Discrete Contact Geometry

Daniel V. Mathews

Monash University
Daniel.Mathews@monash.edu

Discrete Mathematics Seminar
Monash University
12 May 2014
Overview

Introduction

What is contact geometry?

History

Motivation

Discrete aspects of contact geometry

Combinatorics of surfaces and dividing sets

Contact-representable automata
Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:
Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry
Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry
- Complex analysis (and generalisations)
- Knot theory
- Quantum physics:
 Topological quantum field theory, string theory
Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry
- Complex analysis (and generalisations)
- Knot theory
- Quantum physics:
 - Topological quantum field theory, string theory
- Parking your car.
Contact geometry

Contact geometry is a branch of geometry that is closely related to many other fields of mathematics and mathematical physics:

- Much classical physics: e.g. optics, thermodynamics...
- Hamiltonian mechanics / symplectic geometry
- Complex analysis (and generalisations)
- Knot theory
- Quantum physics:
 - Topological quantum field theory, string theory
- Parking your car.

This talk is about some interesting recent applications that are discrete and combinatorial:

- Arrangements & combinatorics of curves on surfaces
- “Topological computation"
- Finite state automata
What is contact geometry?

Definition

A contact structure ξ on a 3-dimensional manifold M is a non-integrable 2-plane field on M.

A contact structure ξ on a 3-dimensional manifold M is a non-integrable 2-plane field on M.

$$\text{Example: } \mathbb{R}^3 \text{ with } \alpha = dz - y \, dx.$$
What is contact geometry?

Definition

A contact structure ξ on a 3-dimensional manifold M is a non-integrable 2-plane field on M.

Non-integrable: tangent curves (car-parking) but no tangent surfaces!
What is contact geometry?

Definition

A contact structure ξ on a 3-dimensional manifold M is a non-integrable 2-plane field on M.

Non-integrable: tangent curves (car-parking) but no tangent surfaces!

Such ξ can be given as $\ker \alpha$ where α is a differential 1-form satisfying $\alpha \wedge d\alpha \neq 0$ everywhere.

E.g. \mathbb{R}^3 with $\alpha = dz - y \, dx$.
Flexible vs discrete

The definition of a contact structure is:

- Very *differential-geometric* (non-integrability)
Flexible vs discrete

The definition of a contact structure is:

- Very *differential-geometric* (non-integrability)

- Very *flexible*: A small perturbation of a contact structure is again a contact structure. \((\alpha \wedge d\alpha \neq 0)\)
The definition of a contact structure is:

- Very *differential-geometric* (non-integrability)
- Very *flexible*: A small perturbation of a contact structure is again a contact structure. $(\alpha \wedge d\alpha \neq 0)$

But it’s also a surprisingly *rigid* type of geometry.

- Any other "nontrivial" contact structure ξ on \mathbb{R}^3 is *isotopic* to the standard one ξ_{std}.
 (i.e. ξ can be continuously deformed through contact structures to ξ_{std}.)
Criminally brief history of contact geometry

Origins:
- 18th c: Huygens’ principle in optics
- 19th c: Hamiltonian mechanics
Criminally brief history of contact geometry

Origins:
- 18th c: Huygens’ principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):
- Hamiltonian mechanics, *symplectic geometry*.
- “Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
Criminally brief history of contact geometry

Origins:
- 18th c: Huygens’ principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):
- Hamiltonian mechanics, *symplectic geometry*.
- “Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: “*All geometry is contact geometry*".
Criminally brief history of contact geometry

Origins:
- 18th c: Huygens’ principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):
- Hamiltonian mechanics, *symplectic geometry*.
- “Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: “*All* geometry is contact geometry".

Modern period:
- Eliashberg (1989): Distinction — *tight* (non-trivial) and *overtwisted* (trivial) contact structures.
Criminally brief history of contact geometry

Origins:
- 18th c: Huygens’ principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):
- Hamiltonian mechanics, *symplectic geometry*.
- “Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: “All geometry is contact geometry".

