Graphs with three eigenvalues

Jack Koolen

Joint work with Ximing Cheng, Gary Greaves and Alexander Gavrilyuk

School of Mathematical Sciences,
University of Science and Technology of China

Monash University, March 2, 2015
Outline

1 Introduction
 - Definitions
 - History

2 Theory
 - Basic Theory

3 Our results
 - Bound
 - Complement
 - Neumaier’s result

4 Many valencies
 - Many valencies
Definitions

- Let $\Gamma = (V, E)$ be a graph.
- The distance $d(x, y)$ between two vertices x and y is the length of a shortest path connecting them.
- The maximum distance between two vertices in Γ is the diameter $D = D(\Gamma)$.
- The valency k_x of x is the number of vertices adjacent to it.
- A graph is regular with valency k if each vertex has k neighbours.
Let $\Gamma = (V, E)$ be a graph.

The distance $d(x, y)$ between two vertices x and y is the length of a shortest path connecting them.

The maximum distance between two vertices in Γ is the diameter $D = D(\Gamma)$.

The valency k_x of x is the number of vertices adjacent to it.

A graph is regular with valency k if each vertex has k neighbours.

The adjacency matrix A of Γ is the matrix whose rows and columns are indexed by the vertices of Γ and the (x, y)-entry is 1 whenever x and y are adjacent and 0 otherwise.

The eigenvalues of the graph Γ are the eigenvalues of A.

Definitions

- Let $\Gamma = (V, E)$ be a graph.
- The distance $d(x, y)$ between two vertices x and y is the length of a shortest path connecting them.
- The maximum distance between two vertices in Γ is the diameter $D = D(\Gamma)$.
- The valency k_x of x is the number of vertices adjacent to it.
- A graph is regular with valency k if each vertex has k neighbours.
- The adjacency matrix A of Γ is the matrix whose rows and columns are indexed by the vertices of Γ and the (x, y)-entry is 1 whenever x and y are adjacent and 0 otherwise.
- The eigenvalues of the graph Γ are the eigenvalues of A.

Strongly regular graphs

A strongly regular graph (SRG) with parameters \((n, k, \lambda, \mu)\) is a \(k\)-regular graph on \(n\) vertices such that

- each pair of adjacent vertices have \(\lambda\) common neighbours;
- each pair of distinct non-adjacent vertices have \(\mu\) common neighbours.
Strongly regular graphs

A strongly regular graph (SRG) with parameters \((n, k, \lambda, \mu) \) is a \(k \)-regular graph on \(n \) vertices such that

- each pair of adjacent vertices have \(\lambda \) common neighbours;
- each pair of distinct non-adjacent vertices have \(\mu \) common neighbours

Examples

- The Petersen graph is a strongly regular graph with parameters \((10, 3, 0, 1) \).
- The line graph of a complete graph on \(t \) vertices \(L(K_t) \) is a SRG \((t(t-1)/2, 2(t-2), t-2, 4) \).
Strongly regular graphs

A strongly regular graph (SRG) with parameters \((n, k, \lambda, \mu)\) is a \(k\)-regular graph on \(n\) vertices such that

- each pair of adjacent vertices have \(\lambda\) common neighbours;
- each pair of distinct non-adjacent vertices have \(\mu\) common neighbours

Examples

- The Petersen graph is a strongly regular graph with parameters \((10, 3, 0, 1)\).
- The line graph of a complete graph on \(t\) vertices \(L(K_t)\) is a SRG \((t(t-1)/2, 2(t-2), t-2, 4)\).
- The line graph of a complete bipartite graph \(K_{t,t} \), \(L(K_{t,t})\), is a SRG \((t^2, 2(t-1), t-2, 2)\).
- There are many more examples, coming from all parts in combinatorics.
A connected strongly regular graph has at most diameter two, and has at most three distinct eigenvalues. We can characterize the strongly regular graphs by this property.

