Edge colouring multigraphs

Penny Haxell
University of Waterloo

Hal Kierstead
Arizona State University
Multigraphs

For a multigraph G, we denote by

- $\Delta(G)$ the maximum degree of G,
- $\mu(G)$ the maximum edge multiplicity of G, and
- $\chi'(G)$ the chromatic index of G.

Every G satisfies $\chi'(G) \geq \Delta(G)$.
What makes $\chi'(G) > \Delta(G)$?

We cannot expect an efficient characterisation, in particular not in the case $\mu = 1$.

Holyer’s Theorem (1981). It is NP-complete to determine if a given graph has chromatic index Δ or $\Delta + 1$.

Classical upper bounds

Shannon’s Theorem (1949). For every multigraph G we have

$$\chi'(G) \leq \left\lceil \frac{3\Delta}{2} \right\rceil.$$

Vizing’s Theorem (1964). For every multigraph G we have

$$\chi'(G) \leq \Delta + \mu.$$

Equality holds in Shannon’s Theorem if and only if G contains a triangle with $\left\lceil \frac{3\Delta}{2} \right\rceil$ edges. (Proved by Vizing in his 1968 doctoral dissertation.)
What makes $\chi'(G)$ large?
What makes $\chi'(G)$ large?

There is no edge colouring of this graph with seven colours, because each colour class has size at most 2 and there are 15 edges.
Another lower bound for $\chi'(G)$

If G contains an odd subset S of vertices such that

$$|E[S]| > \frac{(|S| - 1)}{2} t$$

then the set $E[S]$ of edges induced by S cannot be coloured with t colours. Therefore

$$\chi'(G) > t.$$
A conjecture of Goldberg and Seymour

Conjecture (1973, 1979). Let G be a multigraph with

$$\chi'(G) \geq \Delta + 2.$$

Then there exists an odd subset $S \subseteq V(G)$ with $|S| \geq 3$, such that

$$|E[S]| > \frac{(|S| - 1)}{2} (\chi'(G) - 1).$$

In other words, if $\chi'(G)$ is large, then G contains a dense odd subset S of vertices.

It is easy to check that if such an S exists then $|S| < \Delta$.
The conjecture restated

For a vertex subset S, define $\rho(S)$ to be the quantity

$$\rho(S) = \frac{|E[S]|}{|S|/2}.$$

The parameter $\rho(G)$ is defined by

$$\rho(G) = \max\{\rho(S) : S \subseteq V(G)\}.$$

Then $\chi'(G) \geq \lceil \rho(G) \rceil$ for every G.

Conjecture (1973, 1979). For every multigraph G

$$\chi'(G) \leq \max\{\Delta(G) + 1, \lceil \rho(G) \rceil\}.$$
The best partial result currently known is due to Scheide (2009) (also proved independently by Chen, Yu and Zang 2011).

Theorem (Scheide). For every multigraph G

\[
\chi'(G) \leq \max\{\Delta(G) + \sqrt{\frac{\Delta(G) - 1}{2}}, \lceil \rho(G) \rceil\}.
\]
Goldberg also proposed the following sharp version for multigraphs with \(\rho(G) \leq \Delta(G) - 1 \).

Conjecture (1973). For every multigraph \(G \), if \(\rho(G) \leq \Delta(G) - 1 \) then \(\chi'(G) = \Delta(G) \).

Our theorem is a weakened version of this statement.

Theorem (PH, Kierstead). Let \(G \) be a multigraph with maximum degree \(\Delta \), and let \(\varepsilon \) be given where \(0 < \varepsilon < 1 \). Let \(k = \lceil \log_{1+\varepsilon} \Delta \rceil \). If

\[
\rho(S) \leq (1 - \varepsilon)(\Delta + k)
\]

for every \(S \subseteq V(G) \) with \(|S| < \Delta/k + 1 \) then

\[
\chi'(G) \leq \Delta + k.
\]
For example, this implies that $\chi'(G) < \Delta + 101 \log \Delta$ unless G contains a set S of vertices with $|S| < \frac{\Delta}{100 \log \Delta}$ with density parameter $\rho(S) > 0.99(\Delta + 100 \log \Delta)$.

In this formulation, Scheide’s result states the following.

Theorem (Scheide). Let G be a multigraph with maximum degree Δ. If

$$\lceil \rho(S) \rceil \leq \Delta + \sqrt{\frac{\Delta - 1}{2}}$$

for every $S \subseteq V(G)$ with $|S| < \sqrt{3\Delta}$ then

$$\chi'(G) \leq \Delta + \sqrt{\frac{\Delta - 1}{2}}.$$
Tashkinov trees

Let G be a multigraph, and let ϕ be a partial $(\chi' - 1)$-edge-colouring of G. A tree T in G is a ϕ-Tashkinov tree if its first edge is uncoloured, and each subsequent edge is coloured with a colour that is missing at a previous vertex.

![Diagram of Tashkinov trees](image)
Origin of Tashkinov trees

The Tashkinov tree method generalises an argument of Kierstead (1984), which in turn generalises the method of alternating paths. It was introduced to prove the following approximate version of the Goldberg-Seymour conjecture.

Theorem (Tashkinov 2000). For every multigraph G

$$
\chi'(G) \leq \max\{\Delta(G) + \frac{\Delta(G)}{10}, \lceil \rho(G) \rceil\}.
$$

The same method was used also by various other authors (e.g. Favrholdt, Stiebitz, Toft, Scheide) to prove other results related to the Goldberg-Seymour conjecture, including a sequence of improvements leading to the current best bound by Scheide.
Key property of Tashkinov trees

Let G be a multigraph with $\chi'(G) \geq \Delta + 2$. Let T be a ϕ-Tashkinov tree, where ϕ is a partial $(\chi' - 1)$-edge-colouring of G, that colours the maximum possible number of edges.

Theorem (Tashkinov 2000). No colour is missing at two different vertices of T.

We say that T is ϕ-elementary.
Idea of proof
Consequences

If T is maximal then

1. $S = |V(T)|$ is odd

2. every colour missing at a vertex of T occurs on exactly $(|S| - 1)/2$ edges of S.

\[
\begin{array}{c}
\text{(r)}
\end{array}
\]

\[
\begin{array}{c}
\text{(r)}
\end{array}
\]
If **EVERY** colour occurs on exactly \((|S| - 1)/2\) edges of \(S\) then \(S\) is the set we are looking for: it induces more than \((|S| - 1)(\chi' - 1)/2\) edges.

A colour that appears on more than one edge leaving \(S\) is called **defective**.
Using Tashkinov trees

Suppose that G is a multigraph with $\chi'(G) > \Delta + x$, and we want to show that there exists an odd set S with more than $(|S| - 1)(\chi' - 1)/2$ edges.

- Fix a best partial colouring ϕ with $\chi' - 1$ colours.

- Construct a best ϕ-Tashkinov tree T starting from an uncoloured edge.

- If there are no defective colours for $S = V(T)$ then we are done.
LARGE Tashkinov trees are GOOD:

• a maximal ϕ-Tashkinov tree is elementary (no colour is missing at more than one vertex)

• each vertex is missing at least x colours (or $x + 1$ if it is incident to the uncoloured edge)

• the total number of colours missing on the vertices of T is $x|V(T)| + 2$.

Thus if $x|V(T)| + 2 > \Delta + x$ we are done.
Example: Shannon’s Theorem
Suppose on the contrary that $\chi'(G) \geq \frac{3\Delta}{2} + 1$. Fix a best partial colouring ϕ with $\frac{3\Delta}{2}$ colours, and let T be a best ϕ-Tashkinov tree.

Then the total number of colours missing on the vertices of T is at least

$$\frac{\Delta}{2}|V(T)| + 2.$$

Since this is at most the total number of colours, we find

$$|V(T)| < 3.$$

But $|V(T)|$ is odd and at least two.

CONTRADICTION.
Example: Equality in Shannon’s Theorem

Suppose that $\chi'(G) = \frac{3\Delta}{2}$. Fix a best partial colouring ϕ with $\frac{3\Delta}{2} - 1$ colours, and let T be a best ϕ-Tashkinov tree.

Then the total number of colours missing on the vertices of T is at least

$$(\frac{\Delta}{2} - 1)|V(T)| + 2.$$

Since this is at most the total number $\frac{3\Delta}{2} - 1$ of colours, we find

$$|V(T)| = 3.$$

So all $\frac{3\Delta}{2} - 1$ colours appear on the subgraph induced by $V(T)$, plus the uncoloured edge.

Therefore this subgraph is a triangle with multiplicity $\frac{\Delta}{2}$.

Theorem (PH, Kierstead). Let G be a multigraph with maximum degree Δ, and let ε be given where $0 < \varepsilon < 1$. Let $k = \lfloor \log_{1+\varepsilon} \Delta \rfloor$. If $\rho(S) \leq (1 - \varepsilon)(\Delta + k)$ for every $S \subseteq V(G)$ with $|S| < \Delta/k + 1$ then $\chi'(G) \leq \Delta + k$.

Proof idea: Take a best partial colouring with $\Delta + k$ colours. Grow a Tashkinov tree in steps T_i as long as in each step we can add $\varepsilon |T_i|$ new edges.

Key lemma shows that once this process stops, NO colour (missing or otherwise) appears on many edges leaving T_i, hence showing T_i is very dense.
Using Tashkinov trees

• All arguments are based on alternating paths.

• All arguments give polynomial-time algorithms for finding an edge colouring with the guaranteed number of colours OR a dense odd set preventing such a colouring.
Equality in Vizing’s Theorem

Conjecture (1973, 1979). Let G be a multigraph with

$$\mu \geq 2.$$

Then $\chi'(G) = \Delta + \mu$ if and only if there exists an odd subset $S \subseteq V(G)$ with $|S| \geq 3$, such that

$$|E[S]| > \frac{(|S| - 1)}{2} (\Delta + \mu - 1).$$

This would mean that $\mu = 1$ is the ONLY value of μ for which there is no characterisation.
A partial characterisation

Theorem (PH, J. McDonald 2012). Let G be a multigraph with

$$\mu \geq \log_{5/4}(\Delta) + 1.$$

Then $\chi'(G) = \Delta + \mu$ if and only if there exists an odd subset $S \subseteq V(G)$ with $|S| \geq 3$, such that

$$|E[S]| > \frac{(|S| - 1)}{2} (\Delta + \mu - 1).$$