Alspach’s cycle decomposition problem for multigraphs

Daniel Horsley (Monash University)

Joint work with Darryn Bryant, Barbara Maenhaut and Ben Smith
(University of Queensland)
Part 1:

Alspach’s problem
Cycle decompositions of complete graphs
Cycle decompositions of complete graphs

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.
Cycle decompositions of complete graphs

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

\[K_7\]
Cycle decompositions of complete graphs

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

A \((7, 6, 4, 4)\)-decomposition of \(K_7\)
Cycle decompositions of complete graphs

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

A \((7, 6, 4, 4)\)-decomposition of \(K_7\)
cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

A $(7, 6, 4, 4)$-decomposition of K_7
Cycle decompositions of complete graphs

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

A \((7, 6, 4, 4)\)-decomposition of \(K_7\)
Cycle decompositions of complete graphs

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

A (7, 6, 4, 4)-decomposition of K_7
Cycle decompositions of complete graphs

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

A \((7, 6, 4, 4)\)-decomposition of \(K_7\)

My lists of cycle lengths will always be non-increasing.
If there exists an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(K_n\) then
(1) \(n\) is odd;
(2) \(n \geq m_1, m_2, \ldots, m_t \geq 3\); and
(3) \(m_1 + m_2 + \cdots + m_t = \binom{n}{2}\).
If there exists an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(K_n\) then

1. \(n\) is odd;

2. \(n \geq m_1, m_2, \ldots, m_t \geq 3\); and

3. \(m_1 + m_2 + \cdots + m_t = \binom{n}{2}\).

Alspach’s cycle decomposition problem (1981): Prove (1), (2) and (3) are also sufficient for an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(K_n\).
If there exists an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(K_n\) then

1. \(n\) is odd;
2. \(n \geq m_1, m_2, \ldots, m_t \geq 3\); and
3. \(m_1 + m_2 + \cdots + m_t = \binom{n}{2}\).

Alspach’s cycle decomposition problem (1981): Prove (1), (2) and (3) are also sufficient for an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(K_n\).

Alspach also posed the equivalent problem for \(K_{n-l}\) when \(n\) is even.
History (fixed cycle length)

When does there exist an (m, m, \ldots, m)-decomposition of K_n?

Kirkman (1846): solution for $m = 3$

Walecki (1890): solution for $m = n$

Kotzig (1965): solution for $n \equiv 1 \pmod{2}, m \equiv 0 \pmod{4}$

Rosa (1966): solution for $n \equiv 1 \pmod{2}, m \equiv 2 \pmod{4}$

Rosa (1966): solution for $m = 5$ and $m = 7$

Rosa, Huang (1975): solution for $m = 6$

Bermond, Huang, Sotteau (1978): reduction of the problem for even m

Hoffman, Lindner, Rodger (1989): reduction of the problem for odd m

Alspach, Gavlas, ˇSajna (2001–2002): solution for each m
History (fixed cycle length)

When does there exist an \((m, m, \ldots, m)\)-decomposition of \(K_n\)?
History (fixed cycle length)

When does there exist an \((m, m, \ldots, m)\)-decomposition of \(K_n\)?

Kirkman (1846): solution for \(m = 3\)

Walecki (1890): solution for \(m = n\)

Kotzig (1965): solution for \(n \equiv 1 \pmod{2m}, m \equiv 0 \pmod{4}\)

Rosa (1966): solution for \(n \equiv 1 \pmod{2m}, m \equiv 2 \pmod{4}\)

Rosa (1966): solution for \(m = 5\) and \(m = 7\)

Rosa, Huang (1975): solution for \(m = 6\)

Bermond, Huang, Sotteau (1978): reduction of the problem for even \(m\)

Hoffman, Lindner, Rodger (1989): reduction of the problem for odd \(m\)

Alspach, Gavlas, Šajna (2001–2002): solution for each \(m\)
History (varied cycle lengths)

When does there exist an \((m_1, \ldots, m_t)\)-decomposition of \(K_n\)?

