REDUNDANT INEQUALITIES IN SUDOKU AND LATIN SQUARES

Bart Demoen & María García de la Banda
K.U.Leuven, Belgium and Monash University, Melbourne, Australia

27 June 2012
Overview

- Context
- Motivation
- Sudoku
- Latin Squares
Programming paradigm where given a problem:
 ➤ We first model it
 ➤ And then solve it

A model is specified by a
 ➤ Set of variables
 ➤ Set of domain constraints (possible values for each variable)
 ➤ Set of (other) constraints
 ➤ Optional: objective function

Example: Model for Latin Square of size 3
 ➤ 9 variables $x_{ij}, i, j \in 1..3$
 ➤ Each with a domain constraint $x_{ij} \in 1..3$
 ➤ 6 `all_different` constraints:
 ➤ 1 per row (e.g., `all_different({x_{11}, x_{12}, x_{13}})`)
 ➤ 1 per column (e.g., `all_different({x_{11}, x_{21}, x_{31}})`)
Programming paradigm where given a problem:
- We first model it
- And then solve it

A model is specified by a
- Set of variables
- Set of domain constraints (possible values for each variable)
- Set of (other) constraints
- Optional: objective function

Example: Model for Latin Square of size 3
- 9 variables \(x_{ij}, i, j \in 1..3\)
- Each with a domain constraint \(x_{ij} \in 1..3\)
- 6 \(all_different\) constraints:
 - 1 per row (e.g., \(all_different(\{x_{11}, x_{12}, x_{13}\})\))
 - 1 per column (e.g., \(all_different(\{x_{11}, x_{21}, x_{31}\})\))
Programming paradigm where given a problem:
- We first model it
- And then solve it

A model is specified by a
- Set of variables
- Set of domain constraints (possible values for each variable)
- Set of (other) constraints
- Optional: objective function

Example: Model for Latin Square of size 3
- 9 variables $x_{ij}, i, j \in 1..3$
- Each with a domain constraint $x_{ij} \in 1..3$
- 6 all_different constraints:
 - 1 per row (e.g., all_different($\{x_{11}, x_{12}, x_{13}\}$))
 - 1 per column (e.g., all_different($\{x_{11}, x_{21}, x_{31}\}$))
Reasoning about constraint redundancy is useful

By reasoning I mean determining whether:
- Constraint c is redundant for set of constraints C
- Set of constraints C have redundant constraints

Useful because in Constraint Programming:
- Adding redundant constraints can speed up the search
- But adding too many can also slow it down

Redundancy of equality is easy(er)
- $X = Y \land Y = Z \rightarrow X = Z$ is correct

Redundancy of inequality is more difficult
- Is $X \neq Y \land Y \neq Z \rightarrow X \neq Z$ correct?
- Is $X \neq Y \land Y \neq Z \rightarrow X = Z$?
- Is $X \neq Y \land Y \neq Z \land Z \neq T \rightarrow X \neq T$?
Reasoning about constraint redundancy is useful.

By reasoning I mean determining whether:

- Constraint c is redundant for set of constraints C
- Set of constraints C have redundant constraints

Useful because in Constraint Programming:

- Adding redundant constraints can speed up the search
- But adding too many can also slow it down

Redundancy of equality is easy(er)

- $X = Y \& Y = Z \rightarrow X = Z$ is correct

Redundancy of inequality is more difficult

- Is $X \neq Y \& Y \neq Z \rightarrow X \neq Z$ correct?
- Is $X \neq Y \& Y \neq Z \rightarrow X = Z$?
- Is $X \neq Y \& Y \neq Z \& Z \neq T \rightarrow X \neq T$?
Reasoning about constraint redundancy is useful

By reasoning I mean determining whether:

- Constraint c is redundant for set of constraints C
- Set of constraints C have redundant constraints

Useful because in Constraint Programming:

- Adding redundant constraints can speed up the search
- But adding too many can also slow it down

Redundancy of equality is easy(er)

- $X = Y \& Y = Z \rightarrow X = Z$ is correct

Redundancy of inequality is more difficult

- Is $X \neq Y \& Y \neq Z \rightarrow X \neq Z$ correct?
- Is $X \neq Y \& Y \neq Z \rightarrow X = Z$?
- Is $X \neq Y \& Y \neq Z \& Z \neq T \rightarrow X \neq T$?
Motivation

- Reasoning about constraint redundancy is useful
- By reasoning I mean determining whether:
 - Constraint c is redundant for set of constraints C
 - Set of constraints C have redundant constraints
- Useful because in Constraint Programming:
 - Adding redundant constraints can speed up the search
 - But adding too many can also slow it down

- Redundancy of equality is easy(er)
 - $X = Y \& Y = Z \rightarrow X = Z$ is correct

- Redundancy of inequality is more difficult
 - Is $X \neq Y \& Y \neq Z \rightarrow X \neq Z$ correct?
 - Is $X \neq Y \& Y \neq Z \rightarrow X = Z$?
 - Is $X \neq Y \& Y \neq Z \& Z \neq T \rightarrow X \neq T$?
Reasoning about constraint redundancy is useful.

