

Combinatorial lines with few intervals

Nina Kamčev, joint work with David Conlon and Christoph Spiegel

The Hales-Jewett Theorem

NOTATION

- Ground set $[m]^n$, usually $[3]^n$
- A root is a word w of length n in the symbols [m] U {*} with at least one *.
- For $i \in [m]$, w_i is the word obtained from w by replacing each * by i.
- A (*combinatorial*) *line* is a set of words $\{w_i: i \in [m]\}$.

EXAMPLE: a combinatorial line in $[3]^{12}$

$$u = 22 * 32 * 12 *** 22$$

$$u_1 = 22 1 32 1 12 11 22$$

$$u_2 = 222 32 2 12 222 22$$

$$u_3 = 223 32 3 12 33 322$$

Wildcard set

Theorem (Hales, Jewett, '63). Given $m, r \in \mathbb{N}$, there is a natural number nsuch that any r-colouring of $[m]^n$ contains a monochromatic combinatorial line.

• *HJ*(*m*, *r*) is the minimal *n* for which the conclusion holds

A warm-up...

Claim. HJ(2,r) = r. *Proof.* Let $c: [2]^r \to \mathbb{Z}_r$.

A warm-up...

Claim. HJ(2,r) = r. *Proof.* Let $c: [2]^r \to \mathbb{Z}_r$. Consider the words 11111111...1 11...111...2 11...122...2 ...2 2222222...2

Among r + 1 words, two have the same colour \Rightarrow monochromatic line.

Shelah's proof of HJT

Consequences

•
$$HJ(m,r) \leq 2^{2^{\cdot}}^{2}$$
 $2HJ(m-1,r)$ times

For m = 3, there exists an *r*-interval line (a line whose wildcard set consists of at most r intervals), e.g.
 u = 33 *2*21 ***33

 $\leq r$ intervals

Is this the best possible?

Lines with few intervals

Definition. $\mathcal{I}(m, r) = \min\{q: \text{ for large } n, \text{ any } r\text{-colouring of } [m]^n \text{ contains a monochromatic } q\text{-interval line}\}.$

(Conlon, K)

(K, Spiegel).

(Leader, Räty)

Observations.

- $\mathcal{I}(2,r) = 1$ for all r.
- $\mathcal{I}(3,r) \leq r$, generally $\mathcal{I}(m,r) \leq HJ(m-1,r)$

Theorem.

(i) $\mathcal{I}(3,r) = r$ for odd r

(ii) $\mathcal{I}(3,2) = 1$

(iii) $\mathcal{I}(3r) = r - 1$ for even r

(i) The colouring avoiding (r-1)-interval lines

(i) The colouring avoiding (r-1)-interval lines

 $[3]^{n} \xrightarrow{contract} [3]^{\leq n} \xrightarrow{count} \mathbb{Z}_{r}^{3}$ $u_{1} = 2213211211122 \mapsto \overline{u_{1}} = 2132 \quad 1212 \mapsto \varphi(\overline{u_{1}}) = (3, 4, 1)$ $u_{2} = 2223221222222 \mapsto \overline{u_{2}} = 2 \quad 32 \quad 12 \quad \mapsto \varphi(\overline{u_{2}}) = (1, 3, 1)$ $u_{3} = 2233231233322 \mapsto \overline{u_{3}} = 2 \quad 3231232 \mapsto \varphi(\overline{u_{3}}) = (1, 4, 3)$

(i) The colouring avoiding (r-1)-interval lines

 $u = 22 * 32 * 12 * 22 \mapsto \overline{u} = 2 * 32 * 12 * 2 \mapsto \varphi(\overline{u}) = (1, 4, 1)$

(iii) The upper bound

Theorem (K, Spiegel). $\mathcal{I}(3, r) = r - 1$ for even r.

• Idea: reduce the problem to the 'linear' colourings

Proposition. For any r, if $\mathcal{I}(3r) > r - 1$, then there is a colouring $T: [3]^n \to \mathbb{Z}^r$ avoiding (r-1)-interval lines with

$$T(u) = T'(\varphi(\overline{u}))$$
 for all u .

That is, T has the form

$$[3]^n \xrightarrow{-} [3]^{\leq n} \xrightarrow{\varphi} \mathbb{Z}_r^3 \xrightarrow{T'} \mathbb{Z}_r^3$$

- Odd r there is a colouring
- Even *r* contradiction.

Onwards and upwards

Improve the bounds $r \leq \mathcal{I}(m,r) \leq HJ(m-1,r)$.

New proofs of the Hales-Jewett theorem?

Thank you!