(1969+): results on Oberwolfach problem etc.

Heinrich, Horák, Rosa (1989): solution for \(\{m_1, \ldots, m_t\} \subseteq \{2^k, 2^k+1\}, \{3, 4, 6\}\), \(\{n-2, n-1, n\}\)

Adams, Bryant, Khodkar (1998): solution for \(m_1 \leq 10\) and \(|\{m_1, \ldots, m_t\}| \leq 2\)

Balister (2001): solution for \(\{m_1, \ldots, m_t\} \subseteq \{3, 4, 5\}\)

Balister (2001): solution for \(n\) large and \(m_1 \leq \lfloor \frac{n-11}{20} \rfloor\)

Bryant, Maenhaut (2004): solution for \(\{m_1, \ldots, m_t\} \subseteq \{3, n\}\)

Bryant, Horsley (2009): solution for \(m_t \geq n+5\)

Bryant, Horsley (2010): solution for \(m_1 \leq n-1\) and \(m_1 \leq 2m_2\)

Bryant, Horsley (2010): solution for large \(n\)

Remember \(m_1 \geq m_2 \geq \cdots \geq m_t\).
History (varied cycle lengths)

When does there exist an \((m_1, \ldots, m_t)\)-decomposition of \(K_n\)?

Remember \(m_1 \geq m_2 \geq \cdots \geq m_t\).
History (varied cycle lengths)

When does there exist an \((m_1, \ldots, m_t)\)-decomposition of \(K_n\)?

(1969+): results on Oberwolfach problem etc.

Heinrich, Horák, Rosa (1989): solution for \(\{m_1, \ldots, m_t\} \subseteq \{2^k, 2^{k+1}\}, \{3, 4, 6\}, \{n-2, n-1, n\}\)

Adams, Bryant, Khodkar (1998): solution for \(m_1 \leq 10\) and \(|\{m_1, \ldots, m_t\}| \leq 2\)

Balister (2001): solution for \(\{m_1, \ldots, m_t\} \subseteq \{3, 4, 5\}\)

Balister (2001): solution for \(n\) large and \(m_1 \leq \lfloor \frac{n-112}{20} \rfloor\)

Bryant, Maenhaut (2004): solution for \(\{m_1, \ldots, m_t\} \subseteq \{3, n\}\)

Bryant, Horsley (2009): solution for \(m_t \geq \frac{n+5}{2}\)

Bryant, Horsley (2010): solution for \(m_1 \leq \frac{n-1}{2}\) and \(m_1 \leq 2m_2\)

Bryant, Horsley (2010): solution for large \(n\)

Remember \(m_1 \geq m_2 \geq \cdots \geq m_t\).
The solution to Alspach’s problem

Theorem. There is an (m_1, m_2, \ldots, m_t)-decomposition of K_n if and only if

1. n is odd;
2. $n \geq m_1, m_2, \ldots, m_t \geq 3$; and
3. $m_1 + m_2 + \cdots + m_t = \binom{n}{2}$.

The analogous result for $K_n - I$ when n is even also holds.

– Bryant, Horsley, Pettersson (2014)
The solution to Alspach’s problem

Theorem. There is an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(K_n\) if and only if

1. \(n\) is odd;
2. \(n \geq m_1, m_2, \ldots, m_t \geq 3\); and
3. \(m_1 + m_2 + \cdots + m_t = \binom{n}{2}\).

The analogous result for \(K_n - I\) when \(n\) is even also holds.

– Bryant, Horsley, Pettersson (2014)
Part 2:

Generalisation to multigraphs
Cycle decompositions of complete multigraphs
Cycle decompositions of complete multigraphs

$2K_8$
A $(8^3, 3^{10}, 2)$-decomposition of $2K_8$
Cycle decompositions of complete multigraphs

$A (8^3, 3^{10}, 2)$-decomposition of $2K_8$
Cycle decompositions of complete multigraphs

A \((8^3, 3^{10}, 2)\)-decomposition of \(2K_8\)
Cycle decompositions of complete multigraphs

A \((8^3, 3^{10}, 2)\)-decomposition of \(2K_8\)
When does there exist an \((m, m, \ldots, m)\)-decomposition of \(\lambda K_n\)?

Hanani (1961): solution for \(m = 3\).
Huang, Rosa (1973): solution for \(m = 4\).
Huang, Rosa (1975): solution for \(m = 5\) and \(m = 6\).
Bermond, Sotteau (1977): solution for \(m = 7\).
Bermond, Huang, Sotteau (1978): solution for \(m \in \{8, 10, 12, 14\}\).
Smith (2010): solution for \(m = \lambda\).
Bryant, Horsley, Maenhaut, Smith (2011): solution for each \(m\).

Very little work on the case of varied cycle lengths.
History (complete multigraphs)

When does there exist an \((m, m, \ldots, m)\)-decomposition of \(\lambda K_n\)?

Hanani (1961): solution for \(m = 3\)

Huang, Rosa (1973): solution for \(m = 4\)

Huang, Rosa (1975): solution for \(m = 5\) and \(m = 6\)

Bermond, Sotteau (1977): solution for \(m = 7\).

Bermond, Huang, Sotteau (1978): solution for \(m \in \{8, 10, 12, 14\}\)

Smith (2010): solution for \(m = \lambda\)

Bryant, Horsley, Maenhaut, Smith (2011): solution for each \(m\)

Very little work on the case of varied cycle lengths.
History (complete multigraphs)

When does there exist an \((m, m, \ldots, m)\)-decomposition of \(\lambda K_n\)?

Hanani (1961): solution for \(m = 3\)

Huang, Rosa (1973): solution for \(m = 4\)

Huang, Rosa (1975): solution for \(m = 5\) and \(m = 6\)

Bermond, Sotteau (1977): solution for \(m = 7\).

Bermond, Huang, Sotteau (1978): solution for \(m \in \{8, 10, 12, 14\}\)

Smith (2010): solution for \(m = \lambda\)

Bryant, Horsley, Maenhaut, Smith (2011): solution for each \(m\)
History (complete multigraphs)

When does there exist an \((m, m, \ldots, m)\)-decomposition of \(\lambda K_n\)?

Hanani (1961): solution for \(m = 3\)

Huang, Rosa (1973): solution for \(m = 4\)

Huang, Rosa (1975): solution for \(m = 5\) and \(m = 6\)

Bermond, Sotteau (1977): solution for \(m = 7\).

Bermond, Huang, Sotteau (1978): solution for \(m \in \{8, 10, 12, 14\}\)

Smith (2010): solution for \(m = \lambda\)

Bryant, Horsley, Maenhaut, Smith (2011): solution for each \(m\)

Very little work on the case of varied cycle lengths.
The solution to Alspach’s problem for multigraphs

Theorem. There is an

\((m_1, m_2, \ldots, m_t)\)-decomposition of \(\lambda K_n\) if and only if

1. \(\lambda(n-1)\) is even;
2. \(n \geq m_1, m_2, \ldots, m_t \geq 2;\)
3. \(m_1 + m_2 + \cdots + m_t = \lambda \left(\binom{n}{2}\right)\);
4. \(|\{i : m_i = 2\}| \leq \lambda - 1\) if \(\lambda\) is odd; and
5. \(m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)\) if \(\lambda\) is even.

The analogous result for \(\lambda K_n - I\) when \(\lambda(n-1)\) is odd also holds.

– Bryant, Horsley, Maenhaut, Smith (2015+)

Remember \(m_1 \geq m_2, \ldots, m_t\).
The solution to Alspach’s problem for multigraphs

Theorem. There is an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(\lambda K_n\) if and only if

1. \(\lambda(n - 1)\) is even;
2. \(n \geq m_1, m_2, \ldots, m_t \geq 2\);
3. \(m_1 + m_2 + \cdots + m_t = \lambda(n)\);
4. \(|\{i : m_i = 2\}| \leq \frac{\lambda - 1}{2} \binom{n}{2}\) if \(\lambda\) is odd; and
5. \(m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)\) if \(\lambda\) is even.