By reasoning I mean determining whether:

- Constraint \(c \) is redundant for set of constraints \(C \)
- Set of constraints \(C \) have redundant constraints

Useful because in Constraint Programming:

- Adding redundant constraints can speed up the search
- But adding too many can also slow it down

Redundancy of equality is easy(er)

- \(X = Y \) & \(Y = Z \) → \(X = Z \) is correct

Redundancy of inequality is more difficult

- Is \(X \neq Y \) & \(Y \neq Z \) → \(X \neq Z \) correct?
- Is \(X \neq Y \) & \(Y \neq Z \) → \(X = Z \)?
- Is \(X \neq Y \) & \(Y \neq Z \) & \(Z \neq T \) → \(X \neq T \)?
Reasoning about constraint redundancy is useful

By reasoning I mean determining whether:
- Constraint c is redundant for set of constraints C
- Set of constraints C have redundant constraints

Useful because in Constraint Programming:
- Adding redundant constraints can speed up the search
- But adding too many can also slow it down

Redundancy of equality is easy(er)
- $X = Y \land Y = Z \rightarrow X = Z$ is correct

Redundancy of inequality is more difficult
- Is $X \neq Y \land Y \neq Z \rightarrow X \neq Z$ correct?
- Is $X \neq Y \land Y \neq Z \rightarrow X = Z$?
- Is $X \neq Y \land Y \neq Z \land Z \neq T \rightarrow X \neq T$?
Many problems have inequality constraints

- We wanted to learn about redundancy of inequalities using Sudoku
- This drove us to Latin Squares
Many problems have inequality constraints
We wanted to learn about redundancy of inequalities using Sudoku
This drove us to Latin Squares
Many problems have inequality constraints
We wanted to learn about redundancy of inequalities using Sudoku
This drove us to Latin Squares
Modeled using:

- 81 variables x_{ij}, $i, j \in 1..9$
- 81 domain constraints: x_{ij} is [1..9]
- 27 all_different constraints with 9 variables each
 - one per row, one per column, and one per box

We call the all_different the BIG constraints

- We will see later why

We let Sudoku denote the above problem

- And any equivalent specification (same solutions)

Questions:

- Are any of the BIG constraints redundant?
- Further: how many can we remove and still be Sudoku?
- Note: the 81 domain constraints are always there
Modeled using:
- 81 variables x_{ij}, $i, j \in 1..9$
- 81 domain constraints: x_{ij} is $[1..9]$
- 27 *all_different* constraints with 9 variables each
 - one per row, one per column, and one per box

We call the *all_different* the **BIG** constraints
- We will see later why

We let *Sudoku* denote the above problem
- And any equivalent specification (same solutions)

Questions:
- Are any of the BIG constraints redundant?
- Further: how many can we remove and still be *Sudoku*?
- Note: the 81 domain constraints are always there
Modeled using:
- 81 variables x_{ij} $i, j \in 1..9$
- 81 domain constraints: x_{ij} is [1..9]
- 27 *all_different* constraints with 9 variables each
 - one per row, one per column, and one per box

We call the *all_different* the **BIG** constraints
- We will see later why

We let *Sudoku* denote the above problem
- And any equivalent specification (same solutions)

Questions:
- Are any of the BIG constraints redundant?
- Further: how many can we remove and still be *Sudoku*?
- Note: the 81 domain constraints are always there
CHUTE = 3 boxes horizontally or vertically

Set notation is not clear with 27 elements...

... so we will use pictures for our theorems
Our Sudoku Terminology

CHUTE = 3 boxes horizontally or vertically

Set notation is not clear with 27 elements...

... so we will use pictures for our theorems
It misses R_5, C_2, B_2, B_5 and B_7
Questions about the pictures?

If not ... we are ready for the constructive lemmas.
Proof by positioning any $N \in 1..9$ in the chute:

- There must be one N in each row and outer box
- This leaves one in the inner box
Constructive Lemma II - the dual of Lemma I

Similar proof
Lemma 1 and 2 can be composed like Lego bricks

\[
\begin{array}{ccc}
\text{Lemma 1} & \rightarrow & \text{Lemma 2} \\
+ & = & + \\
\rightarrow & \rightarrow & \rightarrow
\end{array}
\]
Corollary 1

is Sudoku.
Proof of Corollary 1 by Lego Lemma Composition

Bart Demoen, María García de la Banda
Latin Squares
is Sudoku.
Proof of Corollary 2

\[2 \times + \rightarrow \rightarrow \rightarrow \]
Every single BIG is redundant
- The first two obtained by composing the lemmas
- The others by the spatial symmetries of Sudoku
 - Swapping rows in same chute
 - Swapping chutes
 - Rotation

Missing(n): any Sudoku subset missing n BIGs
- Every Missing(1) is Sudoku

Can we find larger ns?
What is the maximum?
Every single BIG is redundant
- The first two obtained by composing the lemmas
- The others by the spatial symmetries of Sudoku
 - Swapping rows in same chute
 - Swapping chutes
 - Rotation

Missing\((n) \): any Sudoku subset missing \(n \) BIGs
- Every Missing\((1) \) is Sudoku

Can we find larger \(ns \)?
- What is the maximum?
Every single BIG is redundant

- The first two obtained by composing the lemmas
- The others by the spatial symmetries of Sudoku
 - Swapping rows in same chute
 - Swapping chutes
 - Rotation

- \textit{Missing}(n): any Sudoku subset missing \(n \) BIGs
 - Every \textit{Missing}(1) is Sudoku

- Can we find larger \(n \)s?
- What is the maximum?
Theorem I:

is Sudoku.
Theorem II:

is Sudoku.
What about the other $\text{Missing}(6)$?

- We would like to classify all $\text{Missing}(6)$
 - 296,010 elements (less if we avoid symmetries)
- Plan: computer assisted proofs using Prolog
- Use the constructive lemmas to add new BIGs
What about the other $\text{Missing}(6)$?

- We would like to classify all $\text{Missing}(6)$
 - 296,010 elements (less if we avoid symmetries)

- Plan: computer assisted proofs using Prolog

- Use the constructive lemmas to add new BIGs
for each $S \in \text{Missing}(n)$ do
\[C \leftarrow \text{copy}(S) \]
while Lemma I or Lemma II is applicable to C
\[\text{apply it to } C \]
if $|C| = 27$
\[\text{then output } S \text{ is Sudoku} \]
else output S got stuck in C

- If stuck:
 - Analyze C manually and turn it into a negative lemma
 - Proof it is not Sudoku
 - Add it to the program
 - Rerun the program until no more negative lemmas needed

- Note: starting with $n = 6$ we derive results for $n \in 2..5$
The program...

\[
\text{for each } S \in \text{Missing}(n) \text{ do} \\
\quad C \leftarrow \text{copy}(S) \\
\quad \textbf{while} \text{ Lemma I or Lemma II is applicable to } C \\
\qquad \text{apply it to } C \\
\quad \textbf{if} \ |C| = 27 \\
\qquad \textbf{then output} \ S \text{ is Sudoku} \\
\qquad \textbf{else output} \ S \text{ got stuck in } C
\]

- **If stuck:**
 - Analyze \(C \) manually and turn it into a *negative* lemma
 - Proof it is not *Sudoku*
 - Add it to the program
 - Rerun the program until no more negative lemmas needed

- **Note:** starting with \(n = 6 \) we derive results for \(n \in 2..5 \)
The program...

```
for each $S \in Missing(n)$ do
    $C \leftarrow \text{copy}(S)$
    while Lemma I or Lemma II is applicable to $C$
        apply it to $C$
    if $|C| = 27$
        then output $S$ is Sudoku
    else output $S$ got stuck in $C$

▶ If stuck:
    ▶ Analyze $C$ manually and turn it into a negative lemma
        Proof it is not $Sudoku$
    ▶ Add it to the program
    ▶ Rerun the program until no more negative lemmas needed

▶ Note: starting with $n = 6$ we derive results for $n \in 2..5$
```
Only Seven Negative Lemmas
Proof that the above is not *Sudoku*:

Similar for the other six negative Lemmas
Proof that the above is not *Sudoku*:

Similar for the other six negative Lemmas
Proof that the above is not *Sudoku*:

Similar for the other six negative Lemmas
Result: 40 different Missing(6) are Sudoku

And 71 are not
Use the final program for \(n = 7 \)

- Gets stuck in one new BIG negative lemma:
 - No set of 20 BIGs is Sudoku, or equivalently
 - No set of 7 BIGs is redundant
 - This settles BIGs completely
Use the final program for $n = 7$

- Gets stuck in one new BIG negative lemma:

- No set of 20 BIGs is Sudoku, or equivalently
- No set of 7 BIGs is redundant
- This settles BIGs completely
Use the final program for $n = 7$

- Gets stuck in one new BIG negative lemma:

- No set of 20 BIGs is Sudoku, or equivalently
- No set of 7 BIGs is redundant

- This settles BIGs completely
Use the final program for $n = 7$

- Gets stuck in one new BIG negative lemma:

- No set of 20 BIGs is Sudoku, or equivalently
- No set of 7 BIGs is redundant
- This settles BIGs completely
What about smalls?

One BIG constraint = quadratic many small ones

Example:
\[\text{all}_\text{different}(\{x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}\}) \]

is equivalent to
\[x_{11} \neq x_{12} \land x_{11} \neq x_{13} \land \ldots \land x_{18} \neq x_{19} \]

Sudoku: 27 BIGs or 810 different smalls

So, what about small constraints?
What about smalls?

One BIG constraint = quadratic many small ones

Example:

\[
\text{all_different}\left(\{x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}\}\right)
\]

is equivalent to

\[x_{11} \neq x_{12} \land x_{11} \neq x_{13} \land \ldots \land x_{18} \neq x_{19}\]

Sudoku: 27 BIGs or 810 different smalls

So, what about small constraints?
What about smalls?

One BIG constraint = quadratic many small ones

Example:
\[
\text{all
different}\left(\{x_{11}, x_{12}, x_{13}, x_{14}, x_{15}, x_{16}, x_{17}, x_{18}, x_{19}\}\right)
\]

is equivalent to

\[
x_{11} \neq x_{12} \land x_{11} \neq x_{13} \land \ldots \land x_{18} \neq x_{19}
\]

Sudoku: 27 BIGs or 810 different smalls

So, what about small constraints?
- Of the 40 *Sudoku* configurations:
 - The lowest number of smalls is 648 (Theorem II config)
 - The highest is 690

- Take Theorem II configuration (648 smalls)
 - Remove each more small rule
 - Is the result *Sudoku*?
 - Run on Gordon Royle’s puzzles (50,000 minimal *Sudokus*)
 - Use B-Prolog to find all solutions to each puzzle
 - If more than one solution: not *Sudoku*

- No such configuration is *Sudoku*

- Further: Each of the 40 configs has a subset of 648 smalls that is *Sudoku* and is a local minimal

- Is 648 a lower bound?
Of the 40 *Sudoku* configurations:
- The lowest number of smalls is 648 (Theorem II config)
- The highest is 690

Take Theorem II configuration (648 smalls)
- Remove each more small rule
- Is the result *Sudoku*?
 - Run on Gordon Royle’s puzzles (50,000 minimal *Sudokus*)
 - Use B-Prolog to find all solutions to each puzzle
 - If more than one solution: not *Sudoku*

No such configuration is *Sudoku*

Further: Each of the 40 configs has a subset of 648 smalls that is *Sudoku* and is a local minimal

Is 648 a lower bound?
Of the 40 Sudoku configurations:
 - The lowest number of smalls is 648 (Theorem II config)
 - The highest is 690
Take Theorem II configuration (648 smalls)
 - Remove each more small rule
 - Is the result Sudoku?
 - Run on Gordon Royle’s puzzles (50,000 minimal Sudoku)
 - Use B-Prolog to find all solutions to each puzzle
 - If more than one solution: not Sudoku

No such configuration is Sudoku

Further: Each of the 40 configs has a subset of 648 smalls that is Sudoku and is a local minimal
Is 648 a lower bound?
Of the 40 *Sudoku* configurations:
- The lowest number of smalls is 648 (Theorem II config)
- The highest is 690

Take Theorem II configuration (648 smalls)
- Remove each more small rule
- Is the result *Sudoku*?
 - Run on Gordon Royle’s puzzles (50,000 minimal *Sudokus*)
 - Use B-Prolog to find all solutions to each puzzle
 - If more than one solution: not *Sudoku*

No such configuration is *Sudoku*

Further: Each of the 40 configs has a subset of 648 smalls that is *Sudoku* and is a local minimal

Is 648 a lower bound?
Of the 40 *Sudoku* configurations:
- The lowest number of smalls is 648 (Theorem II config)
- The highest is 690

Take Theorem II configuration (648 smalls)
- Remove each more small rule
- Is the result *Sudoku*?
 - Run on Gordon Royle’s puzzles (50,000 minimal *Sudokus*)
 - Use B-Prolog to find all solutions to each puzzle
 - If more than one solution: not *Sudoku*

No such configuration is Sudoku

Further: Each of the 40 configs has a subset of 648 smalls that is *Sudoku* and is a local minimal

Is 648 a lower bound?
How can we figure this out?

- Doing a similar approach to the BIGs is too costly
- AND we would actually like to gain insight
- Plan: try a similar but simpler problem
 - One that has a smaller number of possibilities
 - We can find these automatically
 - And the reason about them

- Latin Squares
Doing a similar approach to the BIGs is too costly
AND we would actually like to gain insight
Plan: try a similar but simpler problem
 One that has a smaller number of possibilities
 We can find these automatically
 And the reason about them

Latin Squares
How can we figure this out?

- Doing a similar approach to the BIGs is too costly
- AND we would actually like to gain insight
- Plan: try a similar but simpler problem
 - One that has a smaller number of possibilities
 - We can find these automatically
 - And the reason about them

- Latin Squares
LS(N)

- NxN matrix
- Every cell is in 1..N
- Cells in the same column differ (N BIGs)
- Cells in the same row differ (N BIGs)

You can think about it as a simpler form of Sudoku:

LS(9) + the 9 block constraints == Sudoku

First: study BIGs in this context
LS(N)

- NxN matrix
- Every cell is in 1..N
- Cells in the same column differ (N BIGs)
- Cells in the same row differ (N BIGs)

You can think about it as a simpler form of Sudoku:

LS(9) + the 9 block constraints == Sudoku

First: study BIGs in this context
LS(N)

- NxN matrix
- Every cell is in 1..N
- Cells in the same column differ (N BIGs)
- Cells in the same row differ (N BIGs)

You can think about it as a simpler form of Sudoku:

LS(9) + the 9 block constraints == Sudoku

First: study BIGs in this context
Every single BIG is redundant (as for Sudoku)

Any set with two or more BIGs is not redundant
Every single BIG is redundant (as for Sudoku)
Any set with two or more BIGs is not redundant
Every single BIG is redundant (as for Sudoku)

Any set with two or more BIGs is not redundant
Analyse LS(2), LS(3) and LS(4) by hand

- After a Prolog program found the maximal redundant sets

- For LS(2): any small is redundant, more is not

- For LS(3): the only maximal redundant sets are

- For LS(4): pattern I and II are the only ones
- Analyse LS(2), LS(3) and LS(4) by hand
 - After a Prolog program found the maximal redundant sets
- For LS(2): any small is redundant, more is not
- For LS(3): the only maximal redundant sets are
- For LS(4): pattern I and II are the only ones
- Analyse LS(2), LS(3) and LS(4) by hand
 - After a Prolog program found the maximal redundant sets
- For LS(2): any small is redundant, more is not
- For LS(3): the only maximal redundant sets are
 - For LS(4): pattern I and II are the only ones
- Analyse LS(2), LS(3) and LS(4) by hand
 - After a Prolog program found the maximal redundant sets

- For LS(2): any small is redundant, more is not

- For LS(3): the only maximal redundant sets are

 ![Diagram of LS(3) redundant sets]

- For LS(4): pattern I and II are the only ones

 ![Diagram of LS(4) redundant sets]
Patterns I and II are redundant for any $LS(N)$

- Proving pattern I is obvious (same as a BIG)
- Proved II by dividing the matrix into regions

Are they the only redundant ones?

How to prove this?
Patterns I and II are redundant for any LS(N)
 ▶ Proving pattern I is obvious (same as a BIG)
 ▶ Proved II by dividing the matrix into regions

Are they the only redundant ones?
How to prove this?
Patterns I and II are redundant for any LS(N)
- Proving pattern I is obvious (same as a BIG)
- Proved II by dividing the matrix into regions

Are they the only redundant ones?
How to prove this?
Patterns I and II are redundant for any LS(N)

- Proving pattern I is obvious (same as a BIG)
- Proved II by dividing the matrix into regions

Are they the only redundant ones?

