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A (v, k,A\)-BIBD with v =7, k =4, A = 2, having b =7 blocks.
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Bruck-Ryser-Chowla Theorem (1950) If a (v, k, A)-BIBD with exactly v
blocks exists then

» if v is even, then kK — X is a perfect square; and

> if v is odd, then z2 = (k — \)x? 4 (—1)(*"1/2)\y2 = 0 has a solution for
integers x, y, z, not all zero.

There are very few examples of (v, k, A\)-BIBDs which are known not to exist,
but which are not ruled out by the above results.
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Any (12, 4,2)-covering with 24 blocks will have a 2-regular excess.
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Bounds on coverings

Let Cx(v, k) be the minimum number of blocks required for a (v, k, A)-covering.

Schonheim Bound  Cy(v, k) > Ly(v, k) where Ly(v, k) = H P‘@”H.

Hanani Cy(v, k) > Lx(v, k) + 1 when A(v — 1) =0 (mod k — 1) and
Av(v —1) =1 (mod k).

There are few general results which increase this lower bound (most are for
specific (v, k, A) and involve computer search).
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» Fischer's Inequality and the Bruck-Ryser-Chowla Theorem establish the
non-existence of certain coverings whose excess would necessarily be empty.

> Bose and Connor (1952) used similar methods to establish the
non-existence of certain coverings whose excess would necessarily be
1-regular.

» Our results focus on non-existence of certain coverings whose excess would
necessarily be 2-regular.

> Todorov (1989) established the non-existence of certain coverings with
b<vand A=1
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Fischer-type result Any (v, k, \)-covering with a 2-regular excess has at least
v blocks, unless (v, k,\) = (3A+6,3A+3,) for A > 1 or
(v, k,\) € {(8,4,1),(14,6,1),(14,8,2)}.

BRC-type result If a (v, k, \)-covering with v blocks with a 2-regular excess
exists for v even, then one of k — A\ — 2 or k — A\ + 2 is a perfect square, unless
(vik, ) = (A+4,X+2,)) for even A > 1.
Theorem Cy(v, k) > Ly(v, k) + 1 when

» AM(v—1)+2=0(mod k —1);

> Av(v —1)+2v =0 (mod k(k —1));

> v < % +1; and

> ifv:%—i—lthen v is even and neither k — A —2nor k—A+2isa

perfect square;

unless (v, k, A) is in the exceptions listed above.



Incidence matrices



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.

pointx;|1 0 0 0 1 0 0 1 1 0 0 O



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.

by

pontx;|1 0 0 0 1 0 0 1 1 0 0 O



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.

b,

pontx;|1 0 0 0 1 0 0 1 1 0 0 O



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.

pointx;|1 0 0 0 1 0 0 1 1 0 0 O

We will be interested in the matrix MM T,



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.

pointx;|1 0 0 0 1 0 0 1 1 0 0 O

pontxx {0 1 0 0 1 0 1 0 1 0 0 O

We will be interested in the matrix MM T,



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.

pointx;|1 0 0 0 1 0 0 1 1 0 0 O

pontxx {0 1 0 0 1 0 1 0 1 0 0 O

We will be interested in the matrix MM T,



Incidence matrices

The incidence matrix M of a (v, k, \)-covering is a v x b matrix whose (7, f)
entry is 1 if point i is in block j and 0 otherwise.

pointx;|1 0 0 0 1 0 0 1 1 0 0 O

pontxx {0 1 0 0 1 0 1 0 1 0 0 O

We will be interested in the matrix MM T,



What does MM T look like?

If M is the incidence matrix of a (10, k, \)-covering with excess Cio, then MMT

is the 10 x 10 matrix
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What does MM T look like?

If M is the incidence matrix of a (10, k, \)-covering with excess Cs U Cq, MM T
is the 10 x 10 matrix

r A+1 A A A A+1 A A A A
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If M is the incidence matrix of a (10, k, \)-covering with excess Gs U Gz U G,

What does MM look like?
MMT is the 10 x 10 matrix
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Proof of our results

Lemma If M is the incidence matrix of a (v, k, A)-covering with a 2-regular
excess then

det(MMT) = rk(r — A +2)1(r — XA — 2)¢22
for some non-zero integer z, where r is the number of blocks on each point, t is
the number of cycles in the excess, and e is the number of cycles of even length.
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for some non-zero integer z, where r is the number of blocks on each point, t is
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Fischer-type result Any (v, k, \)-covering with a 2-regular excess has at least
v blocks, unless (v, k,A) = (83X +6,3A+3,\) for A > 1 or
(v, k,\) € {(8,4,1),(14,6,1),(14,8,2)}.

Proof sketch If r — A\ > 2 then det(MMT) # 0 and it follows that
rank(M) = v.

BRC-type result If a (v, k, A)-covering with v blocks with a 2-regular excess
exists for v even, then one of k — A\ — 2 or k — A + 2 is a perfect square, unless
(vik,\) = (A +4,A+2,]) foreven A > 1.

Proof sketch  Note det(MMT) = (det(M))? and r = k, so if r — A > 2 and
k— X —2and k — X\ + 2 are not perfect squares then t is odd and e is even.



Notes and future plans

Notes
> We also considered the case of Ki x UKy U - U K; excesses.
> Very similar results can be obtained for packings.

> Our results establish the non-existence of certain (Kyx — e)-decompositions
of \K,.

Future plans
» Considering other kinds of excesses.

» Adapting the “hard” half of the Bruck-Ryser-Chowla Theorem.