The analogous result for \(\lambda K_n - I\) when \(\lambda(n - 1)\) is odd also holds.

– Bryant, Horsley, Maenhaut, Smith (2015+)

Remember \(m_1 \geq m_2, \ldots, m_t\).
Why is $|\{i : m_i = 2\}| \leq \frac{\lambda - 1}{2} \binom{n}{2}$ necessary when λ is odd?
Why is $|\{i : m_i = 2\}| \leq \frac{\lambda - 1}{2}\binom{n}{2}$ necessary when λ is odd?

There is no $(5, 3, 2^{11})$-decomposition of $3K_5$
Why is $|\{i : m_i = 2\}| \leq \frac{\lambda - 1}{2} \binom{n}{2}$ necessary when λ is odd?

There is no $(5, 3, 2^{11})$-decomposition of $3K_5$.
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?

There is no $(6, 4, 2^{23})$-decomposition of $2K_8$
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?

There is no $(6, 4, 2^{23})$-decomposition of $2K_8$.
Why is \(m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2) \) necessary when \(\lambda \) is even?

There is no \((6, 4, 2^{23})\)-decomposition of \(2K_8\).

For this to exist there would have to be a graph \(G \) with 5 edges such that \(2G \) has a \((6, 4)\)-decomposition.
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?
Why is \(m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2) \) necessary when \(\lambda \) is even?

In general, the cycles of length greater than 2 must decompose \(2G \) for some (multi)graph \(G \).
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$.
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$.
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$.

An $(18, 8, 6, 5, 4, 3)$-decomposition of $2G$
Why is $m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)$.

An $(18, 8, 6, 5, 4, 3)$-decomposition of $2G$
Why is \(m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2) \) necessary when \(\lambda \) is even?

In general, the cycles of length greater than 2 must decompose \(2G \) for some (multi)graph \(G \).

Lemma. If there is a \((m_1, \ldots, m_t)\)-decomposition of \(2G \) for some (multi)graph \(G \), then \(m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2) \).

An \((18, 8, 6, 5, 4, 3)\)-decomposition of \(2G \)
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$.

An $(18, 8, 6, 5, 4, 3)$-decomposition of $2G$
Why is $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t} (m_i - 2)$.

An $(18, 8, 6, 5, 4, 3)$-decomposition of $2G$
Why is $m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)$.

An $(18, 8, 6, 5, 4, 3)$-decomposition of $2G$
Why is $m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)$ necessary when λ is even?

In general, the cycles of length greater than 2 must decompose $2G$ for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t)-decomposition of $2G$ for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)$.

An $(18, 8, 6, 5, 4, 3)$-decomposition of $2G$
Proof of sufficiency

Reduction lemma.
If there is a decomposition of λK^n for each (λ, n)-ancestor list, then our main theorem holds for λK^n.

(λ, n)-ancestor lists are of the form $(n^\alpha, k^\beta, 3^\gamma)$.

λ-induction lemma.
If our main theorem holds for K^n and $2K^n$, then there is a decomposition of λK^n for each (λ, n)-ancestor list.

Many n's lemma.
There is a decomposition of $2K^n$ for each (λ, n)-ancestor list containing at least $n - 3/2$ occurrences of n.

Few n's lemma.
If our main theorem holds for $2K^n - 1$, then there is a decomposition of $2K^n$ for each (λ, n)-ancestor list containing less than $n - 3/2$ occurrences of n.
Proof of sufficiency

Reduction lemma. If there is a decomposition of λK_n for each (λ, n)-ancestor list, then our main theorem holds for λK_n.
Proof of sufficiency

Reduction lemma. If there is a decomposition of λK_n for each (λ, n)-ancestor list, then our main theorem holds for λK_n.

