An Introduction to Tries

Kevin Leckey

Monash University

21.09.2015
Given: Words, e.g. in binary code

Ξ₁ = 11010..., Ξ₂ = 00011..., Ξ₃ = 01101...,
Ξ₄ = 00000..., Ξ₅ = 11111..., Ξ₆ = 11100...
Given: Words, e.g. in binary code

\[\Xi_1 = 11010 \ldots, \quad \Xi_2 = 00011 \ldots, \quad \Xi_3 = 01101 \ldots, \]
\[\Xi_4 = 00000 \ldots, \quad \Xi_5 = 11111 \ldots, \quad \Xi_6 = 11100 \ldots \]

Task: Storage that allows fast search and insert/delete operations
Given: Words, e.g. in binary code

\[\Xi_1 = 11010 \ldots, \quad \Xi_2 = 00011 \ldots, \quad \Xi_3 = 01101 \ldots, \]
\[\Xi_4 = 00000 \ldots, \quad \Xi_5 = 11111 \ldots, \quad \Xi_6 = 11100 \ldots \]

Task: Storage that allows fast search and insert/delete operations

→ Use tree-like data structures such as a Trie
Given: Words, e.g. in binary code

\[\Xi_1 = 11010 \ldots, \quad \Xi_2 = 00011 \ldots, \quad \Xi_3 = 01101 \ldots, \]
\[\Xi_4 = 00000 \ldots, \quad \Xi_5 = 11111 \ldots, \quad \Xi_6 = 11100 \ldots \]

Task: Storage that allows fast search and insert/delete operations

→ Use tree-like data structures such as a Trie (Information retrieval)
Constructing a Trie

\[\Xi_1 = 11010 \ldots, \quad \Xi_2 = 00011 \ldots, \quad \Xi_3 = 01101 \ldots, \]
\[\Xi_4 = 00000 \ldots, \quad \Xi_5 = 11111 \ldots, \quad \Xi_6 = 11100 \ldots \]
Constructing a Trie

\[\Xi_1 = 11010 \ldots, \quad \Xi_2 = 00011 \ldots, \quad \Xi_3 = 01101 \ldots, \]
\[\Xi_4 = 00000 \ldots, \quad \Xi_5 = 11111 \ldots, \quad \Xi_6 = 11100 \ldots \]
Constructing a Trie

$\Xi_1 = 11010 \ldots$,
$\Xi_2 = 0011 \ldots$,
$\Xi_3 = 01101 \ldots$,
$\Xi_4 = 00000 \ldots$,
$\Xi_5 = 11111 \ldots$,
$\Xi_6 = 11100 \ldots$
Constructing a Trie

\[\Xi_1 = 11010 \ldots, \quad \Xi_2 = 00011 \ldots, \quad \Xi_3 = 01101 \ldots, \]
\[\Xi_4 = 00000 \ldots, \quad \Xi_5 = 11111 \ldots, \quad \Xi_6 = 11100 \ldots \]
Constructing a Trie

\[\Xi_1 = 11010 \ldots, \quad \Xi_2 = 00011 \ldots, \quad \Xi_3 = 01101 \ldots,\]
\[\Xi_4 = 00000 \ldots, \quad \Xi_5 = 11111 \ldots, \quad \Xi_6 = 11100 \ldots\]
Searching

Search for $\Xi_1 = 11010 \ldots$

![Trie diagram](image_url)
Searching

Search for $\Xi_1 = 11010 \ldots$
Searching

Search for $\Xi_1 = 11010 \ldots$

- Searching cost = Depth of Ξ_1
Searching

Search for $\Xi_1 = 11010 \ldots$

- Searching cost = Depth of Ξ_1
 = Shortest prefix of Ξ_1 not shared by Ξ_2, \ldots, Ξ_6
Searching

Search for $\Xi_1 = 11010 \ldots$

- Searching cost = Depth of Ξ_1

 = Shortest prefix of Ξ_1 not shared by Ξ_2, \ldots, Ξ_6

- Worst case = Height of the Trie
Searching

Search for $\Xi_1 = 11010 \ldots$

- Searching cost = Depth of $\Xi_1 = 3$
 - Shortest prefix of Ξ_1 not shared by Ξ_2, \ldots, Ξ_6
- Worst case = Height of the Trie
Searching

Search for $\Xi_1 = 11010 \ldots$

- **Searching cost** = Depth of $\Xi_1 = 3$
 = Shortest prefix of Ξ_1 not shared by Ξ_2, \ldots, Ξ_6
- **Worst case** = Height of the Trie = 4
Input Model

