Extending (part of) the Bruck-Ryser-Chowla Theorem to Coverings

Daniel Horsley (Monash University, Australia)

Joint work with Darryn Bryant, Melinda Buchanan, Barbara Maenhaut, and Victor Scharaschkin (University of Queensland)

Extending (part of) the Bruck-Ryser-Chowla Theorem to Coverings

Daniel Horsley (Monash University, Australia)

Joint work with Darryn Bryant, Melinda Buchanan, Barbara Maenhaut, and Victor Scharaschkin (University of Queensland)

I acknowledge the four institutions at which I have been employed during the refereeing process.

Balanced Incomplete Block Designs

Balanced Incomplete Block Designs

A (v, k, λ) -BIBD with v = 7, k = 4, $\lambda = 2$, having b = 7 blocks.

Obvious Necessary Conditions If there exists an (v, k, λ) -BIBD then

- (1) $\lambda(v-1) \equiv 0 \pmod{k-1}$;
- (2) $\lambda v(v-1) \equiv 0 \pmod{k(k-1)}$.

Obvious Necessary Conditions If there exists an (v, k, λ) -BIBD then

- (1) $\lambda(v-1) \equiv 0 \pmod{k-1}$;
- (2) $\lambda v(v-1) \equiv 0 \pmod{k(k-1)}$.

Fischer's Inequality (1940) Any (v, k, λ) -BIBD has at least v blocks.

Obvious Necessary Conditions If there exists an (v, k, λ) -BIBD then

- (1) $\lambda(v-1) \equiv 0 \pmod{k-1}$;
- (2) $\lambda v(v-1) \equiv 0 \pmod{k(k-1)}$.

Fischer's Inequality (1940) Any (v, k, λ) -BIBD has at least v blocks.

Bruck-Ryser-Chowla Theorem (1950) If a (v, k, λ) -BIBD with exactly v blocks exists then

- if v is even, then $k \lambda$ is a perfect square; and
- ▶ if v is odd, then $z^2 = (k \lambda)x^2 + (-1)^{(v-1)/2}\lambda y^2 = 0$ has a solution for integers x, y, z, not all zero.

Obvious Necessary Conditions If there exists an (v, k, λ) -BIBD then

- (1) $\lambda(v-1) \equiv 0 \pmod{k-1}$;
- (2) $\lambda v(v-1) \equiv 0 \pmod{k(k-1)}$.

Fischer's Inequality (1940) Any (v, k, λ) -BIBD has at least v blocks.

Bruck-Ryser-Chowla Theorem (1950) If a (v, k, λ) -BIBD with exactly v blocks exists then

- if v is even, then $k \lambda$ is a perfect square; and
- ▶ if v is odd, then $z^2 = (k \lambda)x^2 + (-1)^{(v-1)/2}\lambda y^2 = 0$ has a solution for integers x, y, z, not all zero.

There are very few examples of (v, k, λ) -BIBDs which are known not to exist, but which are not ruled out by the above results.

A (12,4,2)-covering with a C_{12} excess.

Any (12,4,2)-covering with 24 blocks will have a 2-regular excess.

Let $C_{\lambda}(v,k)$ be the minimum number of blocks required for a (v,k,λ) -covering.

Let $C_{\lambda}(v,k)$ be the minimum number of blocks required for a (v,k,λ) -covering.

Schönheim Bound
$$C_{\lambda}(v,k) \geq L_{\lambda}(v,k)$$
 where $L_{\lambda}(v,k) = \left\lceil \frac{v}{k} \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil \right\rceil$.

Let $C_{\lambda}(v,k)$ be the minimum number of blocks required for a (v,k,λ) -covering.

Schönheim Bound
$$C_{\lambda}(v,k) \geq L_{\lambda}(v,k)$$
 where $L_{\lambda}(v,k) = \left\lceil \frac{v}{k} \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil \right\rceil$.

Hanani
$$C_{\lambda}(v,k) \ge L_{\lambda}(v,k) + 1$$
 when $\lambda(v-1) \equiv 0 \pmod{k-1}$ and $\lambda v(v-1) \equiv 1 \pmod{k}$.

Let $C_{\lambda}(v,k)$ be the minimum number of blocks required for a (v,k,λ) -covering.

Schönheim Bound
$$C_{\lambda}(v,k) \geq L_{\lambda}(v,k)$$
 where $L_{\lambda}(v,k) = \left\lceil \frac{v}{k} \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil \right\rceil$.

Hanani
$$C_{\lambda}(v,k) \ge L_{\lambda}(v,k) + 1$$
 when $\lambda(v-1) \equiv 0 \pmod{k-1}$ and $\lambda v(v-1) \equiv 1 \pmod{k}$.

There are few general results which increase this lower bound (most are for specific (v, k, λ) and involve computer search).

Fischer's Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.

- Fischer's Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.
- ▶ Bose and Connor (1952) used similar methods to establish the non-existence of certain coverings whose excess would necessarily be 1-regular.

- Fischer's Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.
- ▶ Bose and Connor (1952) used similar methods to establish the non-existence of certain coverings whose excess would necessarily be 1-regular.
- Our results focus on non-existence of certain coverings whose excess would necessarily be 2-regular.