How to prove this?
All possible pairs of inequalities for LS(4)

All possible pairs of inequalities for LS(N)
 Proved using 3 cases: parallel lines, crossing ones, same line
 6 is covered by Pattern II, 7 and 8 by Pattern I
 No pair in 1 to 5 is covered by Pattern I or II
 Bad pairs: any subset of LS(N) that misses one of those pairs, has at least one more solution than LS(N), for N > 3
All possible pairs of inequalities for LS(4)

All possible pairs of inequalities for LS(N)
- Proved using 3 cases: parallel lines, crossing ones, same line
- 6 is covered by Pattern II, 7 and 8 by Pattern I
- No pair in 1 to 5 is covered by Pattern I or II
- Bad pairs: any subset of LS(N) that misses one of those pairs, has at least one more solution than LS(N), for N > 3
All possible pairs of inequalities for LS(4)

All possible pairs of inequalities for LS(N)
- Proved using 3 cases: parallel lines, crossing ones, same line

6 is covered by Pattern II, 7 and 8 by Pattern I

No pair in 1 to 5 is covered by Pattern I or II
- **Bad pairs**: any subset of LS(N) that misses one of those pairs, has at least one more solution than LS(N), for $N > 3$
- All possible pairs of inequalities for LS(4)

- All possible pairs of inequalities for LS(N)
 - Proved using 3 cases: parallel lines, crossing ones, same line

- 6 is covered by Pattern II, 7 and 8 by Pattern I

- No pair in 1 to 5 is covered by Pattern I or II
 - **Bad pairs**: any subset of LS(N) that misses one of those pairs, has at least one more solution than LS(N), for \(N > 3 \)
Proving the Bad Pairs

Bart Demoen, María García de la Banda

Latin Squares
Theorem:

Every set S of inequalities from $LS(N)$ with $N > 3$ either contains a bad pair or is covered by one of the two patterns.
- LS(N,I): same as LS(N) with domain 1..I
- Clearly, LS(N,N-1) has no solutions
- We give the minimum number of smalls that need to be removed from LS(N,I), I<N to be satisfiable \(2*(N-I)*N\)
- No solution to LS(N,N+1) is stable
- Discuss how many smalls need to be added to become stable again
- LS(N,I): same as LS(N) with domain 1..I
- Clearly, LS(N,N-1) has no solutions
- We give the minimum number of smalls that need to be removed from LS(N,I), I< N to be satisfiable \((2*(N-I)*N)\)
- No solution to LS(N,N+1) is stable
- Discuss how many smalls need to be added to become stable again
- LS(N,I): same as LS(N) with domain 1..I
- Clearly, LS(N,N-1) has no solutions
- We give the minimum number of smalls that need to be removed from LS(N,I), I < N to be satisfiable \((2*(N-I)*N)\)
- No solution to LS(N,N+1) is stable
- Discuss how many smalls need to be added to become stable again
- LS(N,I): same as LS(N) with domain 1..I
- Clearly, LS(N,N-1) has no solutions
- We give the minimum number of smalls that need to be removed from LS(N,I), I<N to be satisfiable (2*(N-I)*N)
- No solution to LS(N,N+1) is stable
- Discuss how many smalls need to be added to become stable again
Tightening/Relaxing the domain constraints

- LS(N,I): same as LS(N) with domain 1..I
- Clearly, LS(N,N-1) has no solutions
- We give the minimum number of smalls that need to be removed from LS(N,I), I<N to be satisfiable \((2*(N-I)*N)\)
- No solution to LS(N,N+1) is stable
- Discuss how many smalls need to be added to become stable again
Plan: study 2x2 Sudoku applying what we learned from

- 3x3 Sudoku (is the conjecture true? no set of 17 inequalities is redundant)
- Latin Square (does 2x2 Sudobad pairs?)
Sudoku:
- Completely characterised redundant BIGs
- Conjectured smalls

Latin Square
- Completely characterised redundant BIGs
- AND smalls (through bad pairs)

Started applying the above to 2x2 Sudoku

Aim: better understand redundancy of smalls
Conclusions

▶ Sudoku:
 ▶ Completely characterised redundant BIGs
 ▶ Conjectured smalls

▶ Latin Square
 ▶ Completely characterised redundant BIGs
 ▶ AND smalls (through bad pairs)

▶ Started applying the above to 2x2 Sudoku
▶ Aim: better understand redundancy of smalls
Conclusions

- **Sudoku:**
 - Completely characterised redundant BIGs
 - Conjectured smalls
- **Latin Square**
 - Completely characterised redundant BIGs
 - AND smalls (through bad pairs)
- Started applying the above to 2x2 Sudoku
- Aim: better understand redundancy of smalls