The Prokofiev-Svistunov-Ising process is rapidly mixing

Tim Garoni

School of Mathematical Sciences
Monash University
Collaborators

- Andrea Collevecchio (Monash University)
- Tim Hyndman (Monash University)
- Daniel Tokarev (Monash University)
Ising model - Motivation

- Introduced in 1920 as a model for ferromagnetism
- Hope was to explain the Curie transition:
 - Place iron in a magnetic field
 - Increase field to high value
 - Slowly reduce field to zero
 - Exists critical temperature T_c below which iron remains magnetized
Ising model - Motivation

- Introduced in 1920 as a model for ferromagnetism
- Hope was to explain the Curie transition:
 - Place iron in a magnetic field
 - Increase field to high value
 - Slowly reduce field to zero
 - Exists critical temperature T_c below which iron remains magnetized
- During mid 1930s it was realized the Ising model also describes phases transitions in other physical systems
 - Gas-liquid critical phenomena (lattice gas)
 - Binary alloys
Ising model - Motivation

- Introduced in 1920 as a model for ferromagnetism
- Hope was to explain the Curie transition:
 - Place iron in a magnetic field
 - Increase field to high value
 - Slowly reduce field to zero
 - Exists critical temperature T_c below which iron remains magnetized
- During mid 1930s it was realized the Ising model also describes phases transitions in other physical systems
 - Gas-liquid critical phenomena (lattice gas)
 - Binary alloys
- Now a paradigm for order/disorder transitions with applications to
 - Economics (opinion formation)
 - Finance (stock price dynamics)
 - Biology (hemoglobin, DNA, . . .)
 - Image processing (archetypal Markov random field)
Ising model - Motivation

- Introduced in 1920 as a model for ferromagnetism
- Hope was to explain the Curie transition:
 - Place iron in a magnetic field
 - Increase field to high value
 - Slowly reduce field to zero
 - Exists critical temperature T_c below which iron remains magnetized
- During mid 1930s it was realized the Ising model also describes phases transitions in other physical systems
 - Gas-liquid critical phenomena (lattice gas)
 - Binary alloys
- Now a paradigm for order/disorder transitions with applications to
 - Economics (opinion formation)
 - Finance (stock price dynamics)
 - Biology (hemoglobin, DNA, . . .)
 - Image processing (archetypal Markov random field)
- Continues to play fundamental role in theoretical/mathematical studies of phase transitions and critical phenomena
The Ising model

- Finite graph $G = (V, E)$
- Configuration space $\Sigma_G = \{-1, +1\}^V$
- Measure
 \[
 \mathbb{P}(\sigma) = \frac{1}{Z} \exp \left(\beta \sum_{ij \in E} \sigma_i \sigma_j + h \sum_{i \in V} \sigma_i \right)
 \]
- Inverse temperature β
- External field h
- Z is the partition function
The Ising model

- Finite graph $G = (V, E)$
- Configuration space $\Sigma_G = \{-1, +1\}^V$
- Measure
 \[P(\sigma) = \frac{1}{Z} \exp \left(\beta \sum_{ij \in E} \sigma_i \sigma_j + h \sum_{i \in V} \sigma_i \right) \]
- Inverse temperature β
- External field h
- Z is the partition function

- Main physical interest is in certain expectations such as:
 - Two-point correlation $\text{cov}(\sigma_u, \sigma_v) = \mathbb{E}(\sigma_u \sigma_v) - \mathbb{E}(\sigma_u)\mathbb{E}(\sigma_v)$
 - Susceptibility $\chi = \frac{1}{|V|} \sum_{u, v \in V} \text{cov}(\sigma_u, \sigma_v)$
Phase transition

Let $\Lambda_n = \{-n, \ldots, n\}^d \subset \mathbb{Z}^d$, and consider

$$\Sigma^+_{\Lambda_n} = \{\sigma \in \{-1, 1\}^{\mathbb{Z}^d} : \sigma_i = +1 \text{ for all } i \not\in \Lambda_n\}$$

Sequence of Gibbs measures on Λ_n converges: $\mathbb{P}^+_{\Lambda_n, \beta, h} \Rightarrow \mathbb{P}_\beta^+$
Phase transition

Let $\Lambda_n = \{-n, \ldots, n\}^d \subset \mathbb{Z}^d$, and consider

$$\Sigma^+_{\Lambda_n} = \{\sigma \in \{-1, 1\}^{\mathbb{Z}^d} : \sigma_i = +1 \text{ for all } i \notin \Lambda_n\}$$

Sequence of Gibbs measures on Λ_n converges: $\mathbb{P}^+_{\Lambda_n, \beta, h} \Rightarrow \mathbb{P}^+_\beta, h$

Analogous construction for “minus” boundary conditions
Phase transition

Let $\Lambda_n = \{-n, \ldots, n\}^d \subset \mathbb{Z}^d$, and consider

$$\Sigma^+_{\Lambda_n} = \{\sigma \in \{-1, 1\}^{\mathbb{Z}^d} : \sigma_i = +1 \text{ for all } i \not\in \Lambda_n\}$$

Sequence of Gibbs measures on Λ_n converges: $\mathbb{P}^+_{\Lambda_n, \beta, h} \Rightarrow \mathbb{P}^+_{\beta, h}$

Analogous construction for “minus” boundary conditions

Theorem (Aizenman, Duminil-Copin, Sidoravicius (2014))

1. If $d = 1$, then for any $(\beta, h) \in [0, \infty) \times \mathbb{R}$ there is a unique infinite-volume Gibbs measure
Phase transition

Let \(\Lambda_n = \{-n, \ldots, n\}^d \subset \mathbb{Z}^d \), and consider

\[
\Sigma^+_\Lambda_n = \{ \sigma \in \{-1, 1\}^{\mathbb{Z}^d} : \sigma_i = +1 \text{ for all } i \not\in \Lambda_n \}
\]

Sequence of Gibbs measures on \(\Lambda_n \) converges: \(\mathbb{P}^+_{\Lambda_n, \beta, h} \Rightarrow \mathbb{P}^+_\beta, h \)

Analogous construction for “minus” boundary conditions

Theorem (Aizenman, Duminil-Copin, Sidoravicius (2014))

1. If \(d = 1 \), then for any \((\beta, h) \in [0, \infty) \times \mathbb{R} \) there is a unique infinite-volume Gibbs measure

2. If \(d \geq 2 \) and \(h \neq 0 \), then for any \(\beta \in [0, \infty) \) there is a unique infinite-volume Gibbs measure
Phase transition

Let $\Lambda_n = \{-n, \ldots, n\}^d \subset \mathbb{Z}^d$, and consider

$$\Sigma^+_{\Lambda_n} = \{\sigma \in \{-1, 1\}^{\mathbb{Z}^d} : \sigma_i = +1 \text{ for all } i \not\in \Lambda_n\}$$

Sequence of Gibbs measures on Λ_n converges: $\mathbb{P}^+_{\Lambda_n, \beta, h} \Rightarrow \mathbb{P}^+_{\beta, h}$

Analogous construction for “minus” boundary conditions

Theorem (Aizenman, Duminil-Copin, Sidoravicius (2014))

1. If $d = 1$, then for any $(\beta, h) \in [0, \infty) \times \mathbb{R}$ there is a unique infinite-volume Gibbs measure
2. If $d \geq 2$ and $h \neq 0$, then for any $\beta \in [0, \infty)$ there is a unique infinite-volume Gibbs measure
3. If $d \geq 2$ and $h = 0$, there exists $\beta_c(d) \in (0, \infty)$ such that:
 a. If $\beta \leq \beta_c$, there is a unique infinite-volume Gibbs measure
 b. If $\beta > \beta_c$, then $\mathbb{P}^+_{\beta, 0} \neq \mathbb{P}^-_{\beta, 0}$
Exact solutions