Modern period:
- Eliashberg (1989): Distinction — *tight* (non-trivial) and *overtwisted* (trivial) contact structures.
Criminally brief history of contact geometry

Origins:
- 18th c: Huygens’ principle in optics
- 19th c: Hamiltonian mechanics

Classical period (1900-1980):
- Hamiltonian mechanics, *symplectic geometry*.
- “Contact geometry = odd-dim symplectic geometry".
- Connections to much geometry and physics.
- Arnold: “*All* geometry is contact geometry".

Modern period:
- Eliashberg (1989): Distinction — *tight* (non-trivial) and *overtwisted* (trivial) contact structures.
- Gromov (1986), Eliashberg (1990s), ...:
 Development of *pseudoholomorphic curve* methods.
- Ozsváth-Szabó (2004), many others... : Development of *Floer homology* methods.
Why we contactify

Some motivations for the study of contact geometry:

- **Topology:** One way to understand the topology of a manifold is to study the contact structures on it.

- **Dynamics:** There are natural *vector fields* on contact manifolds and their dynamics have important applications to classical mechanics.
Why we contactify

Some motivations for the study of contact geometry:

- **Topology:** One way to understand the topology of a manifold is to study the contact structures on it.

- **Dynamics:** There are natural vector fields on contact manifolds and their dynamics have important applications to classical mechanics.

- **Physics:** Many recent developments run parallel with physics — Gromov-Witten theory, string theory, etc.
Some motivations for the study of contact geometry:

- **Topology**: One way to understand the topology of a manifold is to study the contact structures on it.

- **Dynamics**: There are natural *vector fields* on contact manifolds and their dynamics have important applications to classical mechanics.

- **Physics**: Many recent developments run parallel with physics — Gromov-Witten theory, string theory, etc.

- **Pure mathematical / Structural**: Mathematical structures found in contact geometry connect to other fields...
 - Combinatorics
 - Information theory
 - Discrete mathematics
Outline

1. Overview

2. Discrete aspects of contact geometry
 - 4 discrete facts about contact geometry

3. Combinatorics of surfaces and dividing sets

4. Contact-representable automata
Fact #1: Dividing sets

Consider a generic *surface* S in a contact 3-manifold M, possibly with boundary ∂S. (In this talk, $S = \text{disc or annulus}$.)

Fact #1 (Giroux, 1991)

A contact structure ξ near S is described exactly by a finite set Γ of non-intersecting smooth curves on S, called its *dividing set*.
Fact #1: Dividing sets

Consider a generic surface S in a contact 3-manifold M, possibly with boundary ∂S. (In this talk, $S = \text{disc or annulus}$.)

Fact #1 (Giroux, 1991)

A contact structure ξ near S is described exactly by a finite set Γ of non-intersecting smooth curves on S, called its dividing set.
Consider a generic \textit{surface} S in a contact 3-manifold M, possibly with boundary ∂S. (In this talk, $S = \text{disc or annulus}$.)

Fact #1 (Giroux, 1991)

A contact structure ξ near S is described exactly by a finite set Γ of non-intersecting smooth curves on S, called its \textit{dividing set}.

Roughly speaking, the contact planes are
- Tangent to ∂S
- “Perpendicular” to S precisely along Γ
Consider a generic surface S in a contact 3-manifold M, possibly with boundary ∂S. (In this talk, $S = \text{disc or annulus}$.)

Fact #1 (Giroux, 1991)

A contact structure ξ near S is described exactly by a finite set Γ of non-intersecting smooth curves on S, called its *dividing set*.

Roughly speaking, the contact planes are
- Tangent to ∂S
- “Perpendicular” to S precisely along Γ
Moreover, *isotopy* (continuous deformation) of contact structures near S corresponds to *isotopy* of dividing sets Γ.

Interested in the *combinatorial/topological arrangement of the curves* Γ.

