Extending (part of) the Bruck-Ryser-Chowla Theorem to Coverings

Daniel Horsley (Monash University, Australia)

Joint work with Darryn Bryant, Melinda Buchanan, Barbara Maenhaut, and Victor Scharaschkin (University of Queensland)
Extending (part of) the Bruck-Ryser-Chowla Theorem to Coverings

Daniel Horsley (Monash University, Australia)

Joint work with Darryn Bryant, Melinda Buchanan, Barbara Maenhaut, and Victor Scharaschkin (University of Queensland)

I acknowledge the four institutions at which I have been employed during the refereeing process.
Balanced Incomplete Block Designs

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

An (v, k, λ)-BIBD with $v = 7$, $k = 4$, $\lambda = 2$, having $b = 7$ blocks.
A (v, k, λ)-BIBD with $v = 7$, $k = 4$, $\lambda = 2$, having $b = 7$ blocks.
When do BIBDs exist?

Obvious Necessary Conditions

If there exists an \((v, k, \lambda)\)-BIBD then

\[(1) \lambda (v - 1) \equiv 0 \pmod{k - 1};\]
\[(2) \lambda v (v - 1) \equiv 0 \pmod{k (k - 1)}\].

Fischer's Inequality (1940)

Any \((v, k, \lambda)\)-BIBD has at least \(v\) blocks.

Bruck-Ryser-Chowla Theorem (1950)

If a \((v, k, \lambda)\)-BIBD with exactly \(v\) blocks exists then

\[\text{if } v \text{ is even, then } k - \lambda \text{ is a perfect square; and}\]
\[\text{if } v \text{ is odd, then } z^2 = (k - \lambda) x^2 + (-1)^{(v - 1)/2} \lambda y^2 = 0 \text{ has a solution for integers } x, y, z, \text{ not all zero.}\]

There are very few examples of \((v, k, \lambda)\)-BIBDs which are known not to exist, but which are not ruled out by the above results.
When do BIBDs exist?

Obvious Necessary Conditions If there exists an \((v, k, \lambda)\)-BIBD then

1. \(\lambda(v - 1) \equiv 0 \pmod{k - 1}\);
2. \(\lambda v(v - 1) \equiv 0 \pmod{k(k - 1)}\).
When do BIBDs exist?

Obvious Necessary Conditions If there exists an \((\nu, k, \lambda)\)-BIBD then

1. \(\lambda(\nu - 1) \equiv 0 \pmod{k - 1}\);
2. \(\lambda \nu(\nu - 1) \equiv 0 \pmod{k(k - 1)}\).

Fischer’s Inequality (1940) Any \((\nu, k, \lambda)\)-BIBD has at least \(\nu\) blocks.

There are very few examples of \((\nu, k, \lambda)\)-BIBDs which are known not to exist, but which are not ruled out by the above results.
When do BIBDs exist?

Obvious Necessary Conditions If there exists an \((v, k, \lambda)\)-BIBD then

1. \(\lambda(v - 1) \equiv 0 \pmod{k - 1}\);
2. \(\lambda v(v - 1) \equiv 0 \pmod{k(k - 1)}\).

Fischer’s Inequality (1940) Any \((v, k, \lambda)\)-BIBD has at least \(v\) blocks.

Bruck-Ryser-Chowla Theorem (1950) If a \((v, k, \lambda)\)-BIBD with exactly \(v\) blocks exists then

- if \(v\) is even, then \(k - \lambda\) is a perfect square; and
- if \(v\) is odd, then \(z^2 = (k - \lambda)x^2 + (-1)^{(v-1)/2}\lambda y^2 = 0\) has a solution for integers \(x, y, z\), not all zero.

There are very few examples of \((v, k, \lambda)\)-BIBDs which are known not to exist, but which are not ruled out by the above results.
When do BIBDs exist?

Obvious Necessary Conditions If there exists an \((v, k, \lambda)\)-BIBD then

\[\lambda(v - 1) \equiv 0 \pmod{k - 1}; \]
\[\lambda v(v - 1) \equiv 0 \pmod{k(k - 1)}. \]

Fischer’s Inequality (1940) Any \((v, k, \lambda)\)-BIBD has at least \(v\) blocks.

Bruck-Ryser-Chowla Theorem (1950) If a \((v, k, \lambda)\)-BIBD with exactly \(v\) blocks exists then

- if \(v\) is even, then \(k - \lambda\) is a perfect square; and
- if \(v\) is odd, then \(z^2 = (k - \lambda)x^2 + (-1)^{(v-1)/2}\lambda y^2 = 0\) has a solution for integers \(x, y, z\), not all zero.

There are very few examples of \((v, k, \lambda)\)-BIBDs which are known not to exist, but which are not ruled out by the above results.
Pair covering designs

$v = 12$, $k = 4$, $\lambda = 2$.
Pair covering designs

\[v = 12, \quad k = 4, \quad \lambda = 2. \]
Pair covering designs

A (12, 4, 2)-covering.
A $(12, 4, 2)$-covering with a C_{12} excess.
Pair covering designs

Any \((12, 4, 2)\)-covering with 24 blocks will have a 2-regular excess.
Pair covering designs

A C_{12} excess.
Pair covering designs

A $C_7 \cup C_5$ excess.
Pair covering designs

A $C_4 \cup C_4 \cup C_2 \cup C_2$ excess.
Bounds on coverings

Let $C_\lambda(v, k)$ be the minimum number of blocks required for a (v, k, λ)-covering. Schönhheim Bound

$$C_\lambda(v, k) \geq L_\lambda(v, k)$$

where

$$L_\lambda(v, k) = \left\lceil \frac{v}{k} \left\lceil \frac{\lambda(v - 1)}{k - 1} \right\rceil \right\rceil.$$

Hanani

$$C_\lambda(v, k) \geq L_\lambda(v, k) + 1 \text{ when } \lambda(v - 1) \equiv 0 \pmod{k - 1} \text{ and } \lambda v(v - 1) \equiv 1 \pmod{k}.$$

There are few general results which increase this lower bound (most are for specific (v, k, λ) and involve computer search).
Bounds on coverings

Let $C_\lambda(v, k)$ be the minimum number of blocks required for a (v, k, λ)-covering.
Bounds on coverings

Let $C_\lambda(v, k)$ be the minimum number of blocks required for a (v, k, λ)-covering.

Schönheim Bound
$C_\lambda(v, k) \geq L_\lambda(v, k)$ where $L_\lambda(v, k) = \left\lceil \frac{v}{k} \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil \right\rceil$.
Bounds on coverings

Let $C_\lambda(v, k)$ be the minimum number of blocks required for a (v, k, λ)-covering.

Schönheim Bound \[C_\lambda(v, k) \geq L_\lambda(v, k) \] where \[L_\lambda(v, k) = \left\lceil \frac{v}{k} \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil \right\rceil \].

Hanani \[C_\lambda(v, k) \geq L_\lambda(v, k) + 1 \] when \(\lambda(v - 1) \equiv 0 \pmod{k - 1} \) and \(\lambda v(v - 1) \equiv 1 \pmod{k} \).
Bounds on coverings

Let $C_\lambda(v, k)$ be the minimum number of blocks required for a (v, k, λ)-covering.

Schönheim Bound $C_\lambda(v, k) \geq L_\lambda(v, k)$ where $L_\lambda(v, k) = \left\lceil \frac{v}{k} \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil \right\rceil$.

Hanani $C_\lambda(v, k) \geq L_\lambda(v, k) + 1$ when $\lambda(v - 1) \equiv 0 \pmod{k - 1}$ and $\lambda v(v - 1) \equiv 1 \pmod{k}$.

There are few general results which increase this lower bound (most are for specific (v, k, λ) and involve computer search).
General improvements to the Schönhheim Bound

Fischer's Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.

Bose and Connor (1952) used similar methods to establish the non-existence of certain coverings whose excess would necessarily be 1-regular.

Our results focus on non-existence of certain coverings whose excess would necessarily be 2-regular.

Todorov (1989) established the non-existence of certain coverings with $b < v$ and $\lambda = 1$.
Fischer’s Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.
Fischer’s Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.

Bose and Connor (1952) used similar methods to establish the non-existence of certain coverings whose excess would necessarily be 1-regular.
General improvements to the Schönhheim Bound

- Fischer’s Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.
- Bose and Connor (1952) used similar methods to establish the non-existence of certain coverings whose excess would necessarily be 1-regular.
- Our results focus on non-existence of certain coverings whose excess would necessarily be 2-regular.
Fischer’s Inequality and the Bruck-Ryser-Chowla Theorem establish the non-existence of certain coverings whose excess would necessarily be empty.

Bose and Connor (1952) used similar methods to establish the non-existence of certain coverings whose excess would necessarily be 1-regular.

Our results focus on non-existence of certain coverings whose excess would necessarily be 2-regular.

Todorov (1989) established the non-existence of certain coverings with $b < v$ and $\lambda = 1$.
Our results

Fischer-type result Any \((v, k, \lambda)\)-covering with a 2-regular excess has at least \(v\) blocks, unless \((v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)\) for \(\lambda \geq 1\) or \((v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}\).
Our results

Fischer-type result Any \((v, k, \lambda)\)-covering with a 2-regular excess has at least \(v\) blocks, unless \((v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)\) for \(\lambda \geq 1\) or \((v, k, \lambda) = (8, 4, 1), (14, 6, 1), (14, 8, 2)\).

BRC-type result If a \((v, k, \lambda)\)-covering with \(v\) blocks with a 2-regular excess exists for \(v\) even, then one of \(k - \lambda - 2\) or \(k - \lambda + 2\) is a perfect square, unless \((v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)\) for even \(\lambda \geq 1\).
Our results

Fischer-type result Any \((v, k, \lambda)\)-covering with a 2-regular excess has at least \(v\) blocks, unless \((v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)\) for \(\lambda \geq 1\) or \((v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}\).

BRC-type result If a \((v, k, \lambda)\)-covering with \(v\) blocks with a 2-regular excess exists for \(v\) even, then one of \(k - \lambda - 2\) or \(k - \lambda + 2\) is a perfect square, unless \((v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)\) for even \(\lambda \geq 1\).

Theorem \(C_\lambda(v, k) \geq L_\lambda(v, k) + 1\) when

1. \(\lambda(v - 1) + 2 \equiv 0 \pmod{k - 1}\);
2. \(\lambda v(v - 1) + 2v \equiv 0 \pmod{k(k - 1)}\);
3. \(v \leq \frac{k^2-k-2}{\lambda} + 1\); and
4. if \(v = \frac{k^2-k-2}{\lambda} + 1\) then \(v\) is even and neither \(k - \lambda - 2\) nor \(k - \lambda + 2\) is a perfect square;

unless \((v, k, \lambda)\) is in the exceptions listed above.
Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

$$
\begin{bmatrix}
\begin{array}{cccccc}
b_1 & b_2 & x_1 & x_2 & x_1 & x_2 \\
1 & 0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0
\end{array}
\end{bmatrix}
$$

We will be interested in the matrix MM^T.
The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.
Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{pmatrix}
$$
Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

$$
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{pmatrix}
$$

point x_1
Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
$$
Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0
\end{pmatrix}
\]

We will be interested in the matrix MM^T.

Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

$$
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}
$$

We will be interested in the matrix MM^T.
Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

We will be interested in the matrix MM^T.

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{pmatrix}
\]
Incidence matrices

The incidence matrix M of a (v, k, λ)-covering is a $v \times b$ matrix whose (i,j) entry is 1 if point i is in block j and 0 otherwise.

\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
\end{pmatrix}
\]

We will be interested in the matrix MM^T.
If M is the incidence matrix of a $(10, k, \lambda)$-covering with excess C_{10}, then MM^T is the 10×10 matrix
\[
\begin{pmatrix}
 r & \lambda + 1 & \lambda + 1 \\
 \lambda + 1 & r & \lambda + 1 & \lambda \\
 \lambda & \lambda + 1 & r & \lambda + 1 & \lambda \\
 \lambda & \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda & \lambda & \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda & \lambda & \lambda & \lambda & \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda & \lambda \\
 \lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda \\
 \lambda & \lambda + 1 & r & \lambda + 1 & \lambda \\
 \lambda + 1 & \lambda + 1 & r & \lambda + 1 \\
\end{pmatrix}.
\]
What does MM^T look like?

If M is the incidence matrix of a $(10, k, \lambda)$-covering with excess $C_6 \cup C_4$, MM^T is the 10×10 matrix

$$
\begin{pmatrix}
 r & \lambda + 1 & \lambda & \lambda & \lambda & \lambda + 1 & \lambda & \lambda & \lambda & \lambda \\
 \lambda + 1 & r & \lambda + 1 & \lambda \\
 \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda & \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda + 1 & r & \lambda & \lambda & \lambda \\
 \lambda & \lambda + 1 & \lambda & \lambda + 1 \\
 \lambda & \lambda + 1 & r & \lambda + 1 \\
 \lambda & \lambda + 1 \\
 \lambda & \lambda + 1 & r & \lambda + 1 \\
 \lambda & \lambda + 1 & r
\end{pmatrix}.
$$
What does MM^T look like?