Theorem

A connected regular graph Γ has at most three eigenvalues if and only if it is strongly regular.
Now we will discuss graphs with a small number of distinct eigenvalues. If Γ is a connected graph with t distinct eigenvalues then the diameter of Γ is bounded by $t - 1$. So a connected graph with at most two distinct eigenvalues is just a complete graph and hence is regular.
Now we will discuss graphs with a small number of distinct eigenvalues. If \(\Gamma \) is a connected graph with \(t \) distinct eigenvalues then the diameter of \(\Gamma \) is bounded by \(t - 1 \). So a connected graph with at most two distinct eigenvalues is just a complete graph and hence is regular. But connected graphs with three distinct eigenvalues do not have to be regular. For example the complete bipartite graph \(K_{s,t} \) has distinct eigenvalues \(\pm \sqrt{st} \) and 0.
Now we will discuss graphs with a small number of distinct eigenvalues. If Γ is a connected graph with t distinct eigenvalues then the diameter of Γ is bounded by $t - 1$. So a connected graph with at most two distinct eigenvalues is just a complete graph and hence is regular. But connected graphs with three distinct eigenvalues do not have to be regular. For example the complete bipartite graph $K_{s,t}$ has distinct eigenvalues $\pm \sqrt{st}$ and 0. Also the cone over the Petersen graph (i.e. you add a new vertex and join the new vertex with all the other vertices) is a non-regular graph with exactly three distinct eigenvalues.
Outline

1 Introduction
 - Definitions
 - History

2 Theory
 - Basic Theory

3 Our results
 - Bound
 - Complement
 - Neumaier’s result

4 Many valencies
 - Many valencies
In 1970 M. Doob asked to study graphs with a small number of distinct eigenvalues.
In 1970 M. Doob asked to study graphs with a small number of distinct eigenvalues.

In 1979 and 1981 Bridges and Mena constructed infinite many examples of graphs with exactly three distinct eigenvalues. They constructed mainly cones over strongly regular graphs.
In 1970 M. Doob asked to study graphs with a small number of distinct eigenvalues.

In 1979 and 1981 Bridges and Mena constructed infinite many examples of graphs with exactly three distinct eigenvalues. They constructed mainly cones over strongly regular graphs.

In 1995 W. Haemers asked to construct new families of connected graphs with exactly three distinct eigenvalues. (He was unaware of the papers by Bridges and Mena).
History

- In 1970 M. Doob asked to study graphs with a small number of distinct eigenvalues.
- In 1979 and 1981 Bridges and Mena constructed infinite many examples of graphs with exactly three distinct eigenvalues. They constructed mainly cones over strongly regular graphs.
- In 1995 W. Haemers asked to construct new families of connected graphs with exactly three distinct eigenvalues. (He was unaware of the papers by Bridges and Mena).
- In 1998 Muzychuk and Klin gave more examples of such graphs.
In 1970 M. Doob asked to study graphs with a small number of distinct eigenvalues.

In 1979 and 1981 Bridges and Mena constructed infinite many examples of graphs with exactly three distinct eigenvalues. They constructed mainly cones over strongly regular graphs.

In 1995 W. Haemers asked to construct new families of connected graphs with exactly three distinct eigenvalues. (He was unaware of the papers by Bridges and Mena).

In 1998 Muzychuk and Klin gave more examples of such graphs.

In 1998 E. van Dam gave the basic theory for such graphs, and also give some new examples. Also he classified the graphs with exactly three distinct eigenvalues having smallest eigenvalue at least -2.
Outline

1 Introduction
 • Definitions
 • History

2 Theory
 • Basic Theory

3 Our results
 • Bound
 • Complement
 • Neumaier’s result

4 Many valencies
 • Many valencies
Our motivation is how much of the theory for strongly graphs can be generalised to connected graphs with exactly three distinct eigenvalues. We start with some basic theory which was mainly developed by E. van Dam.
Basic theory

Our motivation is how much of the theory for strongly graphs can be generalised to connected graphs with exactly three distinct eigenvalues. We start with some basic theory which was mainly developed by E. van Dam.

- Let Γ be a connected graph with exactly three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$.
Basic theory

Our motivation is how much of the theory for strongly graphs can be generalised to connected graphs with exactly three distinct eigenvalues. We start with some basic theory which was mainly developed by E. van Dam.

- Let Γ be a connected graph with exactly three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$.
- Then by the Perron-Frobenius Theorem θ_0 has multiplicity one.
Basic theory

Our motivation is how much of the theory for strongly graphs can be generalised to connected graphs with exactly three distinct eigenvalues. We start with some basic theory which was mainly developed by E. van Dam.

- Let Γ be a connected graph with exactly three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$.
- Then by the Perron-Frobenius Theorem θ_0 has multiplicity one.
- Let A be the adjacency matrix of Γ.
- As $B := (A - \theta_1 I)(A - \theta_2 I)$ has rank 1 and is positive semi-definite we have $B = xx^T$ for some eigenvector x of A corresponding to eigenvalue θ_0.