$G_n = \mathbb{Z}_n$ solved by Ising (1925)
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
- $G_n = \mathbb{Z}_n^2$ solved by Peierls (1936), Kramers & Wannier (1941), Onsager (1944), Yang (1952), Kasteleyn (1963), Fisher (1966)
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
- $G_n = \mathbb{Z}_n^2$ solved by Peierls (1936), Kramers & Wannier (1941), Onsager (1944), Yang (1952), Kasteleyn (1963), Fisher (1966)
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
- $G_n = \mathbb{Z}^2_n$ solved by Peierls (1936), Kramers & Wannier (1941), Onsager (1944), Yang (1952), Kasteleyn (1963), Fisher (1966)

Smirnov (2006) proved critical interfaces between $+/−$ components have conformally invariant limit

- SLE(3) - Schramm-Löwner Evolution
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
- $G_n = \mathbb{Z}_2^n$ solved by Peierls (1936), Kramers & Wannier (1941), Onsager (1944), Yang (1952), Kasteleyn (1963), Fisher (1966)

Smirnov (2006) proved critical interfaces between $+/-$ components have conformally invariant limit

- SLE(3) - Schramm-Löwner Evolution

K-F related Ising partition function to perfect matchings
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
- $G_n = \mathbb{Z}_2^n$ solved by Peierls (1936), Kramers & Wannier (1941), Onsager (1944), Yang (1952), Kasteleyn (1963), Fisher (1966)

Smirnov (2006) proved critical interfaces between $+/ -$ components have conformally invariant limit
- SLE(3) - Schramm-Löwner Evolution

K-F related Ising partition function to perfect matchings
- Elegant solution on planar graphs in terms of Pfaffians
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
- $G_n = \mathbb{Z}_n^2$ solved by Peierls (1936), Kramers & Wannier (1941), Onsager (1944), Yang (1952), Kasteleyn (1963), Fisher (1966)

Smirnov (2006) proved critical interfaces between $+/-$ components have conformally invariant limit

- SLE(3) - Schramm-Löwner Evolution

K-F related Ising partition function to perfect matchings

- Elegant solution on planar graphs in terms of Pfaffians
- Only tractable on graphs of bounded (small) genus
Exact solutions

- $G_n = \mathbb{Z}_n$ solved by Ising (1925)
- $G_n = K_n$ solved by Husimi (1953) and Temperley (1954)
- $G_n = \mathbb{Z}_2^n$ solved by Peierls (1936), Kramers & Wannier (1941), Onsager (1944), Yang (1952), Kasteleyn (1963), Fisher (1966)

Smirnov (2006) proved critical interfaces between $+/-$ components have conformally invariant limit
 - SLE(3) - Schramm-Löwner Evolution

K-F related Ising partition function to perfect matchings
 - Elegant solution on planar graphs in terms of Pfaffians
 - Only tractable on graphs of bounded (small) genus
 - Method not tractable for $G_n = \mathbb{Z}_n^d$ with $d \geq 3$
Computational Complexity

- **PARTITION**:
 - Input: Finite graph $G = (V, E)$, and parameters β, h
 - Output: Ising partition function

- **CORRELATION**:
 - Input: Finite graph $G = (V, E)$, a pair $u, v \in V$, and parameters β, h
 - Output: Ising two-point correlation function

- **SUSCEPTIBILITY**:
 - Input: Finite graph $G = (V, E)$, and parameters β, h
 - Output: Ising susceptibility
Computational Complexity

- **PARTITION:**
 - Input: Finite graph $G = (V, E)$, and parameters β, h
 - Output: Ising partition function

- **CORRELATION:**
 - Input: Finite graph $G = (V, E)$, a pair $u, v \in V$, and parameters β, h
 - Output: Ising two-point correlation function

- **SUSCEPTIBILITY:**
 - Input: Finite graph $G = (V, E)$, and parameters β, h
 - Output: Ising susceptibility

Proposition (Jerrum-Sinclair 1993; Sinclair-Srivastava 2014)

PARTITION, SUSCEPTIBILITY and CORRELATION are #P-hard.
Markov-chain Monte Carlo

- Construct a transition matrix P on Ω which:
 - Is ergodic
 - Has stationary distribution $\pi(\cdot)$
- Generate random samples with (approximate) distribution π
- Estimate π expectations using sample means
Markov-chain Monte Carlo

- Construct a transition matrix P on Ω which:
 - Is ergodic
 - Has stationary distribution $\pi(\cdot)$
- Generate random samples with (approximate) distribution π
- Estimate π expectations using sample means

$$d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi(\cdot)\| \leq C\alpha^t, \quad \text{for } \alpha \in (0, 1)$$

- **Mixing time** quantifies the rate of convergence
 $$t_{\text{mix}}(\delta) := \min \{ t : d(t) \leq \delta \}$$
Markov-chain Monte Carlo

- Construct a transition matrix P on Ω which:
 - Is ergodic
 - Has stationary distribution $\pi(\cdot)$
- Generate random samples with (approximate) distribution π
- Estimate π expectations using sample means

\[
d(t) := \max_{x \in \Omega} \| P^t(x, \cdot) - \pi(\cdot) \| \leq C \alpha^t, \quad \text{for } \alpha \in (0, 1)
\]

- **Mixing time** quantifies the rate of convergence
 \[
t_{\text{mix}}(\delta) := \min \{ t : d(t) \leq \delta \}
\]
- How does t_{mix} depend on size of Ω?
Markov-chain Monte Carlo

- Construct a transition matrix P on Ω which:
 - Is ergodic
 - Has stationary distribution $\pi(\cdot)$
- Generate random samples with (approximate) distribution π
- Estimate π expectations using sample means

$$d(t) := \max_{x \in \Omega} \| P^t(x, \cdot) - \pi(\cdot) \| \leq C\alpha^t, \quad \text{for } \alpha \in (0, 1)$$

- **Mixing time** quantifies the rate of convergence
 $$t_{\text{mix}}(\delta) := \min \{ t : d(t) \leq \delta \}$$
- **How does t_{mix} depend on size of Ω?**
 - For Ising the size of a problem instance is $n = |V|$
 - If $t_{\text{mix}} = O(\text{poly}(n))$ we have **rapid mixing**
Markov-chain Monte Carlo

- Construct a transition matrix P on Ω which:
 - Is ergodic
 - Has stationary distribution $\pi(\cdot)$
- Generate random samples with (approximate) distribution π
- Estimate π expectations using sample means

\[
d(t) := \max_{x \in \Omega} \|P^t(x, \cdot) - \pi(\cdot)\| \leq C\alpha^t, \quad \text{for } \alpha \in (0, 1)
\]

- **Mixing time** quantifies the rate of convergence

\[
t_{\text{mix}}(\delta) := \min \{t : d(t) \leq \delta\}
\]

- **How does t_{mix} depend on size of Ω?**
 - For Ising the size of a problem instance is $n = |V|$
 - If $t_{\text{mix}} = O(\text{poly}(n))$ we have **rapid mixing**
 - $|\Omega| = 2^n$ so rapid mixing implies only logarithmically-many states need be visited to reach approximate stationarity
Markov chains for the Ising model

- Glauber process (arbitrary field) 1963
 - Lubetzky & Sly (2012): Rapidly mixing on boxes in \mathbb{Z}^2 at $h = 0$ iff $\beta \leq \beta_c$
 - Levin, Luczak & Peres (2010): Precise asymptotics on K_n for $h = 0$
 - Not used by computational physicists
Markov chains for the Ising model

- **Glauber process (arbitrary field) 1963**
 - Lubetzky & Sly (2012): Rapidly mixing on boxes in \mathbb{Z}^2 at $h = 0$ iff $\beta \leq \beta_c$
 - Levin, Luczak & Peres (2010): Precise asymptotics on K_n for $h = 0$
 - Not used by computational physicists

- **Swendsen-Wang process (zero field) 1987**
 - Simulates coupling of Ising and Fortuin-Kasteleyn models
 - Long, Nachmias, Ding & Peres (2014): Precise asymptotics on K_n
 - Ullrich (2014): Rapidly mixing on boxes in \mathbb{Z}^2 at all $\beta \neq \beta_c$
 - Empirically fast. State of the art 1987 – recently
Markov chains for the Ising model

- **Glauber process (arbitrary field) 1963**
 - Lubetzky & Sly (2012): Rapidly mixing on boxes in \mathbb{Z}^2 at $h = 0$ iff $\beta \leq \beta_c$
 - Levin, Luczak & Peres (2010): Precise asymptotics on K_n for $h = 0$
 - Not used by computational physicists

- **Swendsen-Wang process (zero field) 1987**
 - Simulates coupling of Ising and Fortuin-Kasteleyn models
 - Long, Nachmias, Ding & Peres (2014): Precise asymptotics on K_n
 - Ullrich (2014): Rapidly mixing on boxes in \mathbb{Z}^2 at all $\beta \neq \beta_c$
 - Empirically fast. State of the art 1987 – recently

- **Jerrum-Sinclair process (positive field) 1993**
 - Simulates high-temperature graphs for $h > 0$
 - Proved rapidly mixing on all graphs at all temperatures for all $h > 0$
 - No empirical results - not used by computational physicists
Markov chains for the Ising model

- **Glauber process (arbitrary field)** 1963
 - Lubetzky & Sly (2012): Rapidly mixing on boxes in \mathbb{Z}^2 at $h = 0$ iff $\beta \leq \beta_c$
 - Levin, Luczak & Peres (2010): Precise asymptotics on K_n for $h = 0$
 - Not used by computational physicists

- **Swendsen-Wang process (zero field)** 1987
 - Simulates coupling of Ising and Fortuin-Kasteleyn models
 - Long, Nachmias, Ding & Peres (2014): Precise asymptotics on K_n
 - Ullrich (2014): Rapidly mixing on boxes in \mathbb{Z}^2 at all $\beta \neq \beta_c$
 - Empirically fast. State of the art 1987 – recently

- **Jerrum-Sinclair process (positive field)** 1993
 - Simulates high-temperature graphs for $h > 0$
 - Proved rapidly mixing on all graphs at all temperatures for all $h > 0$
 - No empirical results - not used by computational physicists

- **Prokofiev-Svistunov worm process (zero field)** 2001
 - No rigorous results currently known
 - Empirically, best method known for susceptibility (Deng, G., Sokal)
 - Widely used by computational physicists
Theorem (Collevecchio, G., Hyndman, Tokarev 2014+)

For any temperature, the mixing time of the PS process on graph $G = (V, E)$ satisfies

$$t_{\text{mix}}(\delta) = O(\Delta(G)m^2n^5)$$

with $n = |V|$, $m = |E|$ and $\Delta(G)$ the maximum degree.
Mixing time bound for PS process

Theorem (Collevecchio, G., Hyndman, Tokarev 2014+)

For any temperature, the mixing time of the PS process on graph $G = (V, E)$ satisfies

$$t_{\text{mix}}(\delta) = O(\Delta(G)m^2 n^5)$$

with $n = |V|$, $m = |E|$ and $\Delta(G)$ the maximum degree.

Only Markov chain for the Ising model currently known to be rapidly mixing at the critical point for boxes in \mathbb{Z}^d
High-temperature expansions and the PS measure

Let $C_k = \{A \subseteq E : (V, A) \text{ has } k \text{ odd vertices} \}$
High-temperature expansions and the PS measure

- Let $C_k = \{A \subseteq E : (V, A) \text{ has } k \text{ odd vertices}\}$
- Let $C_W = \{A \subseteq E : W \text{ is the set of odd vertices in } (V, A) \}$
High-temperature expansions and the PS measure

- Let $C_k = \{A \subseteq E : (V, A) \text{ has } k \text{ odd vertices}\}$
- Let $C_W = \{A \subseteq E : W \text{ is the set of odd vertices in } (V, A) \}$
- PS measure defined on the configuration space $C_0 \cup C_2$

$$\pi(A) \propto x^{|A|} \begin{cases} n, & A \in C_0, \\ 2, & A \in C_2. \end{cases}$$
High-temperature expansions and the PS measure

- Let $C_k = \{A \subseteq E : (V, A) \text{ has } k \text{ odd vertices}\}$
- Let $C_W = \{A \subseteq E : W \text{ is the set of odd vertices in } (V, A) \}$
- PS measure defined on the configuration space $C_0 \cup C_2$

\[\pi(A) \propto x^{|A|} \begin{cases} n, & A \in C_0, \\ 2, & A \in C_2. \end{cases} \]

- If $x = \tanh \beta$ then:
 - Ising susceptibility $\chi = \frac{1}{\pi(C_0)}$
 - Ising two-point correlation function $\mathbb{E}(\sigma_u \sigma_v) = \frac{n}{2} \frac{\pi(C_{uv})}{\pi(C_0)}$
High-temperature expansions and the PS measure

- Let $C_k = \{ A \subseteq E : (V, A) \text{ has } k \text{ odd vertices} \}$
- Let $C_W = \{ A \subseteq E : W \text{ is the set of odd vertices in } (V, A) \}$
- PS measure defined on the configuration space $C_0 \cup C_2$

$$\pi(A) \propto x^{|A|} \begin{cases} n, & A \in C_0, \\ 2, & A \in C_2. \end{cases}$$

- If $x = \tanh \beta$ then:
 - Ising susceptibility $\chi = \frac{1}{\pi(C_0)}$
 - Ising two-point correlation function $\mathbb{E}(\sigma_u \sigma_v) = \frac{n}{2} \frac{\pi(C_{uv})}{\pi(C_0)}$

- PS measure is stationary distribution of PS process
Fully-polynomial randomized approximation schemes

Definition

An **fpras** for an Ising property f is a randomized algorithm such that for given G, T, and $\xi, \eta \in (0, 1)$ the output Y satisfies

$$\mathbb{P}[(1 - \xi)f \leq Y \leq (1 + \xi)f] \geq 1 - \eta$$

and the running time is bounded by a polynomial in n, ξ^{-1}, η^{-1}.
Fully-polynomial randomized approximation schemes

Definition

An fpras for an Ising property f is a randomized algorithm such that for given G, T, and $\xi, \eta \in (0, 1)$ the output Y satisfies

$$\mathbb{P}[(1 - \xi)f \leq Y \leq (1 + \xi)f] \geq 1 - \eta$$

and the running time is bounded by a polynomial in n, ξ^{-1}, η^{-1}.

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):
Fully-polynomial randomized approximation schemes

Definition

An fpras for an Ising property \(f \) is a randomized algorithm such that for given \(G, T, \) and \(\xi, \eta \in (0, 1) \) the output \(\mathcal{Y} \) satisfies

\[
\mathbb{P}[(1 - \xi)f \leq \mathcal{Y} \leq (1 + \xi)f] \geq 1 - \eta
\]

and the running time is bounded by a polynomial in \(n, \xi^{-1}, \eta^{-1} \).

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):

- Let \(\mathcal{A} \subseteq \mathcal{C}_0 \cup \mathcal{C}_2 \) with \(\pi(\mathcal{A}) \geq 1/S(n) \) for some polynomial \(S(n) \)
Fully-polynomial randomized approximation schemes

Definition
An \textbf{fpras} for an Ising property f is a randomized algorithm such that for given G, T, and $\xi, \eta \in (0, 1)$ the output \mathcal{Y} satisfies

$$\mathbb{P}[(1 - \xi)f \leq \mathcal{Y} \leq (1 + \xi)f] \geq 1 - \eta$$

and the running time is bounded by a polynomial in n, ξ^{-1}, η^{-1}.

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):

- Let $\mathcal{A} \subseteq \mathcal{C}_0 \cup \mathcal{C}_2$ with $\pi(\mathcal{A}) \geq 1/S(n)$ for some polynomial $S(n)$
- The following defines an fpras for $\pi(\mathcal{A})$:
Fully-polynomial randomized approximation schemes

Definition

An **fpras** for an Ising property f is a randomized algorithm such that for given G, T, and $\xi, \eta \in (0, 1)$ the output Y satisfies

$$
\mathbb{P}[(1 - \xi)f \leq Y \leq (1 + \xi)f] \geq 1 - \eta
$$

and the running time is bounded by a polynomial in n, ξ^{-1}, η^{-1}.

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):

- Let $A \subseteq C_0 \cup C_2$ with $\pi(A) \geq 1/S(n)$ for some polynomial $S(n)$
- The following defines an fpras for $\pi(A)$:
 - Let $R(G)$ be our upper bound for $t_{\text{mix}}(\delta)$ with $\delta = \xi/[8S(n)]$
Fully-polynomial randomized approximation schemes

Definition

An **fpras** for an Ising property f is a randomized algorithm such that for given G, T, and $\xi, \eta \in (0, 1)$ the output Y satisfies

$$\mathbb{P}[(1 - \xi)f \leq Y \leq (1 + \xi)f] \geq 1 - \eta$$

and the running time is bounded by a polynomial in n, ξ^{-1}, η^{-1}.

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):

- Let $A \subseteq C_0 \cup C_2$ with $\pi(A) \geq 1/S(n)$ for some polynomial $S(n)$
- The following defines an fpras for $\pi(A)$:
 - Let $R(G)$ be our upper bound for $t_{\text{mix}}(\delta)$ with $\delta = \xi/[8S(n)]$
 - Let $Y = 1_A$
Fully-polynomial randomized approximation schemes

Definition
An **fpras** for an Ising property f is a randomized algorithm such that for given G, T, and $\xi, \eta \in (0, 1)$ the output Y satisfies

$$\mathbb{P}[(1 - \xi)f \leq Y \leq (1 + \xi)f] \geq 1 - \eta$$

and the running time is bounded by a polynomial in n, ξ^{-1}, η^{-1}.

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):

- Let $\mathcal{A} \subseteq \mathcal{C}_0 \cup \mathcal{C}_2$ with $\pi(\mathcal{A}) \geq 1/S(n)$ for some polynomial $S(n)$
- The following defines an fpras for $\pi(\mathcal{A})$:
 - Let $R(G)$ be our upper bound for $t_{mix}(\delta)$ with $\delta = \xi/[8S(n)]$
 - Let $Y = 1_{\mathcal{A}}$
 - Run the PS process $T = R(G)$ time steps and record Y_T
Fully-polynomial randomized approximation schemes

Definition
An **fpras** for an Ising property f is a randomized algorithm such that for given G, T, and $\xi, \eta \in (0, 1)$ the output Y satisfies

\[
\mathbb{P}[(1 - \xi)f \leq Y \leq (1 + \xi)f] \geq 1 - \eta
\]

and the running time is bounded by a polynomial in n, ξ^{-1}, η^{-1}.

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):

- Let $\mathcal{A} \subseteq \mathcal{C}_0 \cup \mathcal{C}_2$ with $\pi(\mathcal{A}) \geq 1/S(n)$ for some polynomial $S(n)$
- The following defines an fpras for $\pi(\mathcal{A})$:
 - Let $R(G)$ be our upper bound for $t_{\text{mix}}(\delta)$ with $\delta = \xi/[8S(n)]$
 - Let $Y = 1_{\mathcal{A}}$
 - Run the PS process $T = R(G)$ time steps and record Y_T
 - Independently generate $72\xi^{-2}S(n)$ such samples and take the sample mean
Fully-polynomial randomized approximation schemes

Definition

An **fpras** for an Ising property \(f \) is a randomized algorithm such that for given \(G, T \), and \(\xi, \eta \in (0, 1) \) the output \(Y \) satisfies

\[
\mathbb{P}[(1 - \xi)f \leq Y \leq (1 + \xi)f] \geq 1 - \eta
\]

and the running time is bounded by a polynomial in \(n, \xi^{-1}, \eta^{-1} \).

Combine rapid mixing of PS process with general fpras construction of Jerrum-Sinclair (1993):

- Let \(A \subseteq C_0 \cup C_2 \) with \(\pi(A) \geq 1/S(n) \) for some polynomial \(S(n) \)
- The following defines an fpras for \(\pi(A) \):
 - Let \(R(G) \) be our upper bound for \(t_{\text{mix}}(\delta) \) with \(\delta = \xi/[8S(n)] \)
 - Let \(Y = 1_A \)
 - Run the PS process \(T = R(G) \) time steps and record \(Y_T \)
 - Independently generate \(72\xi^{-2}S(n) \) such samples and take the sample mean
 - Repeat \(6 \log \lceil 1/\eta \rceil + 1 \) such experiments and take the median
Prokofiev-Svistunov process

PS proposals:
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$: [Diagram of a grid with selected paths]
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \to A \triangle uv$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \to A \triangle uv$
- If $A \in C_2$:

Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
Introduction

Main Theorem

Proof

Discussion

Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \to A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \to A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- **If** $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- **If** $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- **If** $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- **If** $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:
- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$
Prokofiev-Svistunov process

PS proposals:

- If $A \in C_0$:
 - Pick uniformly random $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

- If $A \in C_2$:
 - Pick random odd $u \in V$
 - Pick uniformly random $v \sim u$
 - Propose $A \rightarrow A \triangle uv$

Metropolize proposals with respect to PS measure $\pi(\cdot)$
Proof of rapid mixing

- We use the **path method**
- Consider the **transition graph** $G = (\mathcal{V}, \mathcal{E})$ of the PS process
 - $\mathcal{V} = \mathcal{C}_0 \cup \mathcal{C}_2$
 - $\mathcal{E} = \{AA' : P(A, A') > 0\}$
Proof of rapid mixing

- We use the path method
- Consider the transition graph $G = (\mathcal{V}, \mathcal{E})$ of the PS process
 - $\mathcal{V} = \mathcal{C}_0 \cup \mathcal{C}_2$
 - $\mathcal{E} = \{AA' : P(A, A') > 0\}$
- Specify paths $\gamma_{I,F}$ in G between pairs of states I, F
Proof of rapid mixing

- We use the **path method**
- Consider the **transition graph** $G = (\mathcal{V}, \mathcal{E})$ of the PS process
 - $\mathcal{V} = C_0 \cup C_2$
 - $\mathcal{E} = \{AA' : P(A, A') > 0\}$
- Specify paths $\gamma_{I,F}$ in G between pairs of states I, F
- If no transition is used too often, the process is rapidly mixing
Proof of rapid mixing

- We use the **path method**
- Consider the **transition graph** $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of the PS process
 - $\mathcal{V} = \mathcal{C}_0 \cup \mathcal{C}_2$
 - $\mathcal{E} = \{AA' : P(A, A') > 0\}$
- Specify paths $\gamma_{I,F}$ in \mathcal{G} between pairs of states I, F
- If no transition is used too often, the process is rapidly mixing
- In the most general case, one specifies paths between each pair $I, F \in \mathcal{C}_0 \cup \mathcal{C}_2$
Proof of rapid mixing

- We use the **path method**
- Consider the **transition graph** $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of the PS process
 - $\mathcal{V} = \mathcal{C}_0 \cup \mathcal{C}_2$
 - $\mathcal{E} = \{A A' : P(A, A') > 0\}$
- Specify paths $\gamma_{I,F}$ in \mathcal{G} between pairs of states I, F
- If no transition is used too often, the process is rapidly mixing
- In the most general case, one specifies paths between each pair $I, F \in \mathcal{C}_0 \cup \mathcal{C}_2$
- For PS process, convenient to only specify paths from \mathcal{C}_2 to \mathcal{C}_0
Proof of rapid mixing

- We use the **path method**
- Consider the **transition graph** $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ of the PS process
 - $\mathcal{V} = \mathcal{C}_0 \cup \mathcal{C}_2$
 - $\mathcal{E} = \{ AA' : P(A, A') > 0 \}$
- Specify paths $\gamma_{I,F}$ in \mathcal{G} between pairs of states I, F
- If no transition is used too often, the process is rapidly mixing
- In the most general case, one specifies paths between each pair $I, F \in \mathcal{C}_0 \cup \mathcal{C}_2$
- For PS process, convenient to only specify paths from \mathcal{C}_2 to \mathcal{C}_0
Lemma (Jerrum-Sinclair-Vigoda (2004))

Consider MC with state space Ω and stationary distribution π. Let $S \subset \Omega$, and specify paths $\Gamma = \{\gamma_{I,F} : I \in S, F \in S^c\}$. Then

$$t_{\text{mix}}(\delta) \leq \log \left(\frac{1}{\delta \min_{A \in \Omega} \pi(A)} \right) \left[2 + 4 \left(\frac{\pi(S)}{\pi(S^c)} + \frac{\pi(S^c)}{\pi(S)} \right) \right] \varphi(\Gamma)$$

where

$$\varphi(\Gamma) := \left(\max_{(I,F) \in S \times S^c} |\gamma_{I,F}| \right) \max_{AA' \in \mathcal{E}} \left\{ \sum_{(I,F) \in S \times S^c \atop \gamma_{I,F} \ni AA'} \frac{\pi(I)\pi(F')}{\pi(A)P(A,A')} \right\}$$
Lemma (Jerrum-Sinclair-Vigoda (2004))

Consider MC with state space Ω and stationary distribution π. Let $S \subset \Omega$, and specify paths $\Gamma = \{\gamma_{I,F} : I \in S, F \in S^c\}$. Then

$$t_{\text{mix}}(\delta) \leq \log \left(\frac{1}{\delta \min_{A \in \Omega} \pi(A)} \right) \left[2 + 4 \left(\frac{\pi(S)}{\pi(S^c)} + \frac{\pi(S^c)}{\pi(S)} \right) \right] \varphi(\Gamma)$$

where

$$\varphi(\Gamma) := \left(\max_{(I,F) \in S \times S^c} |\gamma_{I,F}| \right) \max_{AA' \in E} \left\{ \sum_{(I,F) \in S \times S^c, \gamma_{I,F} \ni AA'} \frac{\pi(I)\pi(F')}{\pi(A)P(A, A')} \right\}$$

- We choose $S = C_2$.

Lemma (Jerrum-Sinclair-Vigoda (2004))

Consider MC with state space Ω and stationary distribution π. Let $S \subset \Omega$, and specify paths $\Gamma = \{\gamma_{I,F} : I \in S, F \in S^c\}$. Then

$$t_{\text{mix}}(\delta) \leq \log \left(\frac{1}{\delta \min_{A \in \Omega} \pi(A)} \right) \left[2 + 4 \left(\frac{\pi(S)}{\pi(S^c)} + \frac{\pi(S^c)}{\pi(S)} \right) \right] \varphi(\Gamma)$$

where

$$\varphi(\Gamma) := \left(\max_{(I,F) \in S \times S^c} \left| \gamma_{I,F} \right| \right) \max_{AA' \in \mathcal{E}} \left\{ \sum_{(I,F) \in S \times S^c, \gamma_{I,F} \ni AA'} \frac{\pi(I)\pi(F')}{\pi(A)P(A, A')} \right\}$$

—we choose $S = C_2$. Elementary to show:

$$2 \frac{mx}{n \ mx + 1} \leq \frac{\pi(C_2)}{\pi(C_0)} \leq n - 1,$$

and

$$\pi(A) \geq \left(\frac{x}{8} \right)^m$$

for all A.
Lemma (Jerrum-Sinclair-Vigoda (2004))

Consider MC with state space Ω and stationary distribution π. Let $S \subset \Omega$, and specify paths $\Gamma = \{\gamma_{I,F} : I \in S, F \in S^c\}$. Then

$$t_{\text{mix}}(\delta) \leq \log \left(\frac{1}{\delta \min_{A \in \Omega} \pi(A)} \right) \left[2 + 4 \left(\frac{\pi(S)}{\pi(S^c)} + \frac{\pi(S^c)}{\pi(S)} \right) \right] \varphi(\Gamma)$$

where

$$\varphi(\Gamma) := \left(\max_{(I,F) \in S \times S^c} |\gamma_{I,F}| \right) \max_{AA' \in \mathcal{E}} \left\{ \sum_{(I,F) \in S \times S^c} \pi(I) \pi(F') \frac{\pi(A) P(A, A')}{\pi(A')} \right\}$$

- We choose $S = C_2$. Elementary to show:

 $$\frac{2}{n \text{mx}} + 1 \leq \frac{\pi(C_2)}{\pi(C_0)} \leq n-1, \quad \text{and} \quad \pi(A) \geq \left(\frac{x}{8} \right)^m \quad \text{for all } A$$

- Therefore:

 $$t_{\text{mix}}(\delta) \leq \left(\log \left(\frac{8}{x} \right) - \frac{\log \delta}{m} \right) \left(3 + \frac{1}{\text{mx}} \right) 2mn \varphi(\Gamma)$$
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \Delta F$
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \Delta F$
- If $(I, F) \in \mathcal{C}_2 \times \mathcal{C}_0$ then $I \Delta F \in \mathcal{C}_2$
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in \mathcal{C}_2 \times \mathcal{C}_0$ then $I \triangle F \in \mathcal{C}_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \Delta F$
- If $(I, F) \in \mathcal{C}_2 \times \mathcal{C}_0$ then $I \Delta F \in \mathcal{C}_2$
- $I \Delta F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in \mathcal{C}_2 \times \mathcal{C}_0$ then $I \triangle F \in \mathcal{C}_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...