Chord diagrams

Consider a disc D with some points F marked on ∂D. A chord diagram is a pairing of the points of F by non-intersecting curves on D. E.g. Note: We can shade alternating regions of a chord diagram. Colour = visible side of contact plane.
Moreover, *isotopy* (continuous deformation) of contact structures near S corresponds to *isotopy* of dividing sets Γ.

- Interested in the *combinatorial/topological arrangement* of the curves Γ.

Consider a disc D with some points F marked on ∂D. A *chord diagram* is a pairing of the points of F by non-intersecting curves on D.

E.g.
Moreover, *isotopy* (continuous deformation) of contact structures near S corresponds to *isotopy* of dividing sets Γ.

- Interested in the *combinatorial/topological arrangement* of the curves Γ.

Consider a disc D with some points F marked on ∂D. A *chord diagram* is a pairing of the points of F by non-intersecting curves on D.

E.g.

Note: We can shade alternating regions of a chord diagram.

- Colour = visible side of contact plane.
Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is “trivial”. (Reduces to study of plane fields in general.)
Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an overtwisted disc, it is “trivial”. (Reduces to study of plane fields in general.)

An overtwisted disc is:
Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is “trivial”. (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called *tight*.
Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is “trivial”. (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called *tight*.

Fact #2 (Giroux’s criterion)

Dividing sets detect trivial contact structures (OT discs).
Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an overtwisted disc, it is “trivial”. (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called tight.

Fact #2 (Giroux’s criterion)

Dividing sets detect trivial contact structures (OT discs).

- On a disc D, via a closed dividing curve.
Fact #2: Overtwisted discs

Eliashberg (1989) showed that when a contact structure contains an object called an *overtwisted disc*, it is "trivial". (Reduces to study of plane fields in general.)

An overtwisted disc is:

Contact structures without OT discs are called *tight*.

Fact #2 (Giroux’s criterion)

Dividing sets detect trivial contact structures (OT discs).
- On a *disc D*, via a *closed dividing curve*.
- On a *sphere*, when there is *more than one* dividing curve.
Boundary conditions

Examine what contact planes look like near boundary ∂S:
Boundary conditions

Examine what contact planes look like near boundary ∂S:

- Always tangent to ∂S
- Perpendicular to S along Γ.

\[
\text{Fixing points of } F \text{ fixes boundary conditions for } \xi.
\]

E.g.: Consider contact structures ξ near a disc D. Fix boundary conditions F with $|F| = 2n$.

(isotopy classes of) (tight) contact structures on $D = C_n$.

Here C_n is the n'th Catalan number $= \frac{1}{n+1} \left(\begin{array}{c} 2n \\ n \end{array} \right)$.

E.g. $n = 3$:

Examine what contact planes look like near boundary ∂S:

- Always tangent to ∂S
- Perpendicular to S along Γ.

Here C_n is the n^{th} Catalan number $= \frac{1}{n+1} \binom{2n}{n}$.

E.g. $n = 3$:

```latex
# (isotopy classes of) (tight) contact structures on $D = C_n$.
```

Example: Consider contact structures ξ near a disc D. Fix boundary conditions F with $|F| = 2n$.

(isotopy classes of) (tight) contact structures on $D = C_n$.

Here C_n is the n^{th} Catalan number $= \frac{1}{n+1} \binom{2n}{n}$.

E.g. $n = 3$:

```latex
# (isotopy classes of) (tight) contact structures on $D = C_n$.
```
Boundary conditions

Examine what contact planes look like near boundary ∂S:

- Always tangent to ∂S
- Perpendicular to S along Γ.
- Planes of ξ spin 180° between each point of $F = \Gamma \cap \partial S$.

\[\text{Fixing points of } F \text{ fixes boundary conditions for } \xi. \]

E.g. Consider contact structures ξ near a disc D. Fix boundary conditions F with $|F| = 2^n$.