Generate the words Ξ_1, Ξ_2, \ldots to be stored \rightarrow Probabilistic Model
Generate the words Ξ_1, Ξ_2, \ldots to be stored \rightarrow Probabilistic Model

- The words Ξ_1, Ξ_2, \ldots are independent and identically distributed
Input Model

Generate the words Ξ_1, Ξ_2, \ldots to be stored → Probabilistic Model

- The words Ξ_1, Ξ_2, \ldots are **independent** and identically distributed
- Each word $\Xi_i = \xi_1 \xi_2 \xi_3 \xi_4 \ldots$ consists of letters ξ_1, ξ_2, \ldots that are:
Input Model

Generate the words Ξ_1, Ξ_2, \ldots to be stored \rightarrow Probabilistic Model

- The words Ξ_1, Ξ_2, \ldots are **independent** and identically distributed
- Each word $\Xi_i = \xi_1 \xi_2 \xi_3 \xi_4 \ldots$ consists of letters ξ_1, ξ_2, \ldots that are:
 - independent,
Input Model

Generate the words Ξ_1, Ξ_2, \ldots to be stored \rightarrow Probabilistic Model

- The words Ξ_1, Ξ_2, \ldots are independent and identically distributed

- Each word $\Xi_i = \xi_1 \xi_2 \xi_3 \xi_4 \ldots$ consists of letters ξ_1, ξ_2, \ldots that are:
 - independent,
 - $\mathbb{P}(\xi_j = 0) = 1/2 = \mathbb{P}(\xi_j = 1)$
Input Model

Generate the words Ξ_1, Ξ_2, \ldots to be stored → Probabilistic Model

- The words Ξ_1, Ξ_2, \ldots are independent and identically distributed.

- Each word $\Xi_i = \xi_1\xi_2\xi_3\xi_4 \ldots$ consists of letters ξ_1, ξ_2, \ldots that are:
 - independent,
 - $\mathbb{P}(\xi_j = 0) = 1/2 = \mathbb{P}(\xi_j = 1)$

More general models allow ξ_1, ξ_2, \ldots to be dependent (e.g. evolving as a Markov chain)
A recursive construction of the Trie

\[\Xi_1 \]
A recursive construction of the Trie
Consider n words Ξ_1, \ldots, Ξ_n. What is the depth of the vertex Ξ_1?
Consider \(n \) words \(\Xi_1, \ldots, \Xi_n \). What is the depth of the vertex \(\Xi_1 \)?

Recall:

Depth \(D_n = \) Length of the shortest unique prefix of \(\Xi_1 = \xi_1\xi_2\xi_3 \ldots \)
Consider n words Ξ_1, \ldots, Ξ_n. What is the depth of the vertex Ξ_1?

Recall:
Depth $D_n = \text{Length of the shortest unique prefix of } \Xi_1 = \xi_1 \xi_2 \xi_3 \ldots$

$$
\mathbb{P}(D_n \leq k) = \mathbb{P}(\Xi_2, \ldots, \Xi_n \text{ do not start with } \xi_1 \ldots \xi_k)
$$
Consider \(n \) words \(\Xi_1, \ldots, \Xi_n \). What is the depth of the vertex \(\Xi_1 \)?

Recall:
Depth \(D_n = \text{Length of the shortest unique prefix of } \Xi_1 = \xi_1 \xi_2 \xi_3 \ldots \)

\[
P(D_n \leq k) = P(\Xi_2, \ldots, \Xi_n \text{ do not start with } \xi_1 \ldots \xi_k) \\
= \left(1 - \left(\frac{1}{2}\right)^k\right)^{n-1}
\]
Consider n words Ξ_1, \ldots, Ξ_n. What is the depth of the vertex Ξ_1?

Recall:

Depth $D_n = \text{Length of the shortest unique prefix of } \Xi_1 = \xi_1 \xi_2 \xi_3 \ldots$

\[
P(D_n \leq k) = P(\Xi_2, \ldots, \Xi_n \text{ do not start with } \xi_1 \ldots \xi_k)
= \left(1 - \left(\frac{1}{2}\right)^k\right)^{n-1}
\]

Consequence:

\[
P(D_n \leq \alpha \log_2(n)) = (1 - n^{-\alpha})^{n-1}
\]
Consider n words Ξ_1, \ldots, Ξ_n. What is the depth of the vertex Ξ_1?