\[I \]
\[F \]
\[A_2 \]
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \Delta F$
- If $(I, F) \in C_2 \times C_0$ then $I \Delta F \in C_2$
- $I \Delta F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$

- If $(I, F) \in C_2 \times C_0$ then
 $I \triangle F \in C_2$

- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles

- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - . . . then A_1
 - . . . then A_2
 - . . .
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \bigcup_{i \geq 1} A_i$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \Delta F$
- If $(I, F) \in C_2 \times C_0$ then $I \Delta F \in C_2$
- $I \Delta F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

To transition from \(I \) to \(F \)
- Flip each \(e \in I \triangle F \)
- If \((I, F) \in C_2 \times C_0 \) then \(I \triangle F \in C_2 \)
- \(I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right) \)
 - \(A_0 \) is a path
 - \(A_i \) disjoint cycles

\(\gamma_{I,F} \) defined by:
- Traverse \(A_0 \)
- \(\ldots \) then \(A_1 \)
- \(\ldots \) then \(A_2 \)
- \(\ldots \)
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from \(I \) to \(F \)
 - Flip each \(e \in I \triangle F \)
- If \((I, F) \in C_2 \times C_0 \) then \(I \triangle F \in C_2 \)
- \(I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right) \)
 - \(A_0 \) is a path
 - \(A_i \) disjoint cycles

\(\gamma_{I,F} \) defined by:
- Traverse \(A_0 \)
- ... then \(A_1 \)
- ... then \(A_2 \)
- ...
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in \mathcal{C}_2 \times \mathcal{C}_0$ then $I \triangle F \in \mathcal{C}_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles

- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
 - If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
 - $I \triangle F = A_0 \cup \bigcup_{i \geq 1} A_i$
 - A_0 is a path
 - A_i disjoint cycles

- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - . . . then A_1
 - . . . then A_2
 - . . .
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then
 - $I \triangle F \in C_2$
 - $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \Delta F$
- If $(I, F) \in C_2 \times C_0$ then $I \Delta F \in C_2$
- $I \Delta F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles

- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \Delta F$
- If $(I, F) \in C_2 \times C_0$ then $I \Delta F \in C_2$
- $I \Delta F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from \(I \) to \(F \):
 - Flip each \(e \in I \triangle F \)
- If \((I, F) \in C_2 \times C_0 \) then \(I \triangle F \in C_2 \)
- \(I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right) \)
 - \(A_0 \) is a path
 - \(A_i \) disjoint cycles
- \(\gamma_{I,F} \) defined by:
 - Traverse \(A_0 \)
 - \(\ldots \) then \(A_1 \)
 - \(\ldots \) then \(A_2 \)
 - \(\ldots \)
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \bigtriangleup F$

- If $(I, F) \in C_2 \times C_0$ then $I \bigtriangleup F \in C_2$

- $I \bigtriangleup F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles

- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles

- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in \mathcal{C}_2 \times \mathcal{C}_0$ then $I \triangle F \in \mathcal{C}_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - ... then A_1
 - ... then A_2
 - ...
- $\Gamma = \{ \gamma_{I,F} \}$
Choice of Canonical Paths

- To transition from I to F
 - Flip each $e \in I \triangle F$
- If $(I, F) \in C_2 \times C_0$ then $I \triangle F \in C_2$
- $I \triangle F = A_0 \cup \left(\bigcup_{i \geq 1} A_i \right)$
 - A_0 is a path
 - A_i disjoint cycles
- $\gamma_{I,F}$ defined by:
 - Traverse A_0
 - \ldots then A_1
 - \ldots then A_2
 - \ldots
- $\Gamma = \{ \gamma_{I,F} \}$

One can show that $\varphi(\Gamma) \leq \Delta(G)n^4m/2$
Bounding the congestion

- **Define measure** Λ

 $\Lambda(A) = x^{|A|} \begin{cases}
 n, & A \in C_0 \\
 2, & A \in C_2 \\
 1, & A \in C_4
 \end{cases}$

- $\pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)}$

If $T = AA'$ is a maximally congested transition

$$\varphi(\Gamma) = \sum_{(I,F) \in \mathcal{P}(T)} \frac{\pi(I)\pi(F)}{\pi(A)P(A, A')} \max_{(I,F) \in S \times S^c} |\gamma_{I,F}|$$
Bounding the congestion

- **Define measure** Λ

\[
\Lambda(A) = x^{|A|} \begin{cases}
 n, & A \in C_0 \\
 2, & A \in C_2 \\
 1, & A \in C_4
\end{cases}
\]

- $\pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)}$

If $T = AA'$ is a maximally congested transition

\[
\varphi(\Gamma) \leq \sum_{(I,F) \in \mathcal{P}(T)} \frac{\pi(I)\pi(F)}{\pi(A)P(A, A')} m
\]
Bounding the congestion

- Define measure Λ

\[\Lambda(A) = x^{|A|} \begin{cases}
 n, & A \in C_0 \\
 2, & A \in C_2 \\
 1, & A \in C_4
\end{cases} \]

- $\pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)}$

If $T = AA'$ is a maximally congested transition

\[\varphi(\Gamma) \leq \sum_{(I,F) \in \mathcal{P}(T)} \frac{\Lambda(I)\Lambda(F)}{\Lambda(A)\Lambda(C_0 \cup C_2)} \frac{m}{\Lambda(A)\Lambda(C_0 \cup C_2)} \]
Bounding the congestion

- **Define measure** \(\Lambda \)

 \[
 \Lambda(A) = x^{|A|} \begin{cases}
 n, & A \in C_0 \\
 2, & A \in C_2 \\
 1, & A \in C_4
 \end{cases}
 \]

- **Define measure** \(\pi \)

 \[
 \pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)}
 \]

If \(T = AA' \) is a maximally congested transition

\[
\varphi(\Gamma) \leq \frac{m}{\Lambda(C_0 \cup C_2)} \sum_{(I,F) \in \mathcal{P}(T)} \frac{\Lambda(I)\Lambda(F)}{\Lambda(A)\rho(A, A')}
\]
Bounding the congestion

- **Define measure** \(\Lambda \)
 \[
 \Lambda(A) = x^{|A|} \begin{cases}
 n, & A \in C_0 \\
 2, & A \in C_2 \\
 1, & A \in C_4
 \end{cases}
 \]

- **\(\pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)} \)**

If \(T = AA' \) is a maximally congested transition

\[
\varphi(\Gamma) \leq \frac{m}{\Lambda(C_0 \cup C_2)} \sum_{(I,F) \in \mathcal{P}(T)} \frac{\Lambda(I)\Lambda(F)}{\Lambda(A)P(A, A')}
\]
Bounding the congestion

Define measure Λ

\[
\Lambda(A) = x^{\lfloor |A| \rfloor} \begin{cases}
n, & A \in C_0 \\
2, & A \in C_2 \\
1, & A \in C_4
\end{cases}
\]

\[
\pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)}
\]

Define for each $T = AA' \in \mathcal{E}$

\[
\eta_T : C_2 \times C_0 \rightarrow C_0 \cup C_2 \cup C_4
\]

\[
\eta_T(I, F) = I \triangle F \triangle (A \cup A')
\]

\[
\frac{\Lambda(I) \Lambda(F)}{\Lambda(A) P(A, A')} \leq 4\Delta(G)n \Lambda(\eta_T(I, F))
\]

