Subtraction games with expandable subtraction sets

Bao Ho

Department of Mathematics and Statistics
La Trobe University

Monash University
April 11, 2012
Outline

- The game of Nim
- Nim-values and Nim-sequences
- Subtraction games
- Periodicity of subtraction games
- Expansion of subtraction sets
The game of Nim

- a row of piles of coins,
- two players move alternately, choosing one pile and removing an arbitrary number of coins from that pile,
- the game ends when all piles become empty,
- the player who makes the last move wins.
Nim-addition

Nim-addition, denoted by \oplus, is the addition in the binary number system without carrying.

For example, $5 = 101_2$, $3 = 11_2$ and so $5 \oplus 3$ is 6 obtained as follows

\[
\begin{array}{c c c}
 & 1 & 1_2 \\
+ & 1 & 0 & 1_2 \\
\hline
 & 1 & 1 & 0_2
\end{array} = 6
\]
Winning strategy in Nim

You can win in Nim if you can force your opponent to move from a position of the form \((a_1, a_2, \ldots, a_k)\) such that

\[a_1 \oplus a_2 \oplus \ldots \oplus a_k = 0^1. \]

\(^1\)C.L. Bouton, Nim, a game with a complete mathematical theory, *Ann. of Math.* (2) \textbf{3} (1901/02), no. 1/4, 35–39.
Example

\[(2, 3, 6) \rightarrow (2, 3, 1) \rightarrow (3, 1) \rightarrow (1, 1) \rightarrow (1) \rightarrow \emptyset.\]

Homework: Find a winning move from position \((1, 2, 3, 4)\).

\[(1, 2, 3, 4) \rightarrow ?\]
One-pile Nim-like games: example 1

From a pile of coins, remove any number of coins strictly smaller than half the size of the pile.

Strategy: You can win if and only if you can leave the game in a pile of size 2^k.
One-pile Nim-like games: example 2

Given a pile of coins, remove at most m coins, for some given m.

Strategy: You can win if and only if you can leave the game in a pile of size n such that $\mod (n, m + 1) = 0$.

Bao Ho (La Trobe University)
Games as directed graphs

A game \equiv finite directed acyclic graph without multiple edges
in which

- vertices \equiv positions,
- downward edges \equiv moves,
- source \equiv initial position,
- sinks \equiv final positions.

We can assume that such a graph have exactly one sink.
mex value

Let S be a set of nonnegative integers.

The **minimum excluded value** of the set S is the least nonnegative integer which is not included in S and is denoted $mex(S)$.

$$mex(S) = \min\{k \in \mathbb{Z}, k \geq 0 | k \notin S\}.$$

We define $mex\{\} = 0$.

Example:

$$mex\{0, 1, 3, 4\} = 2.$$
The Sprague-Grundy function for a game is the function

\[G : \{ \text{positions of the game} \} \rightarrow \{ n \in \mathbb{Z}; n \geq 0 \} \]

defined inductively from the final position (sink of graph) by

\[G(p) = \text{mex}\{ G(q) \mid \text{if there is one move from } p \text{ to } q \}. \]

The value \(G(p) \) is also called **nim-value**.
Subtraction games

A subtraction game is a variant of Nim involving a finite set S of positive integers:

- the set S is called subtraction set,
- the two players alternately remove some s coins provided that $s \in S$.

The subtraction game with subtraction set $\{a_1, a_2, \ldots, a_k\}$ is denoted by $S(a_1, a_2, \ldots, a_k)$.
Nim-sequence

For each non-negative integer n, we denote by $G(n)$ the nim-value of the single pile of size n of a subtraction game.

The sequence

$$\{G(n)\}_{n\geq 0} = G(0), G(1), G(2), \ldots$$

is called nim-sequence.
Nim-sequences of some subtraction games

\[S(1, 2, 3) : 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 0, \ldots \]
\[S(2, 3, 5) : 0, 0, 1, 1, 2, 2, 3, 0, 0, 1, 1, 2, 2, 3, 0, 0, 1, 1, 2, 2, 3, 0, 0, 1, 1, \ldots \]
\[S(1, 5, 7) : 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, \ldots \]
\[S(3, 5, 9) : 0, 0, 0, 1, 1, 1, 2, 2, 0, 3, 3, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, \ldots \]
Periodicity of nim-sequences

A nim-sequence is said to be ultimately periodic if there exist N, p such that $G(n + p) = G(n)$ for all $n \geq N$. The smallest such number p is called the period.

If $N = 0$, then the nim-sequence is said to be periodic.

$S(2, 3, 5) : 0, 0, 1, 1, 2, 2, 3, 0, 0, 1, 1, 2, 2, 3, 0, 0, 1, 1, 2, 2, 3, 0, 0, 1, 1, \ldots$

$S(1, 5, 7) : 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, \ldots$

$S(3, 5, 9) : 0, 0, 0, 1, 1, 1, 2, 2, 0, 3, 3, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, \ldots$
Periodicity of subtraction games

A game is said to be (ultimately) periodic if its nim-sequence is (ultimately) periodic.

Theorem

a Every subtraction game is (ultimately) periodic.

Open problem in the periodicity of subtraction games\(^2\)

Problem

Given a subtraction set, describe the nim-sequence of the subtraction game.

The question is still open for subtraction games with three element subtraction sets.

Subtraction games agreeing nim-sequences: Examples

- $S(2, 3)$

 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, ...

- $S(2, 3, 7)$

 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, ...

- $S(2, 3, 7, 8)$

 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, ...

- $S(2, 3, 7, 8, 12)$

 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, ...
More examples

<table>
<thead>
<tr>
<th>Subtraction set (with optional extras)</th>
<th>nim-sequence</th>
<th>period</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (3,5,7,9,\ldots)</td>
<td>010101\ldots</td>
<td>2</td>
</tr>
<tr>
<td>2 (6,10,14,18, \ldots)</td>
<td>00110011\ldots</td>
<td>4</td>
</tr>
<tr>
<td>1,2 (4,5,7,8,10,11, \ldots)</td>
<td>012012</td>
<td>3</td>
</tr>
<tr>
<td>3 (9,15,21,27, \ldots)</td>
<td>000111000111\ldots</td>
<td>6</td>
</tr>
<tr>
<td>2,3 (7,8,12,13,17,18,\ldots)</td>
<td>0011200112\ldots</td>
<td>5</td>
</tr>
<tr>
<td>2,3 (7,8,12,13,17,18,\ldots)</td>
<td>0011200112\ldots</td>
<td>5</td>
</tr>
<tr>
<td>3,6,7 (4,5,13,14,15,16,17,23,24\ldots)</td>
<td>0001112223\ldots</td>
<td>10</td>
</tr>
</tbody>
</table>
Problem

Let \(S = \{a_1, a_2, \ldots, a_k\} \) be a subtraction set. Find all integers \(a \) so that \(a \) can be added into \(S \) without changing the nim-sequence.

Problem 3

Let $S = \{a_1, a_2, \ldots, a_k\}$ be a subtraction set. Find all integers a so that a can be added into S without changing the nim-sequence. If we can find a so that $G(n - a) \neq G(n)$ for every n then a can be added into the subtraction set without changing the nim-sequence.

Problem

Let $S = \{a_1, a_2, \ldots, a_k\}$ be a subtraction set. Find all integers a so that a can be added into S without changing the nim-sequence.

If we can find a so that $G(n - a) \neq G(n)$ for every n then a can be added into the subtraction set without changing the nim-sequence.

For a given subtraction set S, we denote by S^{ex} the set of all integers that can be added into S without changing the nim-sequence.

Periodic games

Let $S(s_1, s_2, \ldots, s_k)$ be a periodic subtraction game with period p. Then, for $1 \leq i \leq k$ and $m \geq 0$, $s_i + mp$ can be added into the subtraction set without changing the nim-sequence.

Let

$$S^p = \{ s_i + mp | 1 \leq i \leq k, m \geq 0 \}.$$

Then,

$$S = \{ s_1, s_2, \ldots, s_k \} \subseteq S^p \subseteq S^{ex}.$$
Periodic games

Let $S(s_1, s_2, \ldots, s_k)$ be a periodic subtraction game with period p. Then, for $1 \leq i \leq k$ and $m \geq 0$, $s_i + mp$ can be added into the subtraction set without changing the nim-sequence. Let

$$S^p = \{s_i + mp | 1 \leq i \leq k, m \geq 0\}.$$

Then,

$$S = \{s_1, s_2, \ldots, s_k\} \subseteq S^p \subseteq S^\text{ex}.$$

Definition

If

$$S^p = S^\text{ex}$$

then the subtraction set S is said to be non-expandable. Otherwise, S is expandable and S^ex is called the expansion of S.
The first simple case: $S = \{a\}$

The singleton subtraction set is non-expandable.
The second simple case: \(S = \{a, b\} \)

Let \(a < b \ (gcd(a, b) = 1, \ b \text{ is not an odd multiple of } a) \). Consider the subtraction set \(\{a, b\} \).