Recall:
Depth $D_n = \text{Length of the shortest unique prefix of } \Xi_1 = \xi_1 \xi_2 \xi_3 \ldots$

$$
P(D_n \leq k) = P(\Xi_2, \ldots, \Xi_n \text{ do not start with } \xi_1 \ldots \xi_k)$$
$$= \left(1 - \left(\frac{1}{2}\right)^k\right)^{n-1}$$

Consequence:
$$P(D_n \leq \alpha \log_2(n)) = (1 - n^{-\alpha})^{n-1} \xrightarrow{n \to \infty} \begin{cases} 1, & \text{if } \alpha > 1, \\ 0, & \text{if } \alpha < 1. \end{cases}$$
Results on D_n

- Shown on the previous slide:

$$\frac{D_n}{\log_2(n)} \xrightarrow{\mathbb{P}} 1 \quad (n \to \infty)$$
Results on D_n

- Shown on the previous slide:
 \[\frac{D_n}{\log_2(n)} \xrightarrow{\mathbb{P}} 1 \quad (n \to \infty) \]

- Considering the previous slide more carefully:
 \[\mathbb{P}(D_n - \log_2(n) < x) \approx \left(1 - \frac{2^{-x}}{n}\right)^{n-1} \xrightarrow{n \to \infty} e^{-2^{-x}} \]

(Limit is a Gumbel distribution known from extreme value theory)
Results on D_n

- Shown on the previous slide:
 \[\frac{D_n}{\log_2(n)} \xrightarrow{\mathbb{P}} 1 \quad (n \to \infty) \]

- Considering the previous slide more carefully:
 \[\mathbb{P} \left(D_n - \log_2(n) < x \right) \approx \left(1 - \frac{2^{-x}}{n} \right)^{n-1} \xrightarrow{n \to \infty} e^{-2^{-x}} \]
 (Limit is a Gumbel distribution known from extreme value theory)

- **Thm (Knuth ’72)**: $\mathbb{E}[D_n] = \log_2(n) + \Psi(\log_2(n)) + o(1)$
 with periodic function Ψ
Results on D_n

- Shown on the previous slide:

\[
\frac{D_n}{\log_2(n)} \xrightarrow{\mathbb{P}} 1 \quad (n \to \infty)
\]

- Considering the previous slide more carefully:

\[
\mathbb{P}(D_n - \log_2(n) < x) \approx \left(1 - \frac{2^{-x}}{n}\right)^{n-1} \xrightarrow{n \to \infty} e^{-2^{-x}}
\]

(Limit is a Gumbel distribution known from extreme value theory)

- **Thm (Knuth ’72):** $\mathbb{E}[D_n] = \log_2(n) + \Psi(\log_2(n)) + o(1)$ with periodic function Ψ

- **Thm (Szpankowski ’86):** $\text{Var}(D_n) \sim \Phi(\log_2(n))$ with periodic function Φ
Consider n words Ξ_1, \ldots, Ξ_n. What is the height of the resulting Trie?
Consider \(n \) words \(\Xi_1, \ldots, \Xi_n \). What is the height of the resulting Trie?

Def: Height \(H_n = \max\{D_n(\Xi_i) : i = 1, \ldots, n\} \).
Consider \(n \) words \(\Xi_1, \ldots, \Xi_n \). What is the height of the resulting Trie?

Def: Height \(H_n = \max\{D_n(\Xi_i) : i = 1, \ldots, n\} \).

The result \(\mathbb{P}(D_n \leq k) = (1 - 2^{-k})^{n-1} \) implies:

\[
\mathbb{P}(H_n > \alpha \log_2(n)) =
\]
Consider n words Ξ_1, \ldots, Ξ_n. What is the height of the resulting Trie?

Def: Height $H_n = \max\{D_n(\Xi_i) : i = 1, \ldots, n\}$.

The result $\mathbb{P}(D_n \leq k) = (1 - 2^{-k})^{n-1}$ implies:

$$\mathbb{P}(H_n > \alpha \log_2(n)) = \mathbb{P}(D_n(\Xi_i) > \alpha \log_2(n) \text{ for some } i \in \{1, \ldots, n\})$$
Consider n words Ξ_1, \ldots, Ξ_n. What is the height of the resulting Trie?

Def: Height $H_n = \max\{D_n(\Xi_i) : i = 1, \ldots, n\}$.