If $T = AA'$ is a maximally congested transition

\[
\varphi(\Gamma) \leq \frac{m}{\Lambda(C_0 \cup C_2)} \sum_{(I, F) \in \mathcal{P}(T)} \frac{\Lambda(I) \Lambda(F)}{\Lambda(A) P(A, A')}
\]
Bounding the congestion

- Define measure Λ

$$\Lambda(A) = x^{|A|} \begin{cases} n, & A \in C_0 \\ 2, & A \in C_2 \\ 1, & A \in C_4 \end{cases}$$

- $\pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)}$

- Define for each $T = AA' \in \mathcal{E}$
 - $\eta_T : C_2 \times C_0 \rightarrow C_0 \cup C_2 \cup C_4$
 - $\eta_T(I, F) = I \Delta F \Delta (A \cup A')$
 - $\frac{\Lambda(I)\Lambda(F)}{\Lambda(A)P(A, A')} \leq 4\Delta(G)n\Lambda(\eta_T(I, F))$

If $T = AA'$ is a maximally congested transition

$$\varphi(\Gamma) \leq \frac{m}{\Lambda(C_0 \cup C_2)} \sum_{(I, F) \in \mathcal{P}(T)} \frac{\Lambda(I)\Lambda(F)}{\Lambda(A)P(A, A')}$$

$$\leq 4 \Delta(G)n m \frac{1}{\Lambda(C_0 \cup C_2)} \sum_{(I, F) \in \mathcal{P}(T)} \Lambda(\eta_T(I, F))$$
Bounding the congestion

- **Define measure** Λ

 $$\Lambda(A) = x^{|A|} \begin{cases} 1, & A \in C_4 \\ 2, & A \in C_2 \\ n, & A \in C_0 \end{cases}$$

- **Define for each** $T = AA' \in \mathcal{E}$

 - $\eta_T : C_2 \times C_0 \rightarrow C_0 \cup C_2 \cup C_4$

 - $\eta_T(I, F) = I \Delta F \Delta (A \cup A')$

- η_T is an injection

If $T = AA'$ is a maximally congested transition

$$\varphi(\Gamma) \leq \frac{m}{\Lambda(C_0 \cup C_2)} \sum_{(I, F) \in \mathcal{P}(T)} \frac{\Lambda(I) \Lambda(F)}{\Lambda(A) \Lambda(P(A, A'))} \leq 4 \Delta(G) n m \sum_{(I, F) \in \mathcal{P}(T)} \Lambda(\eta_T(I, F))$$
Bounding the congestion

- **Define measure** Λ
 \[
 \Lambda(A) = x^{|A|} \begin{cases}
 n, & A \in C_0 \\
 2, & A \in C_2 \\
 1, & A \in C_4
\end{cases}
 \]

- **Define for each** $T = AA' \in \mathcal{E}$
 - $\eta_T : C_2 \times C_0 \to C_0 \cup C_2 \cup C_4$
 - $\eta_T(I, F) = I \triangle F \triangle (A \cup A')$
 - $\frac{\Lambda(I)\Lambda(F)}{\Lambda(A)\mathcal{P}(A, A')} \leq 4\Delta(G)n\Lambda(\eta_T(I, F))$

- η_T *is an injection*

If $T = AA'$ is a maximally congested transition

\[
\varphi(\Gamma) \leq \frac{m}{\Lambda(C_0 \cup C_2)} \sum_{(I,F) \in \mathcal{P}(T)} \frac{\Lambda(I)\Lambda(F)}{\Lambda(A)\mathcal{P}(A, A')}
\]

\[
\leq 4\Delta(G)n\frac{1}{m} \sum_{(I,F) \in \mathcal{P}(T)} \Lambda(\eta_T(I, F))
\]

\[
\leq 4\Delta(G)n\frac{\Lambda(C_0 \cup C_2 \cup C_4)}{\Lambda(C_0 \cup C_2)}
\]
Bounding the congestion

Define measure Λ

\[\Lambda(A) = \begin{cases} n, & A \in C_0 \\ 2, & A \in C_2 \\ 1, & A \in C_4 \end{cases} \]

\[\pi(A) = \frac{\Lambda(A)}{\Lambda(C_0 \cup C_2)} \]

Define for each $T = AA' \in \mathcal{E}$

- $\eta_T : C_2 \times C_0 \rightarrow C_0 \cup C_2 \cup C_4$
- $\eta_T(I, F) = I \triangle F \triangle (A \cup A')$

\[\frac{\Lambda(I)\Lambda(F)}{\Lambda(A)P(A, A')} \leq 4\Delta(G)n\Lambda(\eta_T(I, F)) \]

η_T is an injection

If $T = AA'$ is a maximally congested transition

\[\varphi(\Gamma) \leq \frac{m}{\Lambda(C_0 \cup C_2)} \sum_{(I, F) \in P(T)} \frac{\Lambda(I)\Lambda(F)}{\Lambda(A)P(A, A')} \]

\[\leq 4\Delta(G)nm \frac{1}{\Lambda(C_0 \cup C_2)} \sum_{(I, F) \in P(T)} \Lambda(\eta_T(I, F)) \]

\[\leq 4\Delta(G)nm \frac{\Lambda(C_0 \cup C_2 \cup C_4)}{\Lambda(C_0 \cup C_2)} = 4\Delta(G)nm \left(1 + \frac{\Lambda(C_4)}{\Lambda(C_0) + \Lambda(C_2)}\right) \]
Bounding the congestion cont. . .

The final step is to note that the high-temperature expansion implies

\[
\frac{\Lambda(C_4)}{\Lambda(C_0)} \leq \frac{1}{n} \binom{n}{4}
\]

so that

\[
\varphi(\Gamma) \leq 4 \Delta(G) nm \left(1 + \frac{\Lambda(C_4)}{\Lambda(C_0)}\right)
\]
Bounding the congestion cont. . .

The final step is to note that the high-temperature expansion implies

\[
\frac{\Lambda(C_4)}{\Lambda(C_0)} \leq \frac{1}{n} \left(\binom{n}{4} \right)
\]

so that

\[
\varphi(\Gamma) \leq 4 \Delta(G) nm \left(1 + \frac{\Lambda(C_4)}{\Lambda(C_0)} \right)
\]

\[
\leq 4 \Delta(G) nm \left(1 + \frac{1}{n} \left(\binom{n}{4} \right) \right)
\]
The final step is to note that the high-temperature expansion implies
\[
\frac{\Lambda(C_4)}{\Lambda(C_0)} \leq \frac{1}{n} \binom{n}{4}
\]
so that
\[
\varphi(\Gamma) \leq 4 \Delta(G) nm \left(1 + \frac{\Lambda(C_4)}{\Lambda(C_0)} \right)
\]
\[
\leq 4 \Delta(G) nm \left(1 + \frac{1}{n} \binom{n}{4} \right)
\]
\[
\leq 4 \Delta(G) nm \frac{n^3}{8}
\]
Bounding the congestion cont. . .

The final step is to note that the high-temperature expansion implies

\[
\frac{\Lambda(C_4)}{\Lambda(C_0)} \leq \frac{1}{n} \binom{n}{4}
\]

so that

\[
\varphi(\Gamma) \leq 4 \Delta(G) nm \left(1 + \frac{\Lambda(C_4)}{\Lambda(C_0)} \right)
\]

\[
\leq 4 \Delta(G) nm \left(1 + \frac{1}{n} \binom{n}{4} \right)
\]

\[
\leq 4 \Delta(G) nm \frac{n^3}{8}
\]

\[
= \frac{\Delta(G) n^4 m}{2}
\]
Bounding the congestion cont. . .