- If \(a + 1 < b \leq 2a \), then the subtraction set has expansion
 \[
 \{a, a + 1, \ldots, b\}^{(a+b)}.
 \]

- If either \(a = 1 \), or \(b = a + 1 \), or \(b > 2a \), then the subtraction set is non-expandable.
More examples: $S = \{1, a, b\}$

Example 1:
Let $a \geq 2$ be an even integer. The subtraction game $S(1, a, 2a + 1)$ is periodic and the subtraction set is non-expandable.

Example 2:
Let $a < b$ such that a is odd, b is even. The subtraction set $\{1, a, b\}$ is expandable with the expansion

$$\{\{1, 3, \ldots, a\} \cup \{b, b + 2, \ldots, b + a - 1\}\}^{(a+b)}.$$
Ultimately periodic games

Let $S(s_1, s_2, \ldots, s_k)$ be an ultimately periodic subtraction game with period p.

Note that the inclusion $S^p \subseteq S^\text{ex}$ does not necessarily hold.

Definition

If $S^\text{ex} = S$ then the subtraction set S is non-expandable. Otherwise, S^ex is called the expansion of S.
An example

Let $a \geq 4$ be an even integer. The subtraction game $S(1, a, 3a - 2)$ is ultimately periodic with period $3a - 1$.

- If $a = 4$ then the subtraction set is non-expandable,
- otherwise, the subtraction set has expansion

$$\{1, a, 3a - 2, 3a\} \cup \{4a - 1, 6a - 1\}^{3a-1}.$$
Ultimately bipartite subtraction games

A subtraction game is said to be **ultimately bipartite** if its nim-sequence is ultimately periodic with period 2 with, for sufficiently large n, alternating nim-values $0, 1, 0, 1, 0, 1, \ldots$.

Some ultimately bipartite subtraction games:

- $S(3, 5, 9, \ldots, 2^k + 1)$, for $k \geq 3$,
- $S(3, 5, 2^k + 1)$, for $k \geq 3$,
- $S(a, a + 2, 2a + 3)$, for odd $a \geq 3$,
- $S(a, 2a + 1, 3a)$, for odd $a \geq 5$.

Example: $S(3, 5, 9)$:

0, 0, 0, 1, 1, 1, 2, 2, 0, 3, 3, 1, 0, 2, 0, 1, 0, 1, 0, 1, \ldots
Ultimately bipartite subtraction games

A subtraction game is said to be **ultimately bipartite** if its nim-sequence is ultimately periodic with period 2 with, for sufficiently large \(n \), alternating nim-values 0, 1, 0, 1, 0, 1,

Some ultimately bipartite subtraction games:

- \(S(3, 5, 9, \ldots, 2^k + 1) \), for \(k \geq 3 \),
- \(S(3, 5, 2^k + 1) \), for \(k \geq 3 \),
- \(S(a, a + 2, 2a + 3) \), for odd \(a \geq 3 \),
- \(S(a, 2a + 1, 3a) \), for odd \(a \geq 5 \).
Ultimately bipartite subtraction games

A subtraction game is said to be **ultimately bipartite** if its nim-sequence is ultimately periodic with period 2 with, for sufficiently large n, alternating nim-values $0, 1, 0, 1, 0, 1, \ldots$.

Some ultimately bipartite subtraction games:

- $S(3, 5, 9, \ldots, 2^k + 1)$, for $k \geq 3$,
- $S(3, 5, 2^k + 1)$, for $k \geq 3$,
- $S(a, a + 2, 2a + 3)$, for odd $a \geq 3$,
- $S(a, 2a + 1, 3a)$, for odd $a \geq 5$.

Example:

$S(3, 5, 9): 0, 0, 0, 1, 1, 1, 2, 2, 0, 3, 3, 1, 0, 2, 0, 1, 0, 1, 0, 1, \ldots$
A conjecture

The subtraction set of an ultimately bipartite game is non-expandable.
For more details