- Fischer's Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.
- ▶ Bose and Connor (1952) used similar methods to establish the non-existence of certain coverings whose excess would necessarily be 1-regular.
- Our results focus on non-existence of certain coverings whose excess would necessarily be 2-regular.
- ▶ Todorov (1989) established the non-existence of certain coverings with b < v and $\lambda = 1$.

Our results

Fischer-type result Any (v, k, λ) -covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \ge 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}.$

Our results

Fischer-type result Any (v, k, λ) -covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \ge 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}.$

BRC-type result If a (v, k, λ) -covering with v blocks with a 2-regular excess exists for v even, then one of $k - \lambda - 2$ or $k - \lambda + 2$ is a perfect square, unless $(v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)$ for even $\lambda \ge 1$.

Our results

Fischer-type result Any (v, k, λ) -covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \geq 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}.$

BRC-type result If a (v, k, λ) -covering with v blocks with a 2-regular excess exists for v even, then one of $k - \lambda - 2$ or $k - \lambda + 2$ is a perfect square, unless $(v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)$ for even $\lambda \geq 1$.

Theorem $C_{\lambda}(v,k) \geq L_{\lambda}(v,k) + 1$ when

- ▶ $\lambda(v-1) + 2 \equiv 0 \pmod{k-1}$;
- $\lambda v(v-1) + 2v \equiv 0 \pmod{k(k-1)};$
- $V \leq \frac{k^2-k-2}{\lambda}+1$; and
- if $v = \frac{k^2 k 2}{\lambda} + 1$ then v is even and neither $k \lambda 2$ nor $k \lambda + 2$ is a perfect square;

unless (v, k, λ) is in the exceptions listed above.

The incidence matrix M of a (v, k, λ) -covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

We will be interested in the matrix MM^T .

Incidence matrices

The incidence matrix M of a (v, k, λ) -covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

We will be interested in the matrix MM^T .

Incidence matrices

The incidence matrix M of a (v, k, λ) -covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

We will be interested in the matrix MM^T .

Incidence matrices

The incidence matrix M of a (v, k, λ) -covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

We will be interested in the matrix MM^T .

What does MM^T look like?

If M is the incidence matrix of a $(10, k, \lambda)$ -covering with excess C_{10} , then MM^T is the 10×10 matrix

What does MM^T look like?

If M is the incidence matrix of a $(10, k, \lambda)$ -covering with excess $C_6 \cup C_4$, MM^T is the 10×10 matrix

What does MM^T look like?

If M is the incidence matrix of a $(10, k, \lambda)$ -covering with excess $C_5 \cup C_3 \cup C_2$, MM^T is the 10×10 matrix

Lemma If M is the incidence matrix of a (v, k, λ) -covering with a 2-regular excess then

$$\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Lemma If M is the incidence matrix of a (v, k, λ) -covering with a 2-regular excess then

$$\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v, k, λ) -covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \ge 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}.$

Lemma If M is the incidence matrix of a (v, k, λ) -covering with a 2-regular excess then

$$\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v,k,λ) -covering with a 2-regular excess has at least v blocks, unless $(v,k,\lambda)=(3\lambda+6,3\lambda+3,\lambda)$ for $\lambda\geq 1$ or $(v,k,\lambda)\in\{(8,4,1),(14,6,1),(14,8,2)\}.$

Proof sketch If $r - \lambda > 2$ then $det(MM^T) \neq 0$ and it follows that rank(M) = v.

Lemma If M is the incidence matrix of a (v, k, λ) -covering with a 2-regular excess then

$$\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v, k, λ) -covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \ge 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}.$

Proof sketch If $r - \lambda > 2$ then $det(MM^T) \neq 0$ and it follows that rank(M) = v.

BRC-type result If a (v, k, λ) -covering with v blocks with a 2-regular excess exists for v even, then one of $k - \lambda - 2$ or $k - \lambda + 2$ is a perfect square, unless $(v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)$ for even $\lambda \geq 1$.

Lemma If M is the incidence matrix of a (v, k, λ) -covering with a 2-regular excess then

$$\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v, k, λ) -covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \ge 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}.$

Proof sketch If $r - \lambda > 2$ then $det(MM^T) \neq 0$ and it follows that rank(M) = v.

BRC-type result If a (v, k, λ) -covering with v blocks with a 2-regular excess exists for v even, then one of $k - \lambda - 2$ or $k - \lambda + 2$ is a perfect square, unless $(v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)$ for even $\lambda \geq 1$.

Proof sketch Note $\det(MM^T) = (\det(M))^2$ and r = k, so if $r - \lambda > 2$ and $k - \lambda - 2$ and $k - \lambda + 2$ are not perfect squares then t is odd and e is even.

Notes and future plans

Notes

- ▶ We also considered the case of $K_{1,k} \cup K_2 \cup \cdots \cup K_2$ excesses.
- Very similar results can be obtained for packings.
- ▶ Our results establish the non-existence of certain $(K_k e)$ -decompositions of λK_v .

Future plans

- Considering other kinds of excesses.
- ▶ Adapting the "hard" half of the Bruck-Ryser-Chowla Theorem.