Our motivation is how much of the theory for strongly graphs can be generalised to connected graphs with exactly three distinct eigenvalues. We start with some basic theory which was mainly developed by E. van Dam.

- Let Γ be a connected graph with exactly three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$.
- Then by the Perron-Frobenius Theorem θ_0 has multiplicity one.
- Let A be the adjacency matrix of Γ.
- As $B := (A - \theta_1 I)(A - \theta_2 I)$ has rank 1 and is positive semi-definite we have $B = xx^T$ for some eigenvector x of A corresponding to eigenvalue θ_0.
- By Perron-Frobenius theorem again wlog all entries of x are positive.
For two adjacent (non-adjacent distinct) vertices let λ_{uv} (μ_{uv}) be the number of common neighbours of u and v.
Basic theory 2

- For two adjacent (non-adjacent distinct) vertices let λ_{uv} (μ_{uv}) be the number of common neighbours of u and v.
- Let k_u be the valency of u, i.e. the number of the neighbours of u.
For two adjacent (non-adjacent distinct) vertices let \(\lambda_{uv} \) (\(\mu_{uv} \)) be the number of common neighbours of \(u \) and \(v \).

Let \(k_u \) be the valency of \(u \), i.e. the number of the neighbours of \(u \).

We have seen \(A^2 - (\theta_1 + \theta_2)A + \theta_1 \theta_2 I = (A - \theta_1 I)(A - \theta_2 I) = xx^T \).
For two adjacent (non-adjacent distinct) vertices let λ_{uv} (μ_{uv}) be the number of common neighbours of u and v.

Let k_u be the valency of u, i.e. the number of the neighbours of u.

We have seen $A^2 - (\theta_1 + \theta_2)A + \theta_1 \theta_2 I = (A - \theta_1 I)(A - \theta_2 I) = xx^T$.

This gives $k_u = -\theta_1 \theta_2 + x_u^2$ for u a vertex,

$\lambda_{uv} = \theta_1 + \theta_2 + x_u x_v$, for $u \sim v$,

$\mu_{xy} = x_u x_v$ for u and v non-adjacent.
A result of Van Dam

Theorem (Van Dam)

Let Γ be a connected non-regular graph with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then the following hold:

- Γ has diameter two.
A result of Van Dam

Theorem (Van Dam)

Let Γ be a connected non-regular graph with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then the following hold:

- Γ has diameter two.
- If θ_0 is not an integer, then Γ is complete bipartite.

$\theta_1 \geq 0$ with equality if and only if Γ is complete bipartite.

$\theta_2 \leq -\sqrt{2}$ with equality if and only if Γ is the path of length 2.

From now on we will assume $\theta_1 > 0$ and hence θ_0 is an integer.
A result of Van Dam

Theorem (Van Dam)

Let Γ be a connected non-regular graph with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then the following hold:

- Γ has diameter two.
- If θ_0 is not an integer, then Γ is complete bipartite.
- $\theta_1 \geq 0$ with equality if and only if Γ is complete bipartite.
- $\theta_2 \leq -\sqrt{2}$ with equality if and only if Γ is the path of length 2.
Theorem (Van Dam)

Let Γ be a connected non-regular graph with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$. Then the following hold:

- Γ has diameter two.
- If θ_0 is not an integer, then Γ is complete bipartite.
- $\theta_1 \geq 0$ with equality if and only if Γ is complete bipartite.
- $\theta_2 \leq -\sqrt{2}$ with equality if and only if Γ is the path of length 2.

From now on we will assume $\theta_1 > 0$ and hence θ_0 is an integer.
Non-integral eigenvalues

It is known that if a strongly regular graph has non-integral eigenvalues then it is a SRG($4\mu + 1, 2\mu, \mu - 1, \mu$).
Non-integral eigenvalues

It is known that if a strongly regular graph has non-integral eigenvalues then it is a SRG($4\mu + 1, 2\mu, \mu - 1, \mu$).

Theorem (Van Dam)

Let Γ be connected graph with n vertices with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$, with respective multiplicities $m_0 = 1, m_1, m_2$. Assume that $m_1 = m_2$, then there exists a $b = 1 \pmod{4}$ and $b \leq n$, such that $\theta_1 = (-1 + \sqrt{b})/2$, $\theta_2 = (-1 - \sqrt{b})/2$, $\theta_0 = (n - 1)/2$. (In particular n is odd). Moreover Γ is regular if and only if $n = b$.
Non-integral eigenvalues

It is known that if a strongly regular graph has non-integral eigenvalues then it is a SRG($4\mu + 1, 2\mu, \mu - 1, \mu$).