(isotopy classes of) (tight) contact structures on $D = \mathbb{C}^n$.

Here \mathbb{C}^n is the n'th Catalan number $\frac{1}{n+1} \binom{2n}{n}$.

E.g. $n = 3$:

\[\text{...} \]
Boundary conditions

Examine what contact planes look like near boundary ∂S:

- Always tangent to ∂S
- Perpendicular to S along Γ.
- Planes of ξ spin 180° between each point of $F = \Gamma \cap \partial S$.

Fixing points of F fixes boundary conditions for ξ.
Examine what contact planes look like near boundary ∂S:

- Always tangent to ∂S
- Perpendicular to S along Γ.
- Planes of ξ spin 180° between each point of $F = \Gamma \cap \partial S$.

Fixing points of F fixes boundary conditions for ξ.

E.g.: Consider contact structures ξ near a disc D. Fix boundary conditions F with $|F| = 2n$.
Boundary conditions

Examine what contact planes look like near boundary ∂S:

- Always tangent to ∂S
- Perpendicular to S along Γ
- Planes of ξ spin 180° between each point of $F = \Gamma \cap \partial S$.

Fixing points of F fixes boundary conditions for ξ.

E.g.: Consider contact structures ξ near a disc D. Fix boundary conditions F with $|F| = 2n$.

(isotopy classes of) (tight) contact structures on $D = C_n$.

Here C_n is the n'th Catalaan number $= \frac{1}{n+1} \binom{2n}{n}$.
Boundary conditions

Examine what contact planes look like near boundary ∂S:

- Always tangent to ∂S
- Perpendicular to S along Γ.
- Planes of ξ spin 180° between each point of $F = \Gamma \cap \partial S$.

Fixing points of F fixes boundary conditions for ξ.

E.g.: Consider contact structures ξ near a disc D. Fix boundary conditions F with $|F| = 2n$.

(isotopy classes of) (tight) contact structures on $D = C_n$.

Here C_n is the n'th Catalan number $= \frac{1}{n+1} \binom{2n}{n}$.

E.g. $n = 3$: 📌 📌 📌 📌 📌
Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting *transversely* along a common boundary.
Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.
Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

- Dividing sets must *interleave*.
Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

- Dividing sets must *interleave*.
- We can *round the corner* in a well-defined way.
Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

- Dividing sets must *interleave*.
- We can *round the corner* in a well-defined way.
- When rounded, dividing sets behave as shown.
Fact #3: Two surfaces intersecting

Now consider *two surfaces* intersecting transversely along a common boundary.

- Dividing sets must *interleave*.
- We can *round the corner* in a well-defined way.
- When rounded, dividing sets behave as shown.

Fact #3 (Honda 2000)

When surfaces intersect transversely, dividing sets *interleave*. Rounding corners, “turn right to dive” and “turn left to climb”.

This leads to interesting combinatorics of curves...
Fact #4: Bypasses

There’s an operation on dividing sets called bypass surgery. (“Changing contact structure in the simplest possible way”.)
Fact #4: Bypasses

There’s an *operation* on dividing sets called *bypass surgery*. (“Changing contact structure in the simplest possible way”.)

Consider a sub-disc B of a surface with dividing set as shown:
Fact #4: Bypasses

There’s an *operation* on dividing sets called *bypass surgery*. (“Changing contact structure in the simplest possible way”.)

Consider a sub-disc B of a surface with dividing set as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: *bypass surgeries.*
Fact #4: Bypasses

There’s an operation on dividing sets called bypass surgery. ("Changing contact structure in the simplest possible way").

Consider a sub-disc B of a surface with dividing set as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: bypass surgeries.

Naturally obtain bypass triples of dividing sets.
Fact #4: Bypasses

There’s an operation on dividing sets called bypass surgery. ("Changing contact structure in the simplest possible way").

Consider a sub-disc B of a surface with dividing set as shown:

Two natural ways to adjust this chord diagram, consistent with the colours: bypass surgeries.

