Maximal *r*-Matching Sequences of Graphs and Hypergraphs

Adam Mammoliti

26th February 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• K_n is the graph with *n* vertices and every possible edge.

• K_n is the graph with *n* vertices and every possible edge.

Definitions and Examples

- K_n is the graph with *n* vertices and every possible edge.
- A matching is a set of disjoint edges in a graph.

Definitions and Examples

- K_n is the graph with *n* vertices and every possible edge.
- A matching is a set of disjoint edges in a graph.

Definitions and Examples

- K_n is the graph with *n* vertices and every possible edge.
- A matching is a set of disjoint edges in a graph.

 C_7

æ

• A labelling is a bijective function $\ell : E \to \{1, 2, \dots, |E|\}$.

• A labelling is a bijective function $\ell : E \to \{1, 2, \dots, |E|\}$.

• A labelling is a bijective function $\ell : E \to \{1, 2, \dots, |E|\}$.

• A labelling is a bijective function $\ell : E \to \{1, 2, \dots, |E|\}$.

- A labelling is a bijective function $\ell: E \to \{1, 2, \dots, |E|\}$.
- $ms(\ell)$ = max{s : every s consecutive edges are a matching}

- A labelling is a bijective function $\ell: E \to \{1, 2, \dots, |E|\}.$
- ms(ℓ) = max{s : every s consecutive edges are a matching}
 ms(G) = max{ms(ℓ)}

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- A labelling is a bijective function $\ell: E \to \{1, 2, \dots, |E|\}$.
- ms(ℓ) = max{s : every s consecutive edges are a matching}
 ms(G) = max{ms(ℓ)}

- A labelling is a bijective function $\ell: E \to \{1, 2, \dots, |E|\}.$
- $cms(\ell)$ = analogy of $ms(\ell)$ over cyclically consecutive edges
- $cms(G) = \max_{\ell} \{ cms(\ell) \}$

- A labelling is a bijective function $\ell: E \to \{1, 2, \dots, |E|\}.$
- $cms(\ell)$ = analogy of $ms(\ell)$ over cyclically consecutive edges
- $cms(G) = \max_{\ell} \{ cms(\ell) \}$

- A labelling is a bijective function $\ell: E \to \{1, 2, \dots, |E|\}.$
- $cms(\ell)$ = analogy of $ms(\ell)$ over cyclically consecutive edges
- $cms(G) = \max_{\ell} \{ cms(\ell) \}$

- A labelling is a bijective function $\ell: E \to \{1, 2, \dots, |E|\}.$
- $cms(\ell)$ = analogy of $ms(\ell)$ over cyclically consecutive edges
- $cms(G) = \max_{\ell} \{ cms(\ell) \}$

Alspach (2008)

$$ms(K_n) = \left\lfloor \frac{n-1}{2} \right\rfloor$$

Alspach (2008)

$$ms(K_n) = \left\lfloor \frac{n-1}{2} \right\rfloor$$

Brualdi et al. (2012)

$$cms(K_n) = \left\lfloor \frac{n-2}{2} \right\rfloor$$

Brualdi et al. (2012)

$$cms(C_n) = ms(C_n) = \left\lfloor \frac{n-1}{2} \right\rfloor$$

Brualdi et al. (2012)

$$cms(C_n) = ms(C_n) = \left\lfloor \frac{n-1}{2} \right\rfloor$$

Brualdi et al. (2012)

$$ms(P_n) = \left\lfloor \frac{n-1}{2} \right\rfloor$$
 and $cms(P_n) = \left\lfloor \frac{n-2}{2} \right\rfloor$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

$$cms(G) \ge \left\lfloor \frac{ms(G)}{2} \right\rfloor$$

$$cms(G) \ge \left\lceil \frac{ms(G)}{2} \right\rceil$$

$$cms(G) \ge \left\lceil \frac{ms(G)}{2} \right\rceil$$

$$cms(G) \ge \left\lceil \frac{ms(G)}{2} \right\rceil$$

$$cms(G) \ge \left\lceil \frac{ms(G)}{2} \right\rceil$$

deg(v) = 5

• deg(v) = number of edges touching v

deg(v) = 5

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

- deg(v) = number of edges touching v
- $ms_r(\ell)$ = analogy of $ms(\ell)$ with $deg(v) \le r$ for all $v \in V$

$$ms_r(G) = \max_{\ell} \{ms_r(\ell)\}$$

- deg(v) = number of edges touching v
- $cms_r(\ell)$ = analogy of $ms_r(\ell)$ over cyclically consecutive edges
- $cms_r(G) = \max_{\ell} \{ cms_r(\ell) \}$

- deg(v) = number of edges touching v
- $cms_r(\ell)$ = analogy of $ms_r(\ell)$ over cyclically consecutive edges

K₄

•
$$cms_r(G) = \max_{\ell} \{ cms_r(\ell) \}$$

• deg(v) = number of edges touching v

4

• $cms_r(\ell)$ = analogy of $ms_r(\ell)$ over cyclically consecutive edges

•
$$cms_r(G) = \max_{\ell} \{ cms_r(\ell) \}$$

- deg(v) = number of edges touching v
- $cms_r(\ell)$ = analogy of $ms_r(\ell)$ over cyclically consecutive edges
- $cms_r(G) = \max_{\ell} \{ cms_r(\ell) \}$

Generalisations

Theorem

If rn is even or n is odd and either $r \ge \frac{n-1}{2}$ or gcd(r, n-1) = 1, then

$$ms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

Generalisations

Theorem

If rn is even or n is odd and either $r \ge \frac{n-1}{2}$ or gcd(r, n-1) = 1, then

$$ms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

and if n is even or $r = \frac{n-1}{2}$, then

$$cms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalisations

Theorem

If rn is even or n is odd and either $r \ge \frac{n-1}{2}$ or gcd(r, n-1) = 1, then

$$ms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

and if n is even or $r = \frac{n-1}{2}$, then

$$cms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

Theorem

If r is even and n is odd, then

$$\left\lfloor \frac{rn-1}{2} \right\rfloor - 1 \le cms_r(K_n) \le \left\lfloor \frac{rn-1}{2} \right\rfloor$$

Conjecture

$$ms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

Conjecture

$$ms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

Conjecture

If rn is even, then

$$cms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question

For what odd r and n does

$$cms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

Question

For what odd r and n does

$$cms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$

Theorem

If r and n are odd, then

$$cms_r(K_n) = \left\lfloor \frac{rn-1}{2} \right\rfloor$$
 iff $cms_{n-1-r}(K_n) = \left\lfloor \frac{(n-1-r)n-1}{2} \right\rfloor$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

$$\bullet cms(K_8) = 3$$

 K_8

$$\bullet cms(K_8) = 3$$

 K_8

$$cms(K_8) = 3$$

$$cms(K_8) = 3$$

$$\bullet cms(K_8) = 3$$

(ロ) (四) (三) (三) (三) (0)

•
$$cms_r(K_n) = \frac{rn}{2} - 1$$

•
$$cms_r(K_n) = \frac{rn}{2} - 1$$

• Start with a matching decomposition $M_1 M_2 \cdots M_{n-1}$ of K_n

(ロ)、(型)、(E)、(E)、 E) の(の)

•
$$cms_r(K_n) = \frac{rn}{2} - 1$$

- Start with a matching decomposition $M_1 M_2 \cdots M_{n-1}$ of K_n
- A subsequence of $\frac{rn}{2} 1$ edges is of the form

$$\underbrace{e_1 \cdots e_j}_{\text{edges in } M_i} \underbrace{M_{i+1} \cdots M_{i+r-1}}_{\text{edges in } M_i} \underbrace{e_{j+1} \cdots e_{n-1}}_{\text{edges in } M_{i+r}}$$

•
$$cms_r(K_n) = \frac{rn}{2} - 1$$

- Start with a matching decomposition $M_1 M_2 \cdots M_{n-1}$ of K_n
- A subsequence of $\frac{rn}{2} 1$ edges is of the form

$$\underbrace{e_1 \cdots e_j}_{\text{edges in } M_i} \underbrace{M_{i+1} \cdots M_{i+r-1}}_{\text{edges in } M_i} \underbrace{e_{j+1} \cdots e_{n-1}}_{\text{edges in } M_{i+r}}$$

The matchings r spaces apart form the collections

$$M_1, M_{r+1}, \ldots, M_2, M_{r+2}, \ldots, M_d, M_{r+d}, \ldots$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