Theorem (Van Dam)

Let Γ be connected graph with n vertices with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$, with respective multiplicities $m_0 = 1, m_1, m_2$. Assume that $m_1 = m_2$, then there exists a $b \equiv 1 \pmod{4}$ and $b \leq n$, such that $\theta_1 = (\sqrt{b} - 1)/2$, $\theta_2 = (\sqrt{b} + 1)/2$, $\theta_0 = (n - 1)/2$. (In particular n is odd). Moreover Γ is regular if and only if $n = b$.

Van Dam gave some parity results on the valencies in Γ and De Caen, Van Dam and Spence (2000) gave a Bruck-Ryser-Chowla theorem for these graphs.
Non-integral eigenvalues

It is known that if a strongly regular graph has non-integral eigenvalues then it is a SRG\((4\mu + 1, 2\mu, \mu - 1, \mu)\).

Theorem (Van Dam)

Let \(\Gamma\) be connected graph with \(n\) vertices with three distinct eigenvalues \(\theta_0 > \theta_1 > \theta_2\), with respective multiplicities \(m_0 = 1, m_1, m_2\). Assume that \(m_1 = m_2\), then there exists a \(b = 1 \pmod{4}\) and \(b \leq n\), such that \(\theta_1 = (−1 + \sqrt{b})/2, \theta_2 = (−1 − \sqrt{b})/2, \theta_0 = (n − 1)/2\). (In particular \(n\) is odd). Moreover \(\Gamma\) is regular if and only if \(n = b\).

Van Dam gave some parity results on the valencies in \(\Gamma\) and De Caen, Van Dam and Spence (2000) gave a Bruck-Ryser-Chowla theorem for these graphs.

Note that the cone over the Petersen graph is an example with \(m_1 = m_2\).

Also note that if not all eigenvalues are integral then \(m_1 = m_2\). De Caen et al. gave an example with non-integral eigenvalues with \(b = 41\) and \(n = 43\).
Non-integral eigenvalues

It is known that if a strongly regular graph has non-integral eigenvalues then it is a SRG\((4\mu + 1, 2\mu, \mu - 1, \mu)\).

Theorem (Van Dam)

Let \(\Gamma\) be connected graph with \(n\) vertices with three distinct eigenvalues \(\theta_0 > \theta_1 > \theta_2\), with respective multiplicities \(m_0 = 1, m_1, m_2\). Assume that \(m_1 = m_2\), then there exists a \(b = 1(\mod 4)\) and \(b \leq n\), such that \(\theta_1 = (-1 + \sqrt{b})/2, \theta_2 = (-1 - \sqrt{b})/2, \theta_0 = (n - 1)/2\). (In particular \(n\) is odd). Moreover \(\Gamma\) is regular if and only if \(n = b\).

Van Dam gave some parity results on the valencies in \(\Gamma\) and De Caen, Van Dam and Spence (2000) gave a Bruck-Ryser-Chowla theorem for these graphs.

Note that the cone over the Petersen graph is an example with \(m_1 = m_2\). Also note that if not all eigenvalues are integral then \(m_1 = m_2\). De Caen et al. gave an example with non-integral eigenvalues with \(b = 41\) and \(n = 43\).

A consequence of our next result is that we can bound \(n\) by a function in \(b\).
Outline

1 Introduction
 - Definitions
 - History

2 Theory
 - Basic Theory

3 Our results
 - Bound
 - Complement
 - Neumaier’s result

4 Many valencies
 - Many valencies
Lemma

Let Γ be a non-regular connected graph with exactly three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$. Let $u \sim v$ with $k_u < k_v$. Then $k_u \geq \lambda_{uv} + 1$. This gives $x_v - 1 \leq x_u(x_u - x_v) \leq -\theta_1\theta_2 + \theta_1 + \theta_2$, and hence $x_v \leq -(\theta_1 + 1)(\theta_2 + 1)$.
A bound on the number of vertices

Lemma

Let Γ be a non-regular connected graph with exactly three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$. Let $u \sim v$ with $k_u < k_v$. Then $k_u \geq \lambda_{uv} + 1$. This gives $x_v - 1 \leq x_u(x_u - x_v) \leq -\theta_1 \theta_2 + \theta_1 + \theta_2$, and hence $x_v \leq -(\theta_1 + 1)(\theta_2 + 1)$.