Naturally obtain bypass triples of dividing sets.

Fact #4 (Honda 2000)

Bypass surgery is a natural order-3 operation on dividing sets.
Fact #1: Dividing sets (Giroux, 1991)
A contact structure ξ near S is described exactly by a finite set Γ of non-intersecting smooth curves on S, called its *dividing set*.

Fact #2: Giroux's criterion
Dividing sets detect trivial contact structures (OT discs).
- On a *disc* D, via a *closed dividing curve*.
- On a *sphere*, when there is *more than one* dividing curve.

Fact #3: Edge rounding (Honda 2000)
When surfaces intersect transversely, dividing sets interleave.
- Rounding edges, “turn right to dive” and “turn left to climb”.

Fact #4: Bypass surgery (Honda 2000)
Bypass surgery is a natural order-3 operation on dividing sets.
Outline

1. Overview

2. Discrete aspects of contact geometry

3. Combinatorics of surfaces and dividing sets
 - Chord diagrams and cylinders
 - A vector space of chord diagrams
 - Slalom basis
 - A partial order on binary strings

4. Contact-representable automata
Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux’s criterion (#2):
Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux’s criterion (#2):

Insert chord diagrams into the two ends of a cylinder...

*...and round corners to obtain a dividing set on S^2.***
A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux’s criterion (#2):

Insert chord diagrams into the two ends of a cylinder...
*...and round corners to obtain a dividing set on S^2.***
Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux’s criterion (#2):

Insert chord diagrams into the two ends of a cylinder...
*...and round corners to obtain a dividing set on S^2.

\[\Gamma_1 \mapsto \Gamma_0 \]
A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux’s criterion (#2):

Insert chord diagrams into the two ends of a cylinder...

...and round corners to obtain a dividing set on \(S^2 \).
Cylinders

A combinatorial construction using dividing sets (fact #1), edge rounding (#3) and Giroux’s criterion (#2):

Insert chord diagrams into the two ends of a cylinder...
...and round corners to obtain a dividing set on S^2.

By Giroux’s criterion, the contact structure obtained on S^2 is:
- **Trivial** (OT) if it is disconnected, i.e. contains > 1 curve.
- **Nontrivial** (tight) if it is connected, i.e. contains 1 curve.
An “inner product" on chord diagrams

Define an “inner product" function based on this construction.

Definition

\[
\langle \cdot | \cdot \rangle : \{ \text{Div sets on } D^2 \} \times \{ \text{Div sets on } D^2 \} \rightarrow \mathbb{Z}_2
\]
Define an “inner product" function based on this construction.

\[\langle \cdot | \cdot \rangle : \{ \text{Div sets on } D^2 \} \times \{ \text{Div sets on } D^2 \} \rightarrow \mathbb{Z}_2 \]

\[\langle \Gamma_0 | \Gamma_1 \rangle = \begin{cases} 1 & \text{if the resulting curves on the cylinder form a single connected curve;} \\ 0 & \text{if the result is disconnected.} \end{cases} \]
An “inner product" on chord diagrams

Define an “inner product" function based on this construction.

Definition

\[
\langle \cdot | \cdot \rangle : \{ \text{Div sets on } D^2 \} \times \{ \text{Div sets on } D^2 \} \rightarrow \mathbb{Z}_2
\]

\[
\langle \Gamma_0 | \Gamma_1 \rangle = \begin{cases}
1 & \text{if the resulting curves on the cylinder form a single connected curve;} \\
0 & \text{if the result is disconnected.}
\end{cases}
\]

This function has a nice relationship with *bypasses.*
An “inner product” on chord diagrams

Define an “inner product” function based on this construction.

Definition

\[
\langle \cdot | \cdot \rangle : \{ \text{Div sets on } D^2 \} \times \{ \text{Div sets on } D^2 \} \rightarrow \mathbb{Z}_2
\]

\[
\langle \Gamma_0 | \Gