Perfect 1-Factorisations of Cubic Graphs

Rosie Hoyte

Honours project at The University of Queensland
Supervisor: Dr Barbara Maenhaut

Outline

- Definitions and background
- The complete graph
- Cubic graphs
- General results
- Small examples

Definitions

- A 1-factor of a graph G is a 1-regular spanning subgraph of G.
- A 1-factorisation of a graph is a partition of the edges in the graph into 1-factors.

Example:

Definitions

- A 1-factorisation of a graph is perfect (P1F) if the union of any two 1factors is a Hamilton cycle of the graph.
- A graph is cubic if every vertex has degree 3 .

Example:

not a P1F

P1F

The Complete Graph

Conjecture (Kotzig 1960s):
The complete graph $K_{2 n}$ has a P1F for all $n \geq 2$.

- $2 n \leq 52$.
- $2 n=p+1$ and $2 n=2 p$ for odd prime p.
- Lots of sporadic examples.

Cubic Graphs

Open Problem (Kotzig 1960s):
Given a cubic graph, determine whether it has a P1F.

- There exists a cubic graph with a P1F on $2 n \geq 4$ vertices.
- Results for some classes of graphs:
- Generalised Peterson graph, $\operatorname{GP}(n, k)$.
- Cubic circulant graphs, $\operatorname{Circ}(2 n,\{a, n\})$.
- Other partial results and simplifications.

Cubic Graphs - Small Examples

- Connected cubic graphs on ≤ 10 vertices:

Ronald C. Read and Robin J. Wilson, An Atlas of Graphs, Oxford University Press, 1998.

Cubic Graphs

Theorem (Kotzig, Labelle 1978):
For $r>2$, if G is a bipartite r-regular graph that has a P1F then
$|V(G)| \equiv 2(\bmod 4)$.

- A bipartite cubic graph on $0(\bmod 4)$ vertices does not have a P1F.

Cubic Graphs

- Generalised Petersen graph $G P(n, k), 1 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$
- $V=\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\} \cup\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$

○ $E=\left\{u_{i} u_{i+1}, u_{i} v_{i}, v_{i} v_{i+k}: 0 \leq i \leq n-1\right\}$

- $\operatorname{GP}(5,2)$

Cubic Graphs

Theorem (Bonvicini, Mazzuocolo 2011):

1. $G P(n, 1)$ has a P1F iff $n=3$;
2. $G P(n, 2)$ has a P1F iff $n \equiv 3,4(\bmod 6)$; and
3. $G P(n, 3)$ has a P1F iff $n=9$.

- Completely solved for $1 \leq k \leq 3$ (given here).
- Partial results for other values of n and k.

Cubic Graphs

- Cubic circulant graphs: $\operatorname{Circ}(2 n,\{a, n\})$, where $a \in\{1,2\}$
- $V=\left\{u_{0}, u_{1}, \ldots, u_{2 n-1}\right\}$
- $E=\left\{u_{i} u_{i+a}, u_{i} u_{i+n}: 0 \leq i \leq 2 n-1\right\}$

Example: $\operatorname{Circ}(6,\{1,3\})$:

Cubic Graphs

Theorem (Herke, Maenhaut 2013): For an integer $n \geq 2$ and $a \in\{1,2\}, \operatorname{Circ}(2 n,\{a, n\})$ has a P1F iff it is isomorphic to one of following:

1. $\operatorname{Circ}(4,\{1,2\})$;
2. $\operatorname{Circ}(6,\{a, 3\}), a \in\{1,2\} ;$
3. $\operatorname{Circ}(2 n,\{1, n\})$ for $2 n>6$ and n odd.

Small Examples

- Apply results for generalised Petersen and cubic circulant graphs:

Small Examples

Lemma 1a:
If a cubic graph on more than 4 vertices has a P1F then any 4 -cycles must be factorised as:

- Must have all three 1-factors in the 4-cycle (otherwise not Hamilton cycle).

Small Examples

Lemma 1b:
If a cubic graph on more than 6 vertices has a P1F then any two 4-cycles that share an edge must be factorised as:

Small Examples

Lemma 2: Let G be a cubic graph that has a P1F.

- If $|V(G)|>4$, then is not a subgraph. - If $|V(G)|>7$, then
 is not a subgraph.
- If $|V(G)|>6$, then is not a subgraph.
- "Forbidden subgraphs"

Small Examples

- Graphs with 'forbidden subgraphs do not have P1Fs:

Forbidden subgraphs:

Cubic Graphs

- Y-reduction operation.

Lemma: A cubic graph has a P1F if and only if its Yreduction has a P1F.

Cubic Graphs

Example:

- Construct a P1F from P1F of Y-reduced graph

Small Examples

- Some cubic graphs that have P1Fs
- $K_{4}(\mathrm{C} 1)$:
- $\operatorname{Circ}(6,\{1,3\})(\mathrm{C} 3):$

Small Examples

- Apply Y-reductions where possible:

K_{4}
$\operatorname{Circ}(6,\{1,3\})$

Small Examples

- C11: P1F constructed using 4-cycle lemmas

- C19, C26 also have P1Fs

Small Examples

- Connected cubic graphs on ≤ 10 vertices:

Summary

Open Problem (Kotzig 1960s):
Given a cubic graph, determine whether it has a P1F.

- $G P(n, k)$ solved for $k \leq 3$ and some values of n and k
- Cubic circulant graphs $\operatorname{Circ}(2 n,\{a, n\})$ solved
- Y-reduction operation
- 4-cycles and 'forbidden subgraphs'
- There were still a few graphs that needed examples

References

1. S. Bonvicini and G. Mazzuoccolo, Perfect one-factorizations in generalized Petersen graphs, Ars Combinatoria, 99 (2011), 33-43.
2. S. Herke, B. Maenhaut, Perfect 1-factorisations of circulants with small degree, Electronic Journal of Combinatorics, 20 (2013), P58.
3. G. Mazzuoccolo, Perfect one-factorizations in line-graphs and planar graphs, Australasian Journal of Combinatorics, 41 (2008), 227-233.
4. E. Seah, Perfect one-factorizations of the complete graph - a survey, Bulletin of the Institute of Combinatorics and its Applications, 1 (1991), 59-70.