If M is the incidence matrix of a $(10, k, \lambda)$-covering with excess $C_5 \cup C_3 \cup C_2$, MM^T is the 10×10 matrix

$$
\begin{pmatrix}
 r & \lambda + 1 & \lambda & \lambda & \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda + 1 & r & \lambda + 1 & \lambda \\
 \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda & \lambda & \lambda + 1 & r & \lambda + 1 & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda + 1 & \lambda & \lambda & \lambda + 1 & r & \lambda & \lambda & \lambda & \lambda & \lambda \\
 \lambda & \lambda & \lambda & \lambda & r & \lambda + 1 & \lambda + 1 & \lambda & \lambda & \lambda \\
 \lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda + 1 & r & \lambda + 1 & \lambda \\
 \lambda & \lambda & \lambda & \lambda & \lambda & \lambda & \lambda + 1 & \lambda + 1 & r & \lambda \\
 \lambda & r & \lambda + 2 \\
 \lambda & \lambda + 2
\end{pmatrix}.
$$
Proof of our results

Lemma If M is the incidence matrix of a (v, k, λ)-covering with a 2-regular excess then

$$\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.
Proof of our results

Lemma If M is the incidence matrix of a (v, k, λ)-covering with a 2-regular excess then

$$\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v, k, λ)-covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \geq 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}$.
Proof of our results

Lemma If M is the incidence matrix of a (v, k, λ)-covering with a 2-regular excess then

$$\det(_MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^ez^2$$

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v, k, λ)-covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \geq 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}$.

Proof sketch If $r - \lambda > 2$ then $\det(MM^T) \neq 0$ and it follows that $\text{rank}(M) = v$.
Proof of our results

Lemma If M is the incidence matrix of a (v, k, λ)-covering with a 2-regular excess then
\[\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^ez^2 \]
for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v, k, λ)-covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \geq 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}$.

Proof sketch If $r - \lambda > 2$ then $\det(MM^T) \neq 0$ and it follows that $\text{rank}(M) = v$.

BRC-type result If a (v, k, λ)-covering with v blocks with a 2-regular excess exists for v even, then one of $k - \lambda - 2$ or $k - \lambda + 2$ is a perfect square, unless $(v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)$ for even $\lambda \geq 1$.
Proof of our results

Lemma If M is the incidence matrix of a (v, k, λ)-covering with a 2-regular excess then

\[\det(MM^T) = rk(r - \lambda + 2)^{t-1}(r - \lambda - 2)^e z^2 \]

for some non-zero integer z, where r is the number of blocks on each point, t is the number of cycles in the excess, and e is the number of cycles of even length.

Fischer-type result Any (v, k, λ)-covering with a 2-regular excess has at least v blocks, unless $(v, k, \lambda) = (3\lambda + 6, 3\lambda + 3, \lambda)$ for $\lambda \geq 1$ or $(v, k, \lambda) \in \{(8, 4, 1), (14, 6, 1), (14, 8, 2)\}$.

Proof sketch If $r - \lambda > 2$ then $\det(MM^T) \neq 0$ and it follows that $\text{rank}(M) = v$.

BRC-type result If a (v, k, λ)-covering with v blocks with a 2-regular excess exists for v even, then one of $k - \lambda - 2$ or $k - \lambda + 2$ is a perfect square, unless $(v, k, \lambda) = (\lambda + 4, \lambda + 2, \lambda)$ for even $\lambda \geq 1$.

Proof sketch Note $\det(MM^T) = (\det(M))^2$ and $r = k$, so if $r - \lambda > 2$ and $k - \lambda - 2$ and $k - \lambda + 2$ are not perfect squares then t is odd and e is even.
Notes and future plans

Notes

- We also considered the case of $K_{1,k} \cup K_2 \cup \cdots \cup K_2$ excesses.
- Very similar results can be obtained for packings.
- Our results establish the non-existence of certain $(K_k - e)$-decompositions of λK_v.

Future plans

- Considering other kinds of excesses.
- Adapting the “hard” half of the Bruck-Ryser-Chowla Theorem.