The Extremal Function for Petersen Minors

Kevin Hendrey
David Wood

November 2, 2015
Graph Minors

Operations:

1. vertex deletions
2. edge deletions
3. edge contractions
Kuratowski’s/Wagner’s Theorem

A graph is planar iff it no K_5-minor and no $K_{3,3}$-minor.
Every minor closed class can be characterised by a finite set of excluded minors.
Linkless Graphs

Graphs that can be embedded in \mathbb{R}^3 such that no two cycles are linked.
Characterisation of Linkless graphs [Robertson, Seymour, Thomas]
Extremal Function

<table>
<thead>
<tr>
<th>Excluded Minor</th>
<th>Maximum # edges</th>
<th>forests</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>$n - 1$</td>
<td>forests</td>
</tr>
<tr>
<td>K_4</td>
<td>$2n - 3$</td>
<td>[Dirac 1964]</td>
</tr>
<tr>
<td>K_5</td>
<td>$3n - 6$</td>
<td>[Dirac 1964]</td>
</tr>
<tr>
<td>K_6</td>
<td>$4n - 10$</td>
<td>[Mader 1968]</td>
</tr>
<tr>
<td>K_7</td>
<td>$5n - 15$</td>
<td>[Mader 1968]</td>
</tr>
<tr>
<td>K_8</td>
<td>$6n - 20$</td>
<td>[Jørgensen 1994]</td>
</tr>
<tr>
<td>K_9</td>
<td>$7n - 27$</td>
<td>[Song, Thomas 2006]</td>
</tr>
<tr>
<td>K_t</td>
<td>$\Theta(t \sqrt{\log t})n$</td>
<td>[de la Vega 1983, Kostochka 1982, 1984, Thomason 1984, 2001]</td>
</tr>
</tbody>
</table>
Extremal Function

<table>
<thead>
<tr>
<th>Excluded Minor(s)</th>
<th>Maximum # edges</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_5 and $K_{3,3}$</td>
<td>$3n - 6$</td>
<td>planar</td>
</tr>
<tr>
<td>$K_{3,3}$</td>
<td>$3n - 5$</td>
<td>[Hall 1943]</td>
</tr>
<tr>
<td>Petersen Family</td>
<td>$4n - 10$</td>
<td>[Mader 68]</td>
</tr>
<tr>
<td>$K_{2,2,2}$</td>
<td>$(7n-15)/2$</td>
<td>[Ding 2013]</td>
</tr>
<tr>
<td>$K_{2,t}$</td>
<td>$(t + 1)(n - 1)/2$</td>
<td>[Chudnovsky, Reed, Seymour 2011]</td>
</tr>
<tr>
<td>K_8</td>
<td>$(11n - 35)/2$</td>
<td>[Song 2005]</td>
</tr>
</tbody>
</table>
Our Main Result

Every graph with $n \geq 2$ vertices and at least $5n - 8$ edges contains a Petersen minor.
Why this is best possible

\((K_9, 2)\)-cockades have \(5n - 9\) edges, are Petersen minor free.
Petersen Minors

- Tutte’s conjecture: Every bridgeless Petersen minor free graph admits a nowhere 0 4-flow.
- Every cubic bridgeless Petersen minor free graph is edge 3-colourable [ERSST].
- A graph has the circuit cover property iff it is Petersen minor free [Alspach, Goddyn, Zhang 1994].
Let G be a minor minimal counterexample

i) G has no Petersen minor

ii) $|E(G)| = 5n - 8$

iii) No minor of G satisfies (ii)
Minimum degree

- minimum degree vertices can be deleted if \(\delta(G) \) is small.
- edges can be deleted if \(\delta(G) \) is big.

\[6 \leq \delta(G) \leq 9 \]
Every edge is in at least 5 triangles.
Connectivity

- G is 3-connected.
Connectivity

- G is 3-connected.
- There is some small degree vertex on either side of any 3-cut.
MASSIVE ASSUMPTION!

All small degree vertices have degree 7.
Each edge is in 5 triangles
Small degree vertices have dense neighbourhoods

K_8 minus a matching of size at most 3.
Pick \(v \) and \(C \) to minimize \(|V(C)| \)
Where are we going with this?

- Pick v and C to minimize $|V(C)|$
Where are we going with this?

- Pick v and C to minimize $|V(C)|$
- find a small degree vertex u in C
Where are we going with this?

- Pick \(v \) and \(C \) to minimize \(|V(C)| \)
- find a small degree vertex \(u \) in \(C \)
- find a component \(C' \) of \(G \) minus the neighbours of \(u \) inside \(C \)
Look for a Petersen minor
Look for a Petersen minor

Occurs when $|V(C)| \geq 2$ and $|N(C)| \geq 4$
What if $|V(C)| = 1$?
G has more than 9 vertices.
G is 3-connected
\(\delta(G) \geq 6\)
We can find a Petersen minor.
Each component has exactly 3 neighbours
There is a small degree vertex on either side of each 3-cut.
u has degree 7 by our assumption
Where is v?
Finding C'

C'

u

D v
E is connected.
E contains no neighbour of v.
E contains u.
Where is E?

E contains no neighbour of v.
E contains u.

E is connected.
Where is E?

E is connected.
E contains no neighbour of v.
E contains u.
Where is C'?
Where is C'?

C' is in C.
Every Petersen minor free graph is 9-colourable. This is best possible.
Further Questions

What if we increase connectivity?

- 3-connected Petersen minor free graphs can have $5n - 12$ edges.
- 5-connected Petersen Minor free graphs can have $5n - 15$ edges.
- 6-connected Petersen Minor free graphs can have $4n - 10$ edges (apex graphs).
- We know of no ≥ 10-vertex 7-connected Petersen minor free graph.