This implies:

Proposition

Let Γ be a non-regular connected graph on n vertices with three distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ with respective multiplicities $1, m_1, m_2$. Let Δ be the maximal valency in Γ and let $\ell := \min\{1 - (\theta_1 + 1)(\theta_2 + 1), -\theta_1 \theta_2 + 1\}$. Then the following hold:

1. $\Delta \leq (1 - (\theta_1 + 1)(\theta_2 + 1))^2 - \theta_1 \theta_2$;
2. If $\Delta \neq n - 1$, then $\Delta \leq \ell^2 - \theta_1 \theta_2$;
3. $n \leq \max\{(\ell^2 - \theta_1 \theta_2 - 1)^2 + 1, (1 - (\theta_1 + 1)(\theta_2 + 1))^2 - \theta_1 \theta_2 + 1\}$.
Outline

1. Introduction
 - Definitions
 - History

2. Theory
 - Basic Theory

3. Our results
 - Bound
 - Complement
 - Neumaier’s result

4. Many valencies
 - Many valencies
The complement of a strongly regular graph is strongly regular. The complement of a non-regular graph with three distinct eigenvalues has usually more than three distinct eigenvalues. But it is quite easy to see that the number of distinct eigenvalues cannot be more than five.
Complement

The complement of a strongly regular graph is strongly regular. The complement of a non-regular graph with three distinct eigenvalues has usually more then three distinct eigenvalues. But it is quite easy to see that the number of distinct eigenvalues can not be more then five. The only strongly regular graphs whose complement is not connected are the complete multipartite graphs. A similar result holds for the graphs with three distinct eigenvalues, but its proof is quite a bit more difficult then for the strongly regular graph case.
The complement of a strongly regular graph is strongly regular. The complement of a non-regular graph with three distinct eigenvalues has usually more than three distinct eigenvalues. But it is quite easy to see that the number of distinct eigenvalues can not be more than five. The only strongly regular graphs whose complement is not connected are the complete multipartite graphs. A similar result holds for the graphs with three distinct eigenvalues, but its proof is quite a bit more difficult then for the strongly regular graph case.

Theorem

Let Γ be a non-regular connected graph with three distinct eigenvalues on n vertices. If the complement of Γ is disconnected, then either Γ has a vertex with degree $n-1$, or Γ is complete bipartite.
Outline

1 Introduction
 - Definitions
 - History

2 Theory
 - Basic Theory

3 Our results
 - Bound
 - Complement
 - Neumaier’s result

4 Many valencies
 - Many valencies
Neumaier’s Theorem

Neumaier (1979) showed the following result.

Neumaier’s Theorem

Let m be a positive integer. Let Γ be a connected and coconnected (i.e. the complement is connected) strongly regular graph with minimal eigenvalue $-m$. Then either the number of vertices is bounded by a function in m, or Γ belongs to one of two infinite (one parameter) families of strongly regular graphs (and we know how to construct all of them if the number of vertices is large enough).
Neumaier’s Theorem

Neumaier (1979) showed the following result.

Neumaier’s Theorem

Let \(m \) be a positive integer. Let \(\Gamma \) be a connected and coconnected (i.e. the complement is connected) strongly regular graph with minimal eigenvalue \(-m\). Then either the number of vertices is bounded by a function in \(m \), or \(\Gamma \) belongs to one of two infinite (one parameter) families of strongly regular graphs (and we know how to construct all of them if the number of vertices is large enough).

How can we generalize this result to graphs with three distinct eigenvalues?
Neumaier’s Theorem 2

Question 1:

Let m be a positive integer.

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $0 < \theta_1 \leq m$?

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $\theta_2 \geq -m$?
Neumaier’s Theorem 2

Question 1:

Let m be a positive integer.

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $0 < \theta_1 \leq m$?

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $\theta_2 \geq -m$?

- Our bound on the number of vertices implies that the conjecture is true if the graphs have a non-integral eigenvalue.
Neumaier’s Theorem 2

Question 1:

Let m be a positive integer.

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $0 < \theta_1 \leq m$?
- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $\theta_2 \geq -m$?

- Our bound on the number of vertices implies that the conjecture is true if the graphs have a non-integral eigenvalue.
- Van Dam showed that (ii) is true for smallest eigenvalue -2.
Neumaier’s Theorem 2

Question 1:
Let \(m \) be a positive integer.

- Are there only finitely many non-regular connected graphs with distinct eigenvalues \(\theta_0 > \theta_1 > \theta_2 \) such that \(0 < \theta_1 \leq m \)?
- Are there only finitely many non-regular connected graphs with distinct eigenvalues \(\theta_0 > \theta_1 > \theta_2 \) such that \(\theta_2 \geq -m \)?