The final step is to note that the high-temperature expansion implies
$$\frac{\Lambda(C_4)}{\Lambda(C_0)} \leq \frac{1}{n} \left(\frac{n}{4} \right)$$
so that

$$\varphi(\Gamma) \leq 4 \Delta(G) nm \left(1 + \frac{\Lambda(C_4)}{\Lambda(C_0)} \right)$$

$$\leq 4 \Delta(G) nm \left(1 + \frac{1}{n} \left(\frac{n}{4} \right) \right)$$

$$\leq 4 \Delta(G) nm \frac{n^3}{8}$$

$$= \frac{\Delta(G) n^4 m}{2}$$

□
Can we obtain sharper results if we focus on special families of graphs, such as $G = \mathbb{Z}_L^d$?
Can we obtain sharper results if we focus on special families of graphs, such as $G = \mathbb{Z}_L^d$?

The PS process is closely related to a modification of the “lamplighter walk” in which lamps are always switched when visited. Can we use this similarity to say something more precise when $G = \mathbb{Z}_L^d$?
Discussion

- Can we obtain sharper results if we focus on special families of graphs, such as $G = \mathbb{Z}_L^d$?
- The PS process is closely related to a modification of the “lamplighter walk” in which lamps are always switched when visited. Can we use this similarity to say something more precise when $G = \mathbb{Z}_L^d$?
- Study related spin models using similar methods?
Mixing time bound for PS process

Theorem (Collevecchio, G., Hyndman, Tokarev 2014+)

The mixing time of the PS process on graph $G = (V, E)$ with parameter $x \in (0, 1)$ satisfies

$$t_{\text{mix}}(\delta) \leq \left(\log \left(\frac{8}{x} \right) - \frac{\log \delta}{m} \right) \left(3 + \frac{1}{m x} \right) \Delta(G) m^2 n^5,$$

with $n = |V|$, $m = |E|$ and $\Delta(G)$ the maximum degree.
Let $\partial A = \{ v \in V : v \text{ has odd degree in } (V, A) \}$
High-temperature expansions and the PS measure

- Let $\partial A = \{v \in V : v$ has odd degree in $(V, A)\}$
- Let $C_W := \{A \subseteq E : \partial A = W\}$ for $W \subseteq V$
High-temperature expansions and the PS measure

- Let $\partial A = \{v \in V : v$ has odd degree in $(V, A)\}$
- Let $C_W := \{A \subseteq E : \partial A = W\}$ for $W \subseteq V$
- Let $C_k := \bigcup_{|W|=k} C_W$ for integer $1 \leq k \leq |V|$
High-temperature expansions and the PS measure

- Let $\partial A = \{v \in V : v \text{ has odd degree in } (V, A)\}$
- Let $C_W := \{A \subseteq E : \partial A = W\}$ for $W \subseteq V$
- Let $C_k := \bigcup_{\substack{W \subseteq V \mid |W| = k}} C_W$ for integer $1 \leq k \leq |V|$
- $\lambda(\cdot)$ defined by $\lambda(S) = \sum_{A \in S} x^{\mid A \mid}$ for $S \subseteq \{A \subseteq E\}$
High-temperature expansions and the PS measure

- Let $\partial A = \{v \in V : v \text{ has odd degree in } (V, A)\}$
- Let $C_W := \{A \subseteq E : \partial A = W\}$ for $W \subseteq V$
- Let $C_k := \bigcup_{W \subseteq V} C_W$ for integer $1 \leq k \leq |V|$
- $\lambda(\cdot)$ defined by $\lambda(S) = \sum_{A \in S} x^{|A|}$ for $S \subseteq \{A \subseteq E\}$

If $x = \tanh \beta$ then

$$E_{G, \beta}^{(\text{Ising})} \left(\prod_{v \in W} \sigma_v \right) = \frac{\lambda(C_W)}{\lambda(C_0)}$$
High-temperature expansions and the PS measure

- Let $\partial A = \{ v \in V : v \text{ has odd degree in } (V, A) \}$
- Let $C_W := \{ A \subseteq E : \partial A = W \}$ for $W \subseteq V$
- Let $C_k := \bigcup_{|W|=k} C_W$ for integer $1 \leq k \leq |V|$
- $\lambda(\cdot)$ defined by $\lambda(S) = \sum_{A \in S} x^{|A|}$ for $S \subseteq \{A \subseteq E\}$

If $x = \tanh \beta$ then

$$
\mathbb{E}_{\mathcal{G},\beta}^{(\text{Ising})} \left(\prod_{v \in W} \sigma_v \right) = \frac{\lambda(C_W)}{\lambda(C_0)}
$$

- PS measure defined on the configuration space $C_0 \cup C_2$

$$
\pi(A) = \frac{\lambda(A)}{n\lambda(C_0) + 2\lambda(C_2)} \begin{cases}
n, & A \in C_0, \\
2, & A \in C_2.
\end{cases}
$$
High-temperature expansions and the PS measure

- Let $\partial A = \{v \in V : \text{v has odd degree in } (V, A)\}$
- Let $C_W := \{A \subseteq E : \partial A = W\}$ for $W \subseteq V$
- Let $C_k := \bigcup_{|W|=k} C_W$ for integer $1 \leq k \leq |V|$
- $\lambda(\cdot)$ defined by $\lambda(S) = \sum_{A \in S} x^{|A|}$ for $S \subseteq \{A \subseteq E\}$

If $x = \tanh \beta$ then

$$E^{\text{(Ising)}}_{G, \beta} \left(\prod_{v \in W} \sigma_v \right) = \frac{\lambda(C_W)}{\lambda(C_0)}$$

- PS measure defined on the configuration space $C_0 \cup C_2$

$$\pi(A) = \frac{\lambda(A)}{n \lambda(C_0) + 2 \lambda(C_2)} \begin{cases} n, & A \in C_0, \\ 2, & A \in C_2. \end{cases}$$

- Ising susceptibility $\chi = \frac{1}{\pi(C_0)}$

- Ising two-point correlation function $\mathbb{E}(\sigma_u \sigma_v) = \frac{n \pi(C_{uv})}{2 \pi(C_0)}$
High-temperature expansions and the PS measure

- Let $\partial A = \{v \in V : v$ has odd degree in $(V, A)\}$
- Let $C_W := \{A \subseteq E : \partial A = W\}$ for $W \subseteq V$
- Let $C_k := \bigcup_{W \subseteq V} C_W$ for integer $1 \leq k \leq |V|$
- $\lambda(\cdot)$ defined by $\lambda(S) = \sum_{A \in S} x^{|A|}$ for $S \subseteq \{A \subseteq E\}$

If $x = \tanh \beta$ then

$$\mathbb{E}_{G, \beta}^{(\text{Ising})} \left(\prod_{v \in W} \sigma_v \right) = \frac{\lambda(C_W)}{\lambda(C_0)}$$

- PS measure defined on the configuration space $C_0 \cup C_2$

$$\pi(A) = \frac{\lambda(A)}{n\lambda(C_0) + 2\lambda(C_2)} \begin{cases} n, & A \in C_0, \\ 2, & A \in C_2. \end{cases}$$

- Ising susceptibility $\chi = \frac{1}{\pi(C_0)}$

- Ising two-point correlation function $\mathbb{E}(\sigma_u \sigma_v) = \frac{n}{2} \frac{\pi(C_{uv})}{\pi(C_0)}$

- PS measure is stationary distribution of PS process