(λ, n)-ancestor lists are of the form $(n^\alpha, k, 3^\beta, 2^\gamma)$.
Proof of sufficiency

Reduction lemma. If there is a decomposition of λK_n for each (λ, n)-ancestor list, then our main theorem holds for λK_n.

(λ, n)-ancestor lists are of the form $(n^\alpha, k, 3^\beta, 2^\gamma)$.

λ-induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n)-ancestor list.
Proof of sufficiency

Reduction lemma. If there is a decomposition of λK_n for each (λ, n)-ancestor list, then our main theorem holds for λK_n.

(λ, n)-ancestor lists are of the form $(n^\alpha, k, 3^\beta, 2^\gamma)$.

λ-induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n)-ancestor list.

Many n’s lemma. There is a decomposition of $2K_n$ for each (λ, n)-ancestor list containing at least $\frac{n-3}{2}$ occurrences of n.
Proof of sufficiency

Reduction lemma. If there is a decomposition of λK_n for each (λ, n)-ancestor list, then our main theorem holds for λK_n.

(λ, n)-ancestor lists are of the form $(n^\alpha, k, 3^\beta, 2^\gamma)$.

λ-induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n)-ancestor list.

Many n’s lemma. There is a decomposition of $2K_n$ for each (λ, n)-ancestor list containing at least $\frac{n-3}{2}$ occurrences of n.

Few n’s lemma. If our main theorem holds for $2K_{n-1}$, then there is a decomposition of $2K_n$ for each (λ, n)-ancestor list containing less than $\frac{n-3}{2}$ occurrences of n.
Proof of sufficiency

Reduction lemma. If there is a decomposition of λK_n for each (λ, n)-ancestor list, then our main theorem holds for λK_n.

(λ, n)-ancestor lists are of the form $(n^\alpha, k, 3^\beta, 2^\gamma)$.

λ-induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n)-ancestor list.

Many n’s lemma. There is a decomposition of $2K_n$ for each (λ, n)-ancestor list containing at least $\frac{n-3}{2}$ occurrences of n.

Few n’s lemma. If our main theorem holds for $2K_{n-1}$, then there is a decomposition of $2K_n$ for each (λ, n)-ancestor list containing less than $\frac{n-3}{2}$ occurrences of n.
The solution to Alspach’s problem for multigraphs

Theorem. There is an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(\lambda K_n\) if and only if

1. \(\lambda(n - 1)\) is even;
2. \(n \geq m_1, m_2, \ldots, m_t \geq 2\);
3. \(m_1 + m_2 + \cdots + m_t = \lambda\left(\begin{array}{c}n \\end{array}\right)\);
4. \(|\{i : m_i = 2\}| \leq \frac{\lambda - 1}{2} \left(\begin{array}{c}n \\end{array}\right)\) if \(\lambda\) is odd; and
5. \(m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)\) if \(\lambda\) is even.

The analogous result for \(\lambda K_n - I\) when \(\lambda(n - 1)\) is odd also holds.

– Bryant, Horsley, Maenhaut, Smith (2015+)
The solution to Alspach’s problem for multigraphs

Theorem. There is an \((m_1, m_2, \ldots, m_t)\)-decomposition of \(\lambda K_n\) if and only if

1. \(\lambda(n - 1)\) is even;
2. \(n \geq m_1, m_2, \ldots, m_t \geq 2\);
3. \(m_1 + m_2 + \cdots + m_t = \lambda \binom{n}{2}\);
4. \(|\{i : m_i = 2\}| \leq \frac{\lambda - 1}{2} \binom{n}{2}\) if \(\lambda\) is odd; and
5. \(m_1 \leq 2 + \sum_{i=2}^{t}(m_i - 2)\) if \(\lambda\) is even.

The analogous result for \(\lambda K_n - I\) when \(\lambda(n - 1)\) is odd also holds.

– Bryant, Horsley, Maenhaut, Smith (2015+)

Remember \(m_1 \geq m_2, \ldots, m_t\).
That’s all.