degree $\leq d$:

1. remove vertices from G to leave induced series-parallel subgraph $\langle P \rangle$;
2. remove $o(n)$ vertices from $\langle P \rangle$ to leave bounded size pieces (e.g., apply Planar Separator Theorem (Lipton & Tarjan) recursively).
Series-parallelization and fragmentability

Lipton-Tarjan separator theorem: A planar graph with n vertices can be broken into 2 pieces with at most $2n/3$ vertices each by removing at most $2\sqrt{2} \sqrt{n}$ vertices.
Series-parallelization and fragmentability

Lipton-Tarjan separator theorem: A planar graph with \(n \) vertices can be broken into 2 pieces with at most \(2n/3 \) vertices each by removing at most \(2\sqrt{2}\sqrt{n} \) vertices.

By repeating the process, we can break up the graph into small (\(\leq C \) vertices) pieces.
Series-parallelization and fragmentability

Lipton-Tarjan separator theorem: A planar graph with \(n \) vertices can be broken into 2 pieces with at most \(2n/3 \) vertices each by removing at most \(2\sqrt{2}\sqrt{n} \) vertices.

Conclusion: For any \(\varepsilon > 0 \), we can remove a proportion \(\varepsilon \) of the vertices from any planar graph, and ensure no fragment has more than \(535/\varepsilon^2 \) vertices.
For series-parallel graphs, the coefficient of fragmentability is 0.

Hence, for the class of graphs with maximum or average degree at most \(d \), the coefficient of fragmentability is at most \(\frac{d-2}{d+1} \).

The best lower bound (due to Haxell, Pikhurko and Thomason) is:

\[
\frac{d - 2}{d + 2} \quad \text{for even } d \geq 4, \quad \text{and} \quad \frac{d^2 - 5}{(d + 1)(d + 3)} \quad \text{for odd } d \geq 5.
\]

Note that lower bounds for fragmentability are also lower bounds for series-parallelization.
For $d = 3$, we have $p(G) \leq \frac{1}{4} |V(G)|$ and the fraction $\frac{1}{4}$ is best possible (from fragmentability bounds).

But for $d \geq 4$, there is a gap between upper and lower bounds:

<table>
<thead>
<tr>
<th>d</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d-2}{d+1}$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{2}{5}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{4}{7}$</td>
</tr>
<tr>
<td>Lower bound</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{5}{12}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>
Consider a graph of maximum degree 4. Suppose there is a vertex v of degree 4 adjacent to a vertex w of degree 3.

Delete the vertex v.
Better Planarization

Consider a graph of maximum degree 4. Suppose there is a vertex \(v \) of degree 4 adjacent to a vertex \(w \) of degree 3.

Vertex \(w \) is now degree 2, so is removed by reduction.
Better Planarization

Consider a graph of maximum degree 4. Suppose there is a vertex v of degree 4 adjacent to a vertex w of degree 3.

Overall effect: $v_4 \rightarrow v_4 - 4$, $v_3 \rightarrow v_3 + 2$. After (roughly) $v_4/4$ such steps, we get graph G' which is 3-regular with $v_3 + v_4/2$ vertices. Then $p(G') \leq v_3/4 + v_4/8$, so

$$p(G) \leq v_4/4 + v_3/4 + v_4/8 \leq 3|V|/8.$$
This argument can be made precise and extended to general (average) degree d. We get an upper bound of the form

$$\frac{d - 9/4}{d + 1} + O\left(1/d^3\right).$$

<table>
<thead>
<tr>
<th>d</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d-2}{d+1}$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{2}{5}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{4}{7}$</td>
</tr>
<tr>
<td>New upper bound</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{19}{40}$</td>
<td>$\frac{131}{240}$</td>
</tr>
<tr>
<td>Lower bound</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{5}{12}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>
Better series-parallelization

In a sense, the upper bound of $\frac{d-2}{d+1}$ for series parallelization is best possible, since for any graph in which every component is K_{d+1}, we must remove $d - 2$ vertices from each component to make it series-parallel.

However, for connected graphs, we might hope to get

$$s(G) \leq j(d)n + o(n)$$

where $j(d) < \frac{d-2}{d+1}$.
Better series-parallelization

However, for connected graphs, we might hope to get

\[s(G) \leq j(d)n + o(n) \]

where \(j(d) < \frac{d-2}{d+1} \).

For \(d = 3 \), there can be no improvement. But for maximum degree \(d = 4, 5, 6 \) we can get

\[s(G) \leq j(d)n + C_d \]

<table>
<thead>
<tr>
<th>d</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{d-2}{d+1})</td>
<td>0</td>
<td>(\frac{1}{4})</td>
<td>(\frac{2}{5})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{4}{7})</td>
</tr>
<tr>
<td>Planarization u.b.</td>
<td>0</td>
<td>(\frac{1}{4})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{19}{40})</td>
<td>(\frac{131}{240})</td>
</tr>
<tr>
<td>j(d)</td>
<td>0</td>
<td>(\frac{1}{4})</td>
<td>(\frac{3}{8})</td>
<td>(\frac{19}{40})</td>
<td>(\frac{11}{20})</td>
</tr>
</tbody>
</table>
Better series-parallelization

For maximum degree $d \leq 6$ we can get

$$s(G) \leq j(d)n + C_d$$

<table>
<thead>
<tr>
<th>d</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d-2}{d+1}$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{2}{5}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{4}{7}$</td>
</tr>
<tr>
<td>$j(d)$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{19}{40}$</td>
<td>$\frac{11}{20}$</td>
</tr>
</tbody>
</table>

In fact for maximum degree ≤ 6 we can get the equivalent “vertex-wise” result:

$$s(G) \leq \sum_{v} j(d(v)) + C_d.$$
Better series-parallelization

For maximum degree $d \leq 6$ we have

$$s(G) \leq \sum_v j(d(v)) + C_d.$$

It seems natural to want to extend this to all d. But it turns out that this cannot be done while keeping $j(d) \leq \frac{d-2}{d+1}$ for all d.

<table>
<thead>
<tr>
<th>d</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{d-2}{d+1}$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{2}{5}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{4}{7}$</td>
<td>$\frac{5}{8}$</td>
<td>$\frac{6}{9}$</td>
</tr>
<tr>
<td>$j(d)$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{19}{40}$</td>
<td>$\frac{11}{20}$</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
More generally

For a set S of graphs, define $\mu(S, \Gamma)$ to be the minimum number μ such that any graph in Γ with n vertices can be made S-minor-free by removing at most $(\mu + o(1))n$ vertices.

So we have been considering $\mu(\{K_5, K_{3,3}\}, \Gamma_d^c)$ and $\mu(\{K_4\}, \Gamma_d^c)$.
More generally

What do we know about $\mu(\{K_r\}, \Gamma^c_d)$?

<table>
<thead>
<tr>
<th>$r \setminus d$</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>\ldots</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{2}{3}$</td>
<td>$\frac{3}{4}$</td>
<td>$\frac{4}{5}$</td>
<td>$\frac{5}{6}$</td>
<td>$\frac{6}{7}$</td>
<td>$\frac{12}{13}$</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>$\frac{1}{3}$</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\leq \frac{3}{8}$</td>
<td>$\leq \frac{19}{40}$</td>
<td>$\leq \frac{11}{20}$</td>
<td>$\leq \frac{5}{8}$</td>
<td>$\geq \frac{10}{13}$</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\leq \frac{3}{8}$</td>
<td>$\leq \frac{19}{40}$</td>
<td>$\leq \frac{131}{240}$</td>
<td>$\leq \frac{1009}{1680}$</td>
<td>$< \frac{10}{13}$</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>$c_f(\Gamma^c_d)$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>$\geq \frac{1}{3}$</td>
<td>$\geq \frac{5}{12}$</td>
<td>$\geq \frac{1}{2}$</td>
<td>$\geq \frac{21}{40}$</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
</tbody>
</table>