•
$$cms_3(K_{16}) = \frac{3 \times 16}{2} - 1 = 23$$

 K_{16}

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

•
$$cms_3(K_{16}) = \frac{3 \times 16}{2} - 1 = 23$$

Complete Bipartite Graphs

*K*_{2,3}

Brualdi et al. (2012)

If $n \leq m$, then

$$ms(K_{n,m}) = cms(K_{n,m}) = \begin{cases} n & \text{if } n < m \\ n-1 & \text{if } n = m \end{cases}$$

Brualdi et al. (2012)

If $n \leq m$, then

$$ms(K_{n,m}) = cms(K_{n,m}) = \begin{cases} n & \text{if } n < m \\ n-1 & \text{if } n = m \end{cases}$$

Theorem

If $n \leq m$, then

$$ms_r(K_{n,m}) = cms_r(K_{n,m}) = \begin{cases} rn & \text{if } n < m \\ rn - 1 & \text{if } n = m \end{cases}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Theorem

If $n \leq m$, then

$$ms_r(K_{n,m}) = cms_r(K_{n,m}) = \begin{cases} rn & \text{if } n < m \\ rn - 1 & \text{if } n = m \end{cases}$$

Theorem

If $n_1 < n_2 \leq \cdots \leq n_k$, then

$$ms_r(\mathcal{K}_{n_1,n_2,\ldots,n_k}) = cms_r(\mathcal{K}_{n_1,n_2,\ldots,n_k}) = rn_1$$
Theorem

Let $1 \le n_1 = n_2 = \dots = n_u < n_{u+1} \le \dots \le n_k$.

Theorem

Let $1 \le n_1 = n_2 = \dots = n_u < n_{u+1} \le \dots \le n_k$. Then

$$ms_r(\mathcal{K}_{n_1,\dots,n_k}) = \begin{cases} rn_1 & \text{if } n_1^{u-1} \mid r \text{ or } (1) \text{ below, holds} \\ rn_1 - 1 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

Let $1 \le n_1 = n_2 = \dots = n_u < n_{u+1} \le \dots \le n_k$. Then

$$ms_{r}(\mathcal{K}_{n_{1},...,n_{k}}) = \begin{cases} rn_{1} & \text{if } n_{1}^{u-1} \mid r \text{ or } (1) \text{ below, holds} \\ rn_{1}-1 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and

$$cms_r(\mathcal{K}_{n_1,\ldots,n_k}) = \begin{cases} rn_1 & \text{if } n_1^{u-1} \mid r \\ rn_1 - 1 & \text{otherwise} \end{cases}$$

Theorem

Let $1 \le n_1 = n_2 = \dots = n_u < n_{u+1} \le \dots \le n_k$. Then

$$ms_r(\mathcal{K}_{n_1,\dots,n_k}) = \begin{cases} rn_1 & \text{if } n_1^{u-1} \mid r \text{ or } (1) \text{ below, holds} \\ rn_1 - 1 & \text{otherwise} \end{cases}$$

and

$$cms_r(\mathcal{K}_{n_1,\ldots,n_k}) = \begin{cases} rn_1 & \text{if } n_1^{u-1} \mid r \\ rn_1 - 1 & \text{otherwise} \end{cases}$$

where

$$\left(\left\lfloor \frac{r}{n_1^{u-1}}\right\rfloor + 1\right) \left\lfloor \frac{1}{r} \prod_{i=2}^k n_i \right\rfloor \le \prod_{i=u+1}^k n_i \le \left\lfloor \frac{r}{n_1^{u-1}} \right\rfloor \left(\left\lfloor \frac{1}{r} \prod_{i=2}^k n_i \right\rfloor + 1\right)$$
(1)

Thanks for listening!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

- B. Alspach. The wonderful Walecki construction.
 Bull. Inst. Combin. Appl. 52 (2008), 7–12.
- R. A. Brualdi, K. P. Kiernan, S. A. Meyer, M. W. Schroeder. *Cyclic matching sequencibility of graphs.* Australas. J. Combin. **53** (2012), 245–256.

D. L. Kreher, A. Pastine, L. Tollefson.
 A note on the cyclic sequencibility of graphs.
 Australas. J. Combin. 61(2) (2015), 142–146.