The result $\mathbb{P}(D_n \leq k) = (1 - 2^{-k})^{n-1}$ implies:

\[
\mathbb{P}(H_n > \alpha \log_2(n)) = \mathbb{P}(D_n(\Xi_i) > \alpha \log_2(n) \text{ for some } i \in \{1, \ldots, n\}) \\
\leq n \cdot \mathbb{P}(D_n > \alpha \log_2(n))
\]
Consider n words Ξ_1, \ldots, Ξ_n. What is the height of the resulting Trie?

Def: Height $H_n = \max\{D_n(\Xi_i) : i = 1, \ldots, n\}$.

The result $\mathbb{P}(D_n \leq k) = (1 - 2^{-k})^{n-1}$ implies:

$$
\mathbb{P}(H_n > \alpha \log_2(n)) = \mathbb{P}(D_n(\Xi_i) > \alpha \log_2(n) \text{ for some } i \in \{1, \ldots, n\}) \\
\leq n \cdot \mathbb{P}(D_n > \alpha \log_2(n)) \\
\leq n \cdot (1 - (1 - n^{-\alpha})^n)
$$
Consider n words Ξ_1, \ldots, Ξ_n. What is the height of the resulting Trie?

Def: Height $H_n = \max\{D_n(\Xi_i) : i = 1, \ldots, n\}$.

The result $\mathbb{P}(D_n \leq k) = (1 - 2^{-k})^{n-1}$ implies:

$$\mathbb{P}(H_n > \alpha \log_2(n)) = \mathbb{P}(D_n(\Xi_i) > \alpha \log_2(n) \text{ for some } i \in \{1, \ldots, n\})$$

$$\leq n \cdot \mathbb{P}(D_n > \alpha \log_2(n))$$

$$\leq n \cdot (1 - (1 - n^{-\alpha})^n)$$

$$\leq n^{2-\alpha}$$
Consider \(n \) words \(\Xi_1, \ldots, \Xi_n \). What is the height of the resulting Trie?

Def: Height \(H_n = \max\{D_n(\Xi_i) : i = 1, \ldots, n\} \).

The result \(\mathbb{P}(D_n \leq k) = (1 - 2^{-k})^{n-1} \) implies:

\[
\mathbb{P}(H_n > \alpha \log_2(n)) = \mathbb{P}(D_n(\Xi_i) > \alpha \log_2(n) \text{ for some } i \in \{1, \ldots, n\}) \\
\leq n \cdot \mathbb{P}(D_n > \alpha \log_2(n)) \\
\leq n \cdot (1 - (1 - n^{-\alpha})^n) \\
\leq n^{2-\alpha}
\]

Consequence: \(\mathbb{P}(H_n > \alpha \log_2(n)) \to 0 \) for \(\alpha > 2 \)
Results on H_n

- Partly proven on the previous slide:

$$\frac{H_n}{2 \log_2(n)} \xrightarrow{P} 1$$
Results on H_n

- Partly proven on the previous slide:

\[
\frac{H_n}{2 \log_2(n)} \overset{\mathbb{P}}{\longrightarrow} 1
\]

-

Thm (Devroye ’84):

\[
\lim_{n \to \infty} \mathbb{P}(H_n - 2 \log_2(n) - 1 \leq x) = \exp(-2^{-x}), \quad x \in \mathbb{R}
\]
Results on H_n

- Partly proven on the previous slide:
 \[
 \frac{H_n}{2 \log_2(n)} \xrightarrow{P} 1
 \]

- Thm (Devroye ’84):
 \[
 \lim_{n \to \infty} \mathbb{P}(H_n - 2 \log_2(n) - 1 \leq x) = \exp(-2^{-x}), \quad x \in \mathbb{R}
 \]

- Thm (Regnier ’82):
 \[
 \mathbb{E}[H_n] \sim 2 \log_2(n) \quad (n \to \infty)
 \]
 (Flajolet, Steyaert ’82 → periodic second order term)
Summary: Typical depth: $\log_2(n)$, height: $2\log_2(n)$.

Profile (Park, Hwang, Nicodème, Szpankowski): $\log_2 n \log n + O(1)$, $\log_2 n + O(1)$, $2\log_2 n + O(1)$.
Summary: Typical depth: $\log_2(n)$, height: $2\log_2(n)$.

Profile (Park, Hwang, Nicodème, Szpankowski):
Consider n words Ξ_1, \ldots, Ξ_n. External Path Length:

$$L_n := \sum_{i=1}^{n} D_{n,i}, \quad D_{n,i} = D_n(\Xi_i).$$
Consider \(n \) words \(\Xi_1, \ldots, \Xi_n \). External Path Length:

\[
L_n := \sum_{i=1}^{n} D_{n,i}, \quad D_{n,i} = D_n(\Xi_i).
\]
Consider n words Ξ_1, \ldots, Ξ_n. External Path Length:

$$L_n := \sum_{i=1}^{n} D_{n,i}, \quad D_{n,i} = D_n(\Xi_i).$$

Example: $L_6 = 2 + 3 + 4 \cdot 4 = 21$
A Recursion for L_n
A Recursion for L_n
A Recursion for L_n

$K_n = \# \text{ words starting with 0}$
A Recursion for L_n

$$K_n = \# \text{ words starting with } 0$$

$$L_n \overset{d}{=}$$
A Recursion for L_n

$K_n = \# \text{ words starting with } 0$

$L_n \overset{d}{=} L_{K_n}$
A Recursion for L_n

$K_n = \# \text{ words starting with 0}$

\[L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} \]
A Recursion for L_n

$K_n = \# \text{ words starting with 0}$

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$
The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

\[L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n \]
The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$

1. **Rescaling:** $X_n = (L_n - \mathbb{E}[L_n]) / \sqrt{\text{Var}(L_n)}$
The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$

1. Rescaling: $X_n = \frac{(L_n - \mathbb{E}[L_n])}{\sqrt{\text{Var}(L_n)}}$

$$X_n \overset{d}{=} A_{n,1} X_{K_n} + A_{n,2} \tilde{X}_{n-K_n} + b_n$$
The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$

1. **Rescaling:**
 $$X_n = \frac{(L_n - \mathbb{E}[L_n])}{\sqrt{\text{Var}(L_n)}}$$

 $$X_n \overset{d}{=} A_{n,1} X_{K_n} + A_{n,2} \tilde{X}_{n-K_n} + b_n$$

2. **Find the Limits:**
 $$(A_{n,1}, A_{n,2}, b_n) \longrightarrow ???$$
The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$

1. Rescaling: $X_n = (L_n - \mathbb{E}[L_n]) / \sqrt{\text{Var}(L_n)}$

$$X_n \overset{d}{=} A_{n,1} X_{K_n} + A_{n,2} \tilde{X}_{n-K_n} + b_n$$

2. Find the Limits: $(A_{n,1}, A_{n,2}, b_n) \longrightarrow ((\sqrt{2})^{-1}, (\sqrt{2})^{-1}, 0)$
The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$

1. Rescaling: $X_n = (L_n - \mathbb{E}[L_n]) / \sqrt{\text{Var}(L_n)}$

$$X_n \overset{d}{=} A_{n,1}X_{K_n} + A_{n,2}\tilde{X}_{n-K_n} + b_n$$

2. Find the Limits: $(A_{n,1}, A_{n,2}, b_n) \longrightarrow ((\sqrt{2})^{-1}, (\sqrt{2})^{-1}, 0)$

$$X \overset{d}{=} \frac{1}{\sqrt{2}}X + \frac{1}{\sqrt{2}}\tilde{X}$$ (1)
The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$

1. Rescaling: $X_n = (L_n - \mathbb{E}[L_n])/\sqrt{\text{Var}(L_n)}$

$$X_n \overset{d}{=} A_{n,1} X_{K_n} + A_{n,2} \tilde{X}_{n-K_n} + b_n$$

2. Find the Limits: $(A_{n,1}, A_{n,2}, b_n) \rightarrow ((\sqrt{2})^{-1}, (\sqrt{2})^{-1}, 0)$

$$X \overset{d}{=} \frac{1}{\sqrt{2}} X + \frac{1}{\sqrt{2}} \tilde{X} \quad (1)$$

The Contraction Method in a Nutshell

Aim: Find a limit law for L_n (after rescaling properly)

$$L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n$$

1. Rescaling: $X_n = (L_n - \mathbb{E}[L_n]) / \sqrt{\text{Var}(L_n)}$

$$X_n \overset{d}{=} A_{n,1} X_{K_n} + A_{n,2} \tilde{X}_{n-K_n} + b_n$$

2. Find the Limits: $(A_{n,1}, A_{n,2}, b_n) \longrightarrow (((\sqrt{2})^{-1}, (\sqrt{2})^{-1}, 0)$

$$X \overset{d}{=} \frac{1}{\sqrt{2}} X + \frac{1}{\sqrt{2}} \tilde{X}$$ \hspace{1cm} (1)

4. Contraction: Find a metric such that (1) corresponds to the fixed point of a contracting map.
The Contraction Method in a Nutshell

Aim: Find a limit law for \(L_n \) (after rescaling properly)

\[
L_n \overset{d}{=} L_{K_n} + \tilde{L}_{n-K_n} + n
\]

1. Rescaling: \(X_n = (L_n - \mathbb{E}[L_n]) / \sqrt{\text{Var}(L_n)} \)

\[
X_n \overset{d}{=} A_{n,1} X_{K_n} + A_{n,2} \tilde{X}_{n-K_n} + b_n
\]

2. Find the Limits: \((A_{n,1}, A_{n,2}, b_n) \rightarrow ((\sqrt{2})^{-1}, (\sqrt{2})^{-1}, 0) \)

\[
X \overset{d}{=} \frac{1}{\sqrt{2}} X + \frac{1}{\sqrt{2}} \tilde{X}
\] \hspace{1cm} (1)

4. Contraction: Find a metric such that (1) corresponds to the fixed point of a contracting map.

5. Convergence: Prove convergence with respect to that metric.
Results on L_n

- Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):

$$
\frac{L_n - \mathbb{E}[L_n]}{\sqrt{\text{Var}(L_n)}} \xrightarrow{d} \mathcal{N}(0, 1)
$$
Results on L_n

- **Thm (Jacquet, Regnier '88; Neininger, Rüschendorf 2004):**

\[
\frac{L_n - \mathbb{E}[L_n]}{\sqrt{\text{Var}(L_n)}} \xrightarrow{d} \mathcal{N}(0, 1)
\]

- From the analysis of D_n:

\[
\mathbb{E}[L_n] = \mathbb{E}\left[\sum_{i=1}^{n} D_n(\Xi_i)\right]
\]
Results on L_n

- Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):
 \[
 \frac{L_n - \mathbb{E}[L_n]}{\sqrt{\text{Var}(L_n)}} \xrightarrow{d} \mathcal{N}(0, 1)
 \]

- From the analysis of D_n:
 \[
 \mathbb{E}[L_n] = \mathbb{E} \left[\sum_{i=1}^{n} D_n(\Xi_i) \right] = n\mathbb{E}[D_n]
 \]
Results on L_n

- **Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):**

\[
\frac{L_n - \mathbb{E}[L_n]}{\sqrt{\text{Var}(L_n)}} \xrightarrow{d} \mathcal{N}(0, 1)
\]

- From the analysis of D_n:

\[
\mathbb{E}[L_n] = \mathbb{E} \left[\sum_{i=1}^{n} D_n(\Xi_i) \right] = n\mathbb{E}[D_n] = n \log_2(n) + n\Psi(\log_2(n)) + o(n)
\]
Results on L_n

- **Thm (Jacquet, Regnier ’88; Neininger, Rüschendorf 2004):**

\[
\frac{L_n - \mathbb{E}[L_n]}{\sqrt{\text{Var}(L_n)}} \xrightarrow{d} \mathcal{N}(0, 1)
\]

- From the analysis of D_n:

\[
\mathbb{E}[L_n] = \mathbb{E}\left[\sum_{i=1}^{n} D_n(\Xi_i) \right] = n\mathbb{E}[D_n] = n\log_2(n) + n\Psi(\log_2(n)) + o(n)
\]

- **Thm (Kirschenhofer, Prodinger ’86):**

\[
\text{Var}(L_n) = n\tilde{\Psi}(\log_2(n)) + O(\log^2(n))
\]
Trie:
- tree-like data structure to store words
Trie:

- tree-like data structure to store words
- position of a word in the tree \leftrightarrow path given by shortest unique prefix
Trie:

- tree-like data structure to store words
- position of a word in the tree \leftrightarrow path given by shortest unique prefix

Performance:

- Consider input: n independent words, each word is a sequence of 'coin tosses'
Trie:
- tree-like data structure to store words
- position of a word in the tree \leftrightarrow path given by shortest unique prefix

Performance:
- Consider input: n independent words, each word is a sequence of 'coin tosses'
 - Typical search/insert time (depth): around $\log_2(n)$
Trie:
- tree-like data structure to store words
- position of a word in the tree \leftrightarrow path given by shortest unique prefix

Performance:
- Consider input: n independent words, each word is a sequence of 'coin tosses'
 - Typical search/insert time (depth): around $\log_2(n)$
 - Worst search/insert time (height): around $2\log_2(n)$
Summary

Trie:
- tree-like data structure to store words
- position of a word in the tree \leftrightarrow path given by shortest unique prefix

Performance:
- Consider input: n independent words, each word is a sequence of 'coin tosses'
 - Typical search/insert time (depth): around $\log_2(n)$
 - Worst search/insert time (height): around $2\log_2(n)$
 - Construction cost (path length): around $n\log_2(n)$
Trie:
- tree-like data structure to store words
- position of a word in the tree \(\leftrightarrow\) path given by shortest unique prefix

Performance:
- Consider input: \(n\) independent words, each word is a sequence of 'coin tosses'
 - Typical search/insert time (depth): around \(\log_2(n)\)
 - Worst search/insert time (height): around \(2 \log_2(n)\)
 - Construction cost (path length): around \(n \log_2(n)\)
- Input model not very realistic, what about more general input models?
Markov Model

Generate n words Ξ_1, \ldots, Ξ_n such that
The Markov Source Model

Markov Model

Generate \(n \) words \(\Xi_1, \ldots, \Xi_n \) such that

- the words \(\Xi_1, \ldots, \Xi_n \) are \textbf{independent} and \textbf{identically distributed}
The Markov Source Model

Markov Model

Generate n words Ξ_1, \ldots, Ξ_n such that

- the words Ξ_1, \ldots, Ξ_n are **independent** and **identically distributed**
- Each word $\Xi_k = \xi_1 \xi_2 \xi_3 \ldots$ has letters $(\xi_j)_{j \geq 1}$ which are a Markov chain on $\{0,1\}$, i.e. for some $\mu = (\mu_0, \mu_1)$ and $P = (p_{ij})_{i,j \in \{0,1\}}$.
Generate n words Ξ_1, \ldots, Ξ_n such that

- the words Ξ_1, \ldots, Ξ_n are **independent** and **identically distributed**
- Each word $\Xi_k = \xi_1 \xi_2 \xi_3 \ldots$ has letters $(\xi_j)_{j \geq 1}$ which are a Markov chain on $\{0, 1\}$, i.e. for some $\mu = (\mu_0, \mu_1)$ and $P = (p_{ij})_{i,j \in \{0,1\}}$
 - $\mathbb{P}(\xi_1 = a) = \mu_a$,
 - $\mathbb{P}(\xi_{j+1} = a | \xi_1, \ldots, \xi_j) = p_{\xi_j a}$
Markov Model

Generate \(n \) words \(\Xi_1, \ldots, \Xi_n \) such that

- the words \(\Xi_1, \ldots, \Xi_n \) are **independent** and **identically distributed**

- Each word \(\Xi_k = \xi_1\xi_2\xi_3 \ldots \) has letters \((\xi_j)_{j \geq 1} \) which are a Markov chain on \(\{0, 1\} \), i.e. for some \(\mu = (\mu_0, \mu_1) \) and \(P = (p_{ij})_{i,j \in \{0,1\}} \)
 \[
 \begin{align*}
 &\text{• } \mathbb{P}(\xi_1 = a) = \mu_a, \\
 &\text{• } \mathbb{P}(\xi_{j+1} = a | \xi_1, \ldots, \xi_j) = p_{\xi_j a}
 \end{align*}
 \]

More general (Markov Model with \(k \)-dependency):

- distribution of \(\xi_j \) depends only on the previous \(k \) letters for some fixed \(k \)

Even more general:

- Dynamical Sources Model by Vallée
The Markov Source Model

Markov Model

Generate n words Ξ_1, \ldots, Ξ_n such that

- the words Ξ_1, \ldots, Ξ_n are independent and identically distributed
- Each word $\Xi_k = \xi_1 \xi_2 \xi_3 \ldots$ has letters $(\xi_j)_{j \geq 1}$ which are a Markov chain on $\{0, 1\}$, i.e. for some $\mu = (\mu_0, \mu_1)$ and $P = (p_{ij})_{i, j \in \{0, 1\}}$

\[
\begin{align*}
\mathbb{P}(\xi_1 = a) &= \mu_a, \\
\mathbb{P}(\xi_{j+1} = a | \xi_1, \ldots, \xi_j) &= p_{\xi_j a}
\end{align*}
\]

More general (Markov Model with k-dependency):

distribution of ξ_j depends only on the previous k letters for some fixed k
Markov Model

Generate n words Ξ_1, \ldots, Ξ_n such that

- the words Ξ_1, \ldots, Ξ_n are **independent** and **identically distributed**

- Each word $\Xi_k = \xi_1 \xi_2 \xi_3 \ldots$ has letters $(\xi_j)_{j \geq 1}$ which are a Markov chain on $\{0, 1\}$, i.e. for some $\mu = (\mu_0, \mu_1)$ and $P = (p_{ij})_{i,j \in \{0,1\}}$

\[
\begin{align*}
\bullet \quad & P(\xi_1 = a) = \mu_a, \\
\bullet \quad & P(\xi_{j+1} = a | \xi_1, \ldots, \xi_j) = p_{\xi_j a}
\end{align*}
\]

More general (Markov Model with k-dependency):

distribution of ξ_j depends only on the previous k letters for some fixed k

Even more general: Dynamical Sources Model by Vallée
Effect on Depth and related parameters:
Are there very ’typical’ long prefixes for the source (e.g. because p_{aa} is very large)?
Effect on Depth and related parameters:
Are there very ’typical’ long prefixes for the source (e.g. because p_{aa} is very large)? → Depth/Height gets very large

Entropy in the Markov Source Model:

$$H = \pi_0 \left(-p_{00} \log(p_{00}) - p_{01} \log(p_{01}) \right) + \pi_1 \left(-p_{10} \log(p_{10}) - p_{11} \log(p_{11}) \right)$$

with stationary distribution $(\pi_0, \pi_1) = \left(\frac{p_{10}}{p_{10} + p_{01}}, \frac{p_{01}}{p_{10} + p_{01}} \right)$

Depth for Markov Sources:

$$E[D_n] \sim 1 + H \log(n)$$
Effect on Depth and related parameters:
Are there very 'typical' long prefixes for the source (e.g. because p_{aa} is very large)? → Depth/Height gets very large

Entropy in the Markov Source Model:

$$H = \pi_0 (-p_{00} \log(p_{00}) - p_{01} \log(p_{01})) + \pi_1 (-p_{10} \log(p_{10}) - p_{11} \log(p_{11}))$$

with stationary distribution

$$(\pi_0, \pi_1) = \left(\frac{p_{10}}{p_{10} + p_{01}}, \frac{p_{01}}{p_{10} + p_{01}} \right)$$
Effect on Depth and related parameters:
Are there very 'typical' long prefixes for the source (e.g. because p_{aa} is very large)? → Depth/Height gets very large

Entropy in the Markov Source Model:

\[
H = \pi_0 (-p_{00} \log(p_{00}) - p_{01} \log(p_{01})) + \pi_1 (-p_{10} \log(p_{10}) - p_{11} \log(p_{11}))
\]

with stationary distribution

\[
(\pi_0, \pi_1) = \left(\frac{p_{10}}{p_{10} + p_{01}}, \frac{p_{01}}{p_{10} + p_{01}} \right)
\]

Depth for Markov Sources:

\[
\mathbb{E}[D_n] \sim \frac{1}{H} \log(n)
\]
Results for the Markov Source Model

- **Depth:** Jacquet, Szpankowski ’89
- **Height:** Szpankowski ’91
- **External Pathlength:** L., Neininger, Szpankowski (SODA 2013)
Results for the Markov Source Model

- **Depth**: Jacquet, Szpankowski ’89
- **Height**: Szpankowski ’91
- **External Pathlength**: L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001
The Markov Source Model

Results for the Markov Source Model

- **Depth:** Jacquet, Szpankowski ’89
- **Height:** Szpankowski ’91
- **External Pathlength:** L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:
- PATRICIA Tries and Digital Search Trees (Thesis L.→ Pathlength)
Results for the Markov Source Model

- **Depth:** Jacquet, Szpankowski ’89
- **Height:** Szpankowski ’91
- **External Pathlength:** L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:
- PATRICIA Tries and Digital Search Trees (Thesis L. → Pathlength)
- Radix-Sort and -Select (Thesis L.)
Results for the Markov Source Model

- **Depth:** Jacquet, Szpankowski ’89
- **Height:** Szpankowski ’91
- **External Pathlength:** L., Neininger, Szpankowski (SODA 2013)

Dynamical Sources: Clément, Flajolet, Vallée 2001

Some related problems:
- PATRICIA Tries and Digital Search Trees (Thesis L.→ Pathlength)
- Radix-Sort and -Select (Thesis L.)
- Lempel-Ziv Parsing Scheme (data compression)