- Our bound on the number of vertices implies that the conjecture is true if the graphs have a non-integral eigenvalue.
- Van Dam showed that (ii) is true for smallest eigenvalue \(-2\).
- We were able to show that the answer to the first part of the question for non-regular graphs with exactly three distinct eigenvalues and exactly two different valencies is positive. I will discuss it more below.
Neumaier’s Theorem 2

Question 1:

Let m be a positive integer.

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $0 < \theta_1 \leq m$?
- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $\theta_2 \geq -m$?

- Our bound on the number of vertices implies that the conjecture is true if the graphs have a non-integral eigenvalue.
- Van Dam showed that (ii) is true for smallest eigenvalue -2.
- We were able to show that the answer to the first part of the question for non-regular graphs with exactly three distinct eigenvalues and exactly two different valencies is positive. I will discuss it more below.
- On this moment we are working on the second part of this question for graphs with exactly two different valencies.
Neumaier’s Theorem 2

Question 1:

Let m be a positive integer.

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $0 < \theta_1 \leq m$?

- Are there only finitely many non-regular connected graphs with distinct eigenvalues $\theta_0 > \theta_1 > \theta_2$ such that $\theta_2 \geq -m$?

- Our bound on the number of vertices implies that the conjecture is true if the graphs have a non-integral eigenvalue.

- Van Dam showed that (ii) is true for smallest eigenvalue -2.

- We were able to show that the answer to the first part of the question for non-regular graphs with exactly three distinct eigenvalues and exactly two different valencies is positive. I will discuss it more below.

- On this moment we are working on the second part of this question for graphs with exactly two different valencies.

- Note that the answer for the question (i) is negative if you allow four distinct eigenvalues as the friendship graphs show.
Now we are classifying the connected graphs with three distinct eigenvalues with second largest eigenvalue 1. On this moment we can show the finiteness of the number of those graphs, but we do not have a full classification yet.
Now we are classifying the connected graphs with three distinct eigenvalues with second largest eigenvalue 1. On this moment we can show the finiteness of the number of those graphs, but we do not have a full classification yet.

We also constructed some new graphs with three distinct eigenvalues and showed some non-existence results.
Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.
Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.

Sketch of proof

- Let Γ has valencies $k_1 > k_2$. Let $x_i = \sqrt{k_i + \theta_1 \theta_2}$, $(i = 1, 2)$.
Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.

Sketch of proof

- Let Γ has valencies $k_1 > k_2$. Let $x_i = \sqrt{k_i + \theta_1 \theta_2}$, $(i = 1, 2)$.
- Let $V_i = \{u \mid k_u = k_i\}$, $(i = 1, 2)$.
- (Van Dam) Then the partition $\{V_1, V_2\}$ is an equitable partition of Γ.

Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.

Sketch of proof

- Let Γ has valencies $k_1 > k_2$. Let $x_i = \sqrt{k_i + \theta_1 \theta_2}, (i = 1, 2)$.
- Let $V_i = \{u \mid k_u = k_i\}, (i = 1, 2)$.
- (Van Dam) Then the partition $\{V_1, V_2\}$ is an equitable partition of Γ.
- One can show that $x_1 x_2 = -(\theta_1 + 1)\theta_2$ or $x_1 x_2 = -(\theta_2 + 1)\theta_1$.
Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.

Sketch of proof

- Let Γ has valencies $k_1 > k_2$. Let $x_i = \sqrt{k_i + \theta_1 \theta_2}$, $(i = 1, 2)$.
- Let $V_i = \{u \mid k_u = k_i\}$, $(i = 1, 2)$.
- (Van Dam) Then the partition $\{V_1, V_2\}$ is an equitable partition of Γ.
- One can show that $x_1 x_2 = -(\theta_1 + 1)\theta_2$ or $x_1 x_2 = -(\theta_2 + 1)\theta_1$.
- The case $x_1 x_2 = -(\theta_2 + 1)\theta_1$ gives $x_2^2 \geq -\theta_2$.

Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.

Sketch of proof

- Let Γ has valencies $k_1 > k_2$. Let $x_i = \sqrt{k_i + \theta_1 \theta_2}$, $(i = 1, 2)$.
- Let $V_i = \{u \mid k_u = k_i\}$, $(i = 1, 2)$.
- (Van Dam) Then the partition $\{V_1, V_2\}$ is an equitable partition of Γ.
- One can show that $x_1 x_2 = - (\theta_1 + 1) \theta_2$ or $x_1 x_2 = - (\theta_2 + 1) \theta_1$.
- The case $x_1 x_2 = - (\theta_1 + 1) \theta_2$ gives $x_2^2 \geq - \theta_2$.
- The case $x_1 x_2 = - (\theta_2 + 1) \theta_1$ is more difficult. In this use that there must be a pair of adjacent vertices u, v such that $k_u = k_v = k_2$ and $\lambda_{uv} \geq 0$. Then one gets also a lower bound on k_2 of order θ_2.

Bell and Rowlinson showed that if an eigenvalue multiplicity is $n - m$, then either the corresponding eigenvalue equals 0 or -1 or $n \leq (m + 1)m/2$. This shows the theorem.
Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.

Sketch of proof

- Let Γ has valencies $k_1 > k_2$. Let $x_i = \sqrt{k_i + \theta_1 \theta_2}$, $(i = 1, 2)$.
- Let $V_i = \{u \mid k_u = k_i\}$, $(i = 1, 2)$.
- (Van Dam) Then the partition $\{ V_1, V_2 \}$ is an equitable partition of Γ.
- One can show that $x_1 x_2 = -(\theta_1 + 1)\theta_2$ or $x_1 x_2 = -(\theta_2 + 1)\theta_1$.
- The case $x_1 x_2 = -(\theta_2 + 1)\theta_1$ gives $x_2^2 \geq -\theta_2$.
- The case $x_1 x_2 = -(\theta_1 + 1)\theta_2$ is more difficult. In this use that there must be a pair of adjacent vertices u, v such that $k_u = k_v = k_2$ and $\lambda_{uv} \geq 0$. Then one gets also a lower bound on k_2 of order θ_2.
- Using those lower bounds on k_2 one gets that the multiplicity of θ_2 is bounded above by a function in θ_2.
Now we look at the following result.

Theorem

For given positive integer α, there are finitely many connected graphs with eigenvalues $\theta_0 > \theta_1 > \theta_2$ with exactly two valencies and $\theta_1 = \alpha$.

Sketch of proof

- Let Γ has valencies $k_1 > k_2$. Let $x_i = \sqrt{k_i + \theta_1 \theta_2}$, $(i = 1, 2)$.
- Let $V_i = \{u \mid k_u = k_i\}$, $(i = 1, 2)$.
- (Van Dam) Then the partition $\{V_1, V_2\}$ is an equitable partition of Γ.
- One can show that $x_1 x_2 = -(\theta_1 + 1) \theta_2$ or $x_1 x_2 = -(\theta_2 + 1) \theta_1$.
- The case $x_1 x_2 = -(\theta_2 + 1) \theta_1$ gives $x_2^2 \geq -\theta_2$.
- The case $x_1 x_2 = -(\theta_1 + 1) \theta_2$ is more difficult. In this use that there must be a pair of adjacent vertices u, v such that $k_u = k_v = k_2$ and $\lambda_{uv} \geq 0$. Then one gets also a lower bound on k_2 of order θ_2.
- Using those lower bounds on k_2 one gets that the multiplicity of θ_2 is bounded above by a function in θ_2.
- Bell and Rowlinson showed that if an eigenvalue multiplicity is $n - m$, then either the corresponding eigenvalue equals 0 or -1 or $n \leq (m + 1)m/2$. This shows the theorem.
Note that we only have a very few examples with more than two valencies and all the known examples have at most three different valencies.
Note that we only have a very few examples with more than two valencies and all the known examples have at most three different valencies. This leads to:

Question 2:

Is it true that a connected graph with exactly three distinct eigenvalues has at most 3 different valencies?
Note that we only have a very few examples with more than two valencies and all the known examples have at most three different valencies. This leads to:

Question 2:

Is it true that a connected graph with exactly three distinct eigenvalues has at most 3 different valencies?

This was shown for cones, i.e. graphs with a vertex of valency $n - 1$.
Note that we only have a very few examples with more than two valencies and all the known examples have at most three different valencies. This leads to:

Question 2:
Is it true that a connected graph with exactly three distinct eigenvalues has at most 3 different valencies?

This was shown for cones, i.e. graphs with a vertex of valency \(n - 1 \). There are examples of connected graphs with four distinct eigenvalues with the number of different valencies as large as you want. (I will discuss it below, in more detail.) The connectedness part in Question 2 is essential as all complete bipartite graphs with the same number of edges have the same distinct eigenvalues.
Note that we only have a very few examples with more than two valencies and all the known examples have at most three different valencies. This leads to:

Question 2:

Is it true that a connected graph with exactly three distinct eigenvalues has at most 3 different valencies?

This was shown for cones, i.e. graphs with a vertex of valency $n - 1$. There are examples of connected graphs with four distinct eigenvalues with the number of different valencies as large as you want. (I will discuss it below, in more detail.) The connectedness part in Question 2 is essential as all complete bipartite graphs with the same number of edges have the same distinct eigenvalues.

Challenge:

Construct more connected non-regular graphs with three distinct eigenvalues.
Outline

1 Introduction
 • Definitions
 • History

2 Theory
 • Basic Theory

3 Our results
 • Bound
 • Complement
 • Neumaier’s result

4 Many valencies
 • Many valencies
Graphs with a few eigenvalues and many valencies

(This is joint work with E. van Dam and Mr. Xia)

First we construct graphs with five eigenvalues:

- Let \(m = 2t + 1 \) be a positive odd integer.
- Let \(r_i = 2^i \) and \(s_i = 2^{m-i} \) for \(i = 0, 1, \ldots, t \).
- Take \(\Gamma \) be the disjoint union of \(K_{r_0,s_0}, K_{r_1,s_1}, \ldots, K_{r_t,s_t} \).
- Then \(\Gamma \) has three eigenvalues and \(2t + 2 \) valencies.
Graphs with a few eigenvalues and many valencies

(This is joint work with E. van Dam and Mr. Xia)
First we construct graphs with five eigenvalues:

- Let $m = 2t + 1$ be a positive odd integer.
- Let $r_i = 2^i$ and $s_i = 2^{m-i}$ for $i = 0, 1, \ldots, t$.
- Take Γ be the disjoint union of $K_{r_0, s_0}, K_{r_1, s_1}, \ldots, K_{r_t, s_t}$.
- Then Γ has three eigenvalues and $2t + 2$ valencies.
- Let Δ be the complement of Γ. Then Δ has still $2t + 2$ valencies, is connected and has exactly 5 eigenvalues, of which 3 have multiplicity 1.
Graphs with a few eigenvalues and many valencies, 2

Now examples with four eigenvalues with many valencies.

- Consider the Paley graph $P(p)$ where p is a prime such that $p = 1 \mod 4$.
- (vertex set $\{0, 1, 2 \ldots, p - 1\}$, $x \sim y$ if $x - y$ is a square (not zero))
Now examples with four eigenvalues with many valencies.

- Consider the Paley graph $P(p)$ where p is a prime such that $p = 1 \mod 4$.
- (vertex set $\{0, 1, 2 \ldots, p - 1\}$, $x \sim y$ if $x - y$ is a square (not zero))
- Bollobas showed that for any integer t, there exists a prime p_t such that all graphs on t vertices are induced subgraphs of $P(p_t)$.
Graphs with a few eigenvalues and many valencies, 2

Now examples with four eigenvalues with many valencies.

- Consider the Paley graph $P(p)$ where p is a prime such that $p \equiv 1 \pmod{4}$.
- (vertex set $\{0, 1, 2, \ldots, p - 1\}$, $x \sim y$ if $x - y$ is a square (not zero))
- Bollobas showed that for any integer t, there exists a prime p_t such that all graphs on t vertices are induced subgraphs of $P(p_t)$.
- Now consider H the disjoint union of $P(p_t)$ and an isolated vertex.
- Let G be a graph on t vertices, there exists a set of vertices S of $P(p_t)$ such the induced subgraph on S of $P(p_t)$ is G.
- Now switch the graph H with respect S, to obtain \hat{H}.
Now examples with four eigenvalues with many valencies.

- Consider the Paley graph $P(p)$ where p is a prime such that $p = 1 \mod 4$.
- (vertex set $\{0, 1, 2 \ldots, p - 1\}$, $x \sim y$ if $x - y$ is a square (not zero))
- Bollobas showed that for any integer t, there exists a prime p_t such that all graphs on t vertices are induced subgraphs of $P(p_t)$.
- Now consider H the disjoint union of $P(p_t)$ and an isolated vertex.
- Let G be a graph on t vertices, there exists a set of vertices S of $P(p_t)$ such the induced subgraph on S of $P(p_t)$ is G.
- Now switch the graph H with respect S, to obtain \hat{H}.
- Now \hat{H} has in general 4 distinct eigenvalues, of which two are simple, and the spectrum only depends on the number of edges of G.
Thank you for your attention.