The sandwich conjecture of random regular graphs and more

Mikhail Isaev
(joint work with P. Gao and B.D. McKay)

Discrete Maths Group talk, Monash University

April 30, 2018
Introduction
Random graphs

The parameter \(n \) is the number of vertices. All graphs are labelled.

- **\(G(n, p) \) model**: every pair of vertices is connected in the graph with probability \(p \) independently from every other edge.

- **\(G(n, m) \) model**: we take a uniform random element of the set of graphs on \(n \) vertices with \(m \) edges.

- **\(R(n, d) \) model**: we take a uniform random element of the set of \(d \)-regular graphs on \(n \) vertices (we always assume \(dn \) is even).
The sandwich conjecture

Conjecture (by Kim and Vu in [Advances in Math., 2004])

For $d \gg \log n$, there is a random triple (G_1, R, G_2) of graphs on n vertices which marginal distributions are

$$ G_1 \sim \mathcal{G}(n, p_1), \quad R \sim \mathcal{R}(n, d), \quad G_2 \sim \mathcal{G}(n, p_2), $$

for some $p_1 = \frac{d}{n}(1 - o(1))$ and $p_2 = \frac{d}{n}(1 + o(1))$, and

$$ \Pr(G_1 \subseteq R \subseteq G_2) = 1 - o(1). $$

Kim and Vu managed to prove the sandwich conjecture for the range $\log n \ll d \leq n^{1/3-o(1)}$ with a defect in one side: $\mathcal{R}(n, d)$ is not completely contained in $\mathcal{G}(n, p_2)$.
Recent progress towards the sandwich conjecture

Dudek, Frieze, Ruciński, and Šileikis [J. Comb. Theory B, 2017] showed that, for all $d = o(n)$, $\mathcal{G}(n, (1 - o(1))\frac{d}{n}) \subseteq \mathcal{R}(n, d)$ a.a.s.

Theorem (Gao, I., McKay)

Let ε be any positive constant. Then the following holds a.a.s.

(i) For $d \geq n^{2/3} + \varepsilon$ the sandwich conjecture holds.
(ii) For $d \geq n^{1/2}$ we have $\mathcal{R}(n, d) \subseteq \mathcal{G}(n, \varepsilon \frac{d}{n} \log n)$.
(iii) For $d \leq n^{1/2}$ we have $\mathcal{R}(n, d) \subseteq \mathcal{G}(\varepsilon n^{-1/2} \log n)$.
Coupling procedure
Another way to generate $\mathcal{G}(n, p)$

Procedure $M(n, m)$.

1. Take $M := \emptyset$.
2. Repeat m times: take jk uniformly at random from K_n and add it to M (in case the edge jk was not in M yet).
3. Return M.

If $D \sim \text{Po}(\lambda)$ then $M(n, D) \sim \mathcal{G}(n, p)$ with $p = 1 - e^{-\lambda/(n^2)}$.

Let $M_\xi(n, m)$ be the random graph defined similarly to $M(n, m)$ but with some rejection probability ξ at Step 2. Then,

$$M_\xi(n, D) \sim \mathcal{G}(n, p_\xi) \text{ with } p_\xi = 1 - e^{-\lambda(1-\xi)/(n^2)}.$$

Coupling $\mathcal{G}(n, p) \subseteq \mathcal{R}(n, d)$.

Procedure $\mathcal{R}(n, d)$.

1. Take $\mathcal{R} := \emptyset$.

2. Repeat until \mathcal{R} is d-regular: take jk uniformly at random from K_n and add it to \mathcal{R} with probability

$$\frac{\Pr(jk \in \mathcal{R}(n, d) \mid \mathcal{R} \subseteq \mathcal{R}(n, d))}{\max_{jk \notin \mathcal{R}} \Pr(jk \in \mathcal{R}(n, d) \mid \mathcal{R} \subseteq \mathcal{R}(n, d))}$$ \hspace{1cm} (1)

(in case the edge jk was not in \mathcal{R} yet).

3. Return \mathcal{R}.

Idea: to achieve $M_\xi(n, D) \subseteq \mathcal{R}(n, d)$ we only need to show that a.a.s. (1) is bounded below by $1 - \xi$ for the first D iterations of Step 2.
What is left to show?

Let $S \sim \mathcal{G}(n, p)$. Take a t-factor $T \subseteq S$ uniformly at random.

Toy problem

For which values of p and t we can show a.a.s.

$$\Pr_S(\{uv \in T\}) = (1 + o(1)) \frac{t}{pn}$$

simultaneously for all edges $uv \in S$?

During the coupling procedure, p ranges from 1 to $1 - \frac{d}{n}$ and t ranges from d to 0.

It is fairly easy to resolve the toy problem for $d = o(n)$ which gives us

$\mathcal{G}(n, \frac{d}{n}(1 - o(1))) \subseteq \mathcal{R}(n, d)$, see [Dudek et al., 2017].

The containment $\mathcal{R}(n, d) \subseteq \mathcal{G}(n, \frac{d}{n}(1 - o(1)))$ is equivalent to

$\mathcal{G}(n, 1 - \frac{d}{n} - o(\frac{d}{n})) \subseteq \mathcal{R}(n, n - d)$. So we need $p = o(1)$ for that.
Two key ideas
The number of ways to switch \implies is $p^4 t^3 n^3 (1 + o(1))$.

The number of ways to switch \impliedby is $p^3 t^4 n^2 (1 + o(1))$.

This works for $p \geq \varepsilon n^{-1/2} \log n$ and $t = o(pn)$.
Complex-analytic approach

The probability can be expressed as a ratio of two integrals:

\[
\Pr_S(uv \in T) = \frac{t}{pn} (1 + o(1)) \frac{\int \cdots \int \frac{\prod_{jk \in S-uv} (1+z_j z_k)}{z_1^{d+1} \cdots z_n^{d+1}/z_u z_v} \, dz_1 \cdots dz_n}{\int \cdots \int \frac{\prod_{jk \in S} (1+z_j z_k)}{z_1^{d+1} \cdots z_n^{d+1}} \, dz_1 \cdots dz_n}.
\]

Then, we estimate these multidimensional complex integrals using the machinery of [I., McKay, Random Struct. Algor., 2017] and get that

\[
\frac{1}{(2\pi)^{n/2} |Q_S|} e^{\mathbb{E}g(X) - \frac{1}{2} \mathbb{E}h(X)^2 + o(1)} = 1 + o(1).
\]

\[
\frac{1}{(2\pi)^{n/2} |Q_{S-uv}|} e^{\mathbb{E}\tilde{g}(\tilde{X}) - \frac{1}{2} \mathbb{E}\tilde{h}(\tilde{X})^2 + o(1)} = 1 + o(1).
\]

This works for \(p \geq n^{-1/3+\varepsilon} \) and \(\min\{t, pn - t\} \gg pn/\log n \).
...AND MORE
1) Our result actually covers random graphs with given degree sequence
\((d_1, \ldots, d_n)\) that \(d_j = d(1 + o(1))\).

2) Similar sandwiching results holds for the model \(G_p\) and random
subgraph of \(G\) with given degrees (chosen uniformly).

3) There are immediate corollaries of the form \(\mathcal{R}(n, d_1) \subseteq \mathcal{R}(n, d_2)\).
Thank you for your attention!