On Aharoni-Berger’s conjecture of rainbow matchings

Jane Gao
Monash University

Discrete Mathematics Seminar 2018

Joint work with Reshma Ramadurai, Ian Wanless and Nick Wormald
Latin rectangle \iff simple bipartite, union of PMs.
Ryser-Brualdi-Stein Conjecture

Conjecture (Ryser-Brualdi-Stein)

An $n \times n$ Latin square contains a partial transversal of size $n - 1$. If n is odd, there exists a full transversal.

Jane Gao Monash University
On Aharoni-Berger’s conjecture of rainbow matching

Discrete Mathematics Seminar 2018
Joint work with Reshma Ramadurai, Ian Wanless and Nick Wormald

3/36
Aharoni-Berger Conjecture

Conjecture (Ryser-Brualdi-Stein)

An $n \times n$ Latin square contains a partial transversal of size $n - 1$. If n is odd, there exists a full transversal.

A stronger version:

Conjecture (Aharoni-Berger 09)

If G is a bipartite multigraph as the union of $n - 1$ matchings in G, each of size n. Then G contains a full rainbow matching.
Conjecture (Aharoni, Berger, Chudnovsky, Howard and Seymour 16)

If G is a general graph as the union of $n - 2$ matchings each of size n, then G contains a full rainbow matching.
A trivial lower bound

\[|M| \rightarrow |M| - 2 \]

If \(|M| \leq \frac{n}{2} \), then

\(M \) contains a full rainbow matching.
State of art

- Partial transversal in Latin square:
 - \((2n+1)/3\) – Koksma (1969);
 - \((3/4)n\) – Drake (1977);
 - \(n - \sqrt{n}\) – Brouwer et al. (1978) and independently by Woolbright (1978.);
 - \(n - O(\log^2 n)\) – Shor (1982).

- Full rainbow matching in bipartite (multi)graphs.
 - \(n - o(n)\) (Latin rectangle) – Haggkvist and Johansson (2008).
 - \((4/7)n\) – Aharoni Charbit and Howard (2015).
 - \((2/3)n + o(n)\) – Clemens and Ehrenmüller (2016).
 - \((2n - 1)/3\) – Aharoni, Kotlar and Ziv (arXiv).
 - \(n - o(n)\) – Pokrovskiy (arXiv).
Our results

Theorem (G., Ramadurai, Wanless, Wormald 2017+)

If G is a general graph and $|\mathcal{M}| \leq n - n^c$, where $c > 9/10$. Then \mathcal{M} contains a full rainbow matching.

Theorem (G., Ramadurai, Wanless, Wormald 2017+)

- Larger $|\mathcal{M}|$ if $\Delta(G)$ is smaller than n.
- Multigraph G with low multiplicity.
- Hypergraphs where no two vertices are contained in too many hyperedges.

Keevash and Yepremyan (2017) — If G is an n-edge-coloured multigraph with low multiplicity, and each colour class contains $(1 + \epsilon)n$ edges, then there is a partial rainbow matching of size $n - O(1)$.
Our results

Theorem (G., Ramadurai, Wanless, Wormald 2017+)

If G is a general graph and $|M| \leq n - n^c$, where $c > 9/10$. Then M contains a full rainbow matching.

Theorem (G., Ramadurai, Wanless, Wormald 2017+)

- Larger $|M|$ if $\Delta(G)$ is smaller than n.
- Multigraph G with low multiplicity.
- Hypergraphs where no two vertices are contained in too many hyperedges.

Keevash and Yepremyan (2017) — If G is an n-edge-coloured multigraph with low multiplicity, and each colour class contains $(1 + \epsilon)n$ edges, then there is a partial rainbow matching of size $n - O(1)$.
Our results

Theorem (G., Ramadurai, Wanless, Wormald 2017+)

If G is a general graph and $|\mathcal{M}| \leq n - n^c$, where $c > 9/10$. Then \mathcal{M} contains a full rainbow matching.

Theorem (G., Ramadurai, Wanless, Wormald 2017+)

- Larger $|\mathcal{M}|$ if $\Delta(G)$ is smaller than n.
- Multigraph G with low multiplicity.
- Hypergraphs where no two vertices are contained in too many hyperedges.

Keevash and Yepremyan (2017) — If G is an n-edge-coloured multigraph with low multiplicity, and each colour class contains $(1 + \epsilon)n$ edges, then there is a partial rainbow matching of size $n - O(1)$.
Randomised algorithm and the DE method

Intuitively...

- Take a surviving matching x, take a random edge in x and put it to the rainbow matching;
- Modify the remaining graph;
- Repeat.

A randomised algorithm induces a sequence of random variables Z_0, Z_1, Z_2, \ldots.
Randomised algorithm and the DE method

Intuitively...

- Take a surviving matching x, take a random edge in x and put it to the rainbow matching;
- Modify the remaining graph;
- Repeat.

A randomised algorithm induces a sequence of random variables Z_0, Z_1, Z_2, \ldots.
Randomised algorithm and the DE method

Intuitively...

- Take a surviving matching x, take a random edge in x and put it to the rainbow matching;
- Modify the remaining graph;
- Repeat.

A randomised algorithm induces a sequence of random variables Z_0, Z_1, Z_2, \ldots.

Randomised algorithm and the DE method

Intuitively...

- Take a surviving matching x, take a random edge in x and put it to the rainbow matching;
- Modify the remaining graph;
- Repeat.

A randomised algorithm induces a sequence of random variables Z_0, Z_1, Z_2, \ldots.
Intuitively...

- Take a surviving matching x, take a random edge in x and put it to the rainbow matching;
- Modify the remaining graph;
- Repeat.

A randomised algorithm induces a sequence of random variables Z_0, Z_1, Z_2, \ldots.
Randomised algorithm and the DE method

Suppose

$$\mathbf{E}(Z_{t+1} - Z_t \mid \text{history}) = f(Z_t/n) + \text{small error.}$$

Then if we know a priori that $Z_t/n \approx z(x)$ where $x = t/n$ then

$$\frac{dz}{dx} = f(x).$$

The DE method guarantees that $Z_t = z(t/n)n + \text{small error}$, provided

- Z_0 lies inside a “nice” open set;
- f is “nice” in that open set;
- $|Z_{t+1} - Z_t|$ is not too big.
Suppose
\[E(Z_{t+1} - Z_t | \text{history}) = f(Z_t/n) + \text{small error}. \]
Then if we know a priori that \(Z_t/n \approx z(x) \) where \(x = t/n \) then
\[\frac{dz}{dx} = f(x). \]

The DE method guarantees that \(Z_t = z(t/n)n + \text{small error} \), provided
- \(Z_0 \) lies inside a “nice” open set;
- \(f \) is “nice” in that open set;
- \(|Z_{t+1} - Z_t| \) is not too big.
DE method hard to apply for the rainbow matching problem

Suppose

$$E(Z_{t+1} - Z_t \mid \text{history}) = f(Z_t/n) + \text{small error},$$

- Overlap of M_i and M_j ($|V(M_i) \cap V(M_j)|$) may be non-uniformly initially;
- The overlaps change in the process.
DE method hard to apply for the rainbow matching problem

Suppose

\[E(Z_{t+1} - Z_t \mid \text{history}) = f(Z_t/n) + \text{small error}, \]

- Overlap of \(M_i \) and \(M_j \) (\(|V(M_i) \cap V(M_j)|\)) may be non-uniformly initially;
- The overlaps change in the process.
DE method hard to apply for the rainbow matching problem

Suppose

\[E(Z_{t+1} - Z_t \mid \text{history}) = f(Z_t/n) + \text{small error}, \]

- Overlap of \(M_i \) and \(M_j \) \(|V(M_i) \cap V(M_j)|\) may be non-uniformly initially;
- The overlaps change in the process.
Randomly partition matchings in M into chunks, each chunk containing ϵn matchings. In iteration i, matchings in chunk i are processed.

In iteration i,

- For every matching in chunk i, randomly pick an edge x;
- “Artificially zap” each remaining vertex with a proper probability;
- Deal with vertex collisions.
Rödl nibble

Randomly partition matchings in \mathcal{M} into chunks, each chunk containing ϵn matchings. In iteration i, matchings in chunk i are processed. In iteration i,

- For every matching in chunk i, randomly pick an edge x;
- “Artificially zap” each remaining vertex with a proper probability;
- Deal with vertex collisions.
Randomly partition matchings in \mathcal{M} into chunks, each chunk containing ϵn matchings. In iteration i, matchings in chunk i are processed. In iteration i,

- For every matching in chunk i, randomly pick an edge x;
- “Artificially zap” each remaining vertex with a proper probability;
- Deal with vertex collisions.
Rödl nibble

Randomly partition matchings in \mathcal{M} into chunks, each chunk containing ϵn matchings. In iteration i, matchings in chunk i are processed.

In iteration i,

- For every matching in chunk i, randomly pick an edge x;
- “Artificially zap” each remaining vertex with a proper probability;
- Deal with vertex collisions.
A randomised algorithm
A randomised algorithm

[Diagram showing a sequence of graph transformations]
A randomised algorithm
A randomised algorithm
A randomised algorithm

Discrete Mathematics Seminar 2018
Joint work with Reshma Ramadurai, Ian Wanless and Nick Wormald
A randomised algorithm
A randomised algorithm

Jane Gao Monash University

On Aharoni-Berger’s conjecture of rainbow matchings

Discrete Mathematics Seminar 2018
Joint work with Reshma Ramadurai, Ian Wanless and Nick Wormald

A randomised algorithm
A randomised algorithm
A randomised algorithm
How to zap vertices?

\[P(\text{\textit{killed}}) \leq \frac{d_u^{(i-1)}}{|M|} \leq \frac{\max_u d_u^{(i-1)}}{|M|} \]
Matching size and vertex degree

Every vertex is deleted with equal probability \Rightarrow

- every surviving matchings are of approximately equal size
Every vertex is deleted with equal probability \Rightarrow

- every surviving matchings are of approximately equal size
 $|M(i)| \approx r(x_i)n$

Jane Gao Monash University
On Aharoni-Berger’s conjecture of rainbow m
Matching size and vertex degree

Every vertex is deleted with equal probability \(\Rightarrow \)

- every surviving matchings are of approximately equal size
 \[|M(i)| \approx r(x_i)n \]
- degrees of each vertex decrease with approximately equal rate
Every vertex is deleted with equal probability \Rightarrow

- every surviving matchings are of approximately equal size
 $|M(i)| \approx r(x_i)n$

- degrees of each vertex decrease with approximately equal rate
 $d_v^{(j)}(i) \approx \epsilon d_v g(x_i)$
Matching size and vertex degree

Every vertex is deleted with equal probability \(\Rightarrow \)

- every surviving matchings are of approximately equal size
 \[|M(i)| \approx r(x_i)n \]
- degrees of each vertex decrease with approximately equal rate
 \[d_v^{(j)}(i) \approx \epsilon d_v g(x_i) \]

here \(x_i = i\epsilon \).
Matching size and vertex degree

\[G_t : \text{the graph obtained after} \]
\[t \text{ iterations} \]
\[d^{(j)}_v(i - 1) \approx \epsilon g(x_{i-1}) \leq \epsilon g(x_{i-1})n \]
\[|M(i - 1)| \approx r(x_{i-1})n \]

⇒ Every vertex is deleted with probability roughly

\[\max_v \{ d^{(j)}_v(i - 1) \} \leq \frac{\epsilon g(x_{i-1})}{r(x_{i-1})} = f(x_{i-1}). \]
\[d^{(j)}_v(i - 1) \approx \epsilon g(x_{i-1}) d_v \leq \epsilon g(x_{i-1}) n \]
\[|M(i - 1)| \approx r(x_{i-1}) n \]

\(\Rightarrow \) Every vertex is deleted with probability roughly

\[\max_v \left\{ d^{(j)}_v(i - 1) \right\} \leq \frac{\epsilon g(x_{i-1})}{r(x_{i-1})} = f(x_{i-1}). \]
Deducing the ODEs

\[\mathbb{E}(|M(i)| - |M(i - 1)|) \approx -2f(x_{i-1})|M(i - 1)|; \]
\[\mathbb{E}(d^i_v(i) - d^i_v(i - 1)) \approx -f(x_{i-1})d^i_v(i - 1). \]

Recall

\[f(x_{i-1}) = \epsilon \frac{g(x_{i-1})}{r(x_{i-1})} \]
\[|M(i - 1)| \approx r(x_{i-1})n \]
\[d^i_v(i - 1) \approx \epsilon g(x_{i-1}). \]

\[r'(x) = -2g(x); \]
\[g'(x) = -\frac{g(x)^2}{r(x)}. \]
Deducing the ODEs

\[
\begin{align*}
\mathbb{E}(|M(i)| - |M(i - 1)|) & \approx -2f(x_{i-1})|M(i - 1)|; \\
\mathbb{E}(d^j_v(i) - d^j_v(i - 1)) & \approx -f(x_{i-1})d^j_v(i - 1).
\end{align*}
\]

Recall

\[
\begin{align*}
f(x_{i-1}) &= \epsilon \frac{g(x_{i-1})}{r(x_{i-1})} \\
|M(i - 1)| & \approx r(x_{i-1})n \\
d^j_v(i - 1) & \approx \epsilon g(x_{i-1}).
\end{align*}
\]

\[r'(x) = -2g(x); \quad g'(x) = -\frac{g(x)^2}{r(x)}.\]
Deducing the ODEs

\[E(|M(i)| - |M(i - 1)|) \approx -2f(x_{i-1})|M(i - 1)|; \]
\[E(d^i_v(i) - d^i_v(i - 1)) \approx -f(x_{i-1})d^i_v(i - 1). \]

Recall

\[f(x_{i-1}) = \epsilon \frac{g(x_{i-1})}{r(x_{i-1})} \]
\[|M(i - 1)| \approx r(x_{i-1})n \]
\[d^i_v(i - 1) \approx \epsilon g(x_{i-1}). \]

\[r'(x) = -2g(x); \]
\[g'(x) = -\frac{g(x)^2}{r(x)}. \]
The solution to the ODE with $r(0) = 1$ and $g(0) = 1$ is

$$r(x) = (1 - x)^2, \quad g(x) = 1 - x.$$

Thus $r(x) > 0$ for all $x < 1$.

Let $\tau - 1 \approx (1 - \epsilon_0)/\epsilon$ be the second last iteration of the algorithm. If $|M(i)| \approx r(x_i)n$ for every i, then $|M(\tau - 1)| \approx r(1 - \epsilon_0)n = \epsilon_0^2 n$.

If $\epsilon_0^2 n \geq (2 + ?)\epsilon n$ then we can process the last chunk of matchings greedily.
The solution to the ODE with \(r(0) = 1 \) and \(g(0) = 1 \) is

\[
 r(x) = (1 - x)^2, \quad g(x) = 1 - x.
\]

Thus \(r(x) > 0 \) for all \(x < 1 \).

Let \(\tau - 1 \approx (1 - \epsilon_0)/\epsilon \) be the second last iteration of the algorithm. If \(|M(i)| \approx r(x_i) n \) for every \(i \), then \(|M(\tau - 1)| \approx r(1 - \epsilon_0) n = \epsilon_0^2 n \).

If \(\epsilon_0^2 n \geq (2 + \text{?}) \epsilon n \) then we can process the last chunk of matchings greedily.
The solution to the ODE with $r(0) = 1$ and $g(0) = 1$ is

$$r(x) = (1 - x)^2, \quad g(x) = 1 - x.$$

Thus $r(x) > 0$ for all $x < 1$.

Let $\tau - 1 \approx (1 - \epsilon_0)/\epsilon$ be the second last iteration of the algorithm. If $|M(i)| \approx r(x_i)n$ for every i, then $|M(\tau - 1)| \approx r(1 - \epsilon_0)n = \epsilon_0^2 n$.

If $\epsilon_0^2 n \geq (2 + \epsilon)n$ then we can process the last chunk of matchings greedily.
Next we sketch a proof for the following simpler version.

Theorem

For any $\epsilon_0 > 0$ there exists $N_0 > 0$ such that the following holds. If G is a simple graph and $|\mathcal{M}| \leq (1 - \epsilon_0)n$ where $n \geq N_0$, then \mathcal{M} contains a full rainbow matching.
Proof sketch

Let \(\epsilon > 0 \) be sufficiently small so that \(\epsilon^2 \geq 3 \epsilon \). The matchings are then partitioned into \((1 - \epsilon_0)/\epsilon \) chunks.

We will specify \(a_i, b_i \) such that

\[
a_i = O(\epsilon n), \quad b_i = O(\epsilon^2 n)
\]

and for iteration \(i \) (\(0 \leq i \leq ((1 - \epsilon_0)/\epsilon) \)), with high probability,

\[
(A1) \quad |M(i)| \text{ is between } (1 - i\epsilon)^2 n - a_i \text{ and } (1 - i\epsilon)^2 n + a_i;
\]

\[
(A2) \quad d^{(i)}_\nu(i) \text{ is at most } \epsilon(1 - i\epsilon)n + b_i.
\]

If (A1) and (A2) holds for every step, then by the beginning of the last iteration,

\[
|M| = \epsilon^2 n + O(\epsilon n) \geq 2\epsilon n,
\]

and there are at most \(\epsilon n \) matchings left. We can process the last chunk greedily.
Proof sketch

Let $\epsilon > 0$ be sufficiently small so that $\epsilon_0^2 \geq 3\epsilon$. The matchings are then partitioned into $(1 - \epsilon_0)/\epsilon$ chunks.
We will specify a_i, b_i such that

$$a_i = O(\epsilon n), \quad b_i = O(\epsilon^2 n)$$

and for iteration i ($0 \leq i \leq ((1 - \epsilon_0)/\epsilon)$), with high probability,

(A1) $|M(i)|$ is between $(1 - i\epsilon)^2n - a_i$ and $(1 - i\epsilon)^2n + a_i$;
(A2) $d^{(j)}(i)$ is at most $\epsilon(1 - i\epsilon)n + b_i$.

If (A1) and (A2) holds for every step, then by the beginning of the last iteration,

$$|M| = \epsilon_0^2 n + O(\epsilon n) \geq 2\epsilon n,$$

and there are at most ϵn matchings left. We can process the last chunk greedily.
Proof sketch

Let $\epsilon > 0$ be sufficiently small so that $\epsilon_0^2 \geq 3\epsilon$. The matchings are then partitioned into $(1 - \epsilon_0)/\epsilon$ chunks.

We will specify a_i, b_i such that

$$a_i = O(\epsilon n), \quad b_i = O(\epsilon^2 n)$$

and for iteration i ($0 \leq i \leq ((1 - \epsilon_0)/\epsilon)$), with high probability,

1. (A1) $|M(i)|$ is between $(1 - i\epsilon)^2 n - a_i$ and $(1 - i\epsilon)^2 n + a_i$;
2. (A2) $d_v^{(i)}(i)$ is at most $\epsilon(1 - i\epsilon)n + b_i$.

If (A1) and (A2) holds for every step, then by the beginning of the last iteration,

$$|M| = \epsilon_0^2 n + O(\epsilon n) \geq 2\epsilon n,$$

and there are at most ϵn matchings left. We can process the last chunk greedily.
Proof sketch

Base case $i = 0$:

$$|M(0)| = n \text{ for all } M. \implies (A1)$$

$$d_v(0) = \epsilon n + O(\sqrt{n \log n}) \text{ (standard concentration)}$$

$$\implies (A2) \text{ with } b_0 = O(\sqrt{n \log n})$$
Proof sketch

Base case $i = 0$:

$|M(0)| = n$ for all M. \Rightarrow (A1)

$d_v(0) = \epsilon n + O(\sqrt{n} \log n)$ (standard concentration)

\Rightarrow (A2) with $b_0 = O(\sqrt{n} \log n)$

\checkmark
Proof sketch

Base case $i = 0$:

\[|M(0)| = n \text{ for all } M. \Rightarrow (A1) \checkmark \]
\[d_v(0) = \epsilon n + O(\sqrt{n \log n}) \text{ (standard concentration)} \]
\[\Rightarrow (A2) \text{ with } b_0 = O(\sqrt{n \log n}) \checkmark \]
Proof sketch

Inductive step $i + 1$:
Zap vertices so that every vertex is deleted with probability

$$\frac{\varepsilon g(x_i)n + b_i}{r(x_i)n - a_i} = \frac{\varepsilon}{1 - i\varepsilon} + O \left(\frac{\varepsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n} \right).$$

Then, with high probability

$$d_v(i + 1) \leq d_v(i) - \frac{\varepsilon g(x_i)n}{r(x_i)n} d_v(i) + O(\sqrt{n} \log n)$$

$$\leq (\varepsilon(1 - i\varepsilon)n + b_i) \left(1 - \frac{\varepsilon}{1 - i\varepsilon} \right) + O(\sqrt{n} \log n)$$

$$\leq \varepsilon(1 - (i + 1)\varepsilon)n + b_i + O(\sqrt{n} \log n)$$

$\Rightarrow (A2)$ for iteration $i + 1$ with $b_{i+1} = b_i + K(\sqrt{n} \log n)$. ✔

$\Rightarrow b_i = O((1/\varepsilon)\sqrt{n} \log n)$ for all $0 \leq i \leq \tau$. ✔
Proof sketch

Inductive step $i + 1$:
Zap vertices so that every vertex is deleted with probability

$$\frac{\epsilon g(x_i)n + b_i}{r(x_i)n - a_i} = \frac{\epsilon}{1 - i\epsilon} + O\left(\frac{\epsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n}\right).$$

Then, with high probability

$$d_v(i + 1) \leq d_v(i) - \frac{\epsilon g(x_i)n}{r(x_i)n} d_v(i) + O(\sqrt{n \log n})$$

$$\leq (\epsilon(1 - i\epsilon)n + b_i) \left(1 - \frac{\epsilon}{1 - i\epsilon}\right) + O(\sqrt{n \log n})$$

$$\leq \epsilon(1 - (i + 1)\epsilon)n + b_i + O(\sqrt{n \log n})$$

\Rightarrow (A2) for iteration $i + 1$ with $b_{i+1} = b_i + K(\sqrt{n \log n})$. ✔

$\Rightarrow b_i = O((1/\epsilon)\sqrt{n \log n})$ for all $0 \leq i \leq \tau$. ✔
Proof sketch

Inductive step $i+1$:
Zap vertices so that every vertex is deleted with probability

$$\frac{\epsilon g(x_i) n + b_i}{r(x_i) n - a_i} = \frac{\epsilon}{1 - i\epsilon} + O\left(\frac{\epsilon a_i}{r(x_i) n} + \frac{b_i}{r(x_i) n}\right).$$

Then, with high probability

$$d_v(i + 1) \leq d_v(i) - \frac{\epsilon g(x_i) n}{r(x_i) n} d_v(i) + O(\sqrt{n \log n})$$

$$\leq (\epsilon(1 - i\epsilon) n + b_i) \left(1 - \frac{\epsilon}{1 - i\epsilon}\right) + O(\sqrt{n \log n})$$

$$\leq \epsilon(1 - (i + 1)\epsilon)n + b_i + O(\sqrt{n \log n})$$

\Rightarrow (A2) for iteration $i+1$ with $b_{i+1} = b_i + K(\sqrt{n \log n})$. ✔

$\Rightarrow b_i = O((1/\epsilon)\sqrt{n \log n})$ for all $0 \leq i \leq \tau$. ✔
Proof sketch

Inductive step $i + 1$:
Zap vertices so that every vertex is deleted with probability

$$\frac{\epsilon g(x_i)n + b_i}{r(x_i)n - a_i} = \frac{\epsilon}{1 - i\epsilon} + O\left(\frac{\epsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n}\right).$$

Then, with high probability

$$d_v(i + 1) \leq d_v(i) - \frac{\epsilon g(x_i)n}{r(x_i)n}d_v(i) + O(\sqrt{n \log n})$$

$$\leq (\epsilon(1 - i\epsilon)n + b_i) \left(1 - \frac{\epsilon}{1 - i\epsilon}\right) + O(\sqrt{n \log n})$$

$$\leq \epsilon(1 - (i + 1)\epsilon)n + b_i + O(\sqrt{n \log n})$$

⇒ (A2) for iteration $i + 1$ with $b_{i+1} = b_i + K(\sqrt{n \log n})$. ✔
⇒ $b_i = O((1/\epsilon)\sqrt{n \log n})$ for all $0 \leq i \leq \tau$. ✔
Proof sketch

Inductive step $i + 1$: Zap vertices so that every vertex is deleted with probability

$$\frac{\varepsilon g(x_i)n + b_i}{r(x_i)n - a_i} = \frac{\varepsilon}{1 - i\varepsilon} + O \left(\frac{\varepsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n} \right).$$

Then, with high probability

$$d_v(i + 1) \leq d_v(i) - \frac{\varepsilon g(x_i)n}{r(x_i)n} d_v(i) + O(\sqrt{n \log n})$$

$$\leq (\varepsilon(1 - i\varepsilon)n + b_i) \left(1 - \frac{\varepsilon}{1 - i\varepsilon} \right) + O(\sqrt{n \log n})$$

$$\leq \varepsilon(1 - (i + 1)\varepsilon)n + b_i + O(\sqrt{n \log n})$$

\Rightarrow (A2) for iteration $i + 1$ with $b_{i+1} = b_i + K(\sqrt{n \log n})$. ✔

$\Rightarrow b_i = O((1/\varepsilon)\sqrt{n \log n})$ for all $0 \leq i \leq \tau$. ✔
Proof sketch

With high probability

\[|M(i + 1)| = |M(i)| - \left(\frac{2\epsilon}{1 - i\epsilon} + O \left(\frac{\epsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n} \right) \right) |M(i)| + O(\sqrt{n}\log n + \epsilon^2 n) \]
Proof sketch

\[
P(u \Rightarrow v \text{ is deleted}) = -2f(x_i) + O(\varepsilon^2)
\]

\[
\sum_{x \sim y} I_{xy} \leq \sum_u \left(\binom{d_u(i)}{2} \right) \cdot \frac{1}{|M(i)|^2}
\]

\[
= O\left(\frac{\varepsilon g(x_i)n}{(r(x_i)n)^2} \sum_u d_u(i) \right)
\]

\[
= O\left(\frac{\varepsilon}{n} \cdot 3n \cdot n \right) = O(\varepsilon^2 n)
\]
Proof sketch

With high probability

\[|M(i + 1)| = |M(i)| - \left(\frac{2\varepsilon}{1 - i\varepsilon} + O\left(\frac{\varepsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n} \right) \right) |M(i)|
+ O(\sqrt{n}\log n + \varepsilon^2 n)
= (1 - (i + 1)\varepsilon)^2 n \pm a_i + O(\varepsilon a_i + b_i + \varepsilon^2 n). \]

\(\Rightarrow \) (A1) for iteration \(i + 1 \) with \(a_{i+1} = (1 + K\varepsilon)a_i + K\varepsilon^2 n. \) ✔

\(1/\varepsilon \) iterations \(\Rightarrow a_i \leq (1/\varepsilon)(1 + K\varepsilon)^{1/\varepsilon}K\varepsilon^2 n = O(\varepsilon n). \) ✔
Proof sketch

With high probability

\[|M(i + 1)| = |M(i)| - \left(\frac{2\epsilon}{1 - i\epsilon} + O\left(\frac{\epsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n} \right) \right) |M(i)| + O(\sqrt{n} \log n + \epsilon^2 n) \]
\[= (1 - (i + 1)\epsilon)^2 n \pm a_i + O(\epsilon a_i + b_i + \epsilon^2 n). \]

\(\Rightarrow \) (A1) for iteration \(i + 1 \) with \(a_{i+1} = (1 + K\epsilon)a_i + K\epsilon^2 n. \) ✔

1/\epsilon iterations \(\Rightarrow a_i \leq (1/\epsilon)(1 + K\epsilon)^{1/\epsilon}K\epsilon^2 n = O(\epsilon n). \) ✔
With high probability

\[|M(i + 1)| = |M(i)| - \left(\frac{2\epsilon}{1 - i\epsilon} + O\left(\frac{\epsilon a_i}{r(x_i)n} + \frac{b_i}{r(x_i)n}\right)\right) |M(i)| + O(\sqrt{n}\log n + \epsilon^2 n) \]

\[= (1 - (i + 1)\epsilon)^2 n \pm a_i + O(\epsilon a_i + b_i + \epsilon^2 n). \]

\[\Rightarrow (A1) \text{ for iteration } i + 1 \text{ with } a_{i+1} = (1 + K\epsilon)a_i + K\epsilon^2 n. \]

1/\epsilon iterations \[\Rightarrow a_i \leq (1/\epsilon)(1 + K\epsilon)^{1/\epsilon}K\epsilon^2 n = O(\epsilon n). \]
Future directions

- How to cope with multigraphs?
- Transversal in high dimensional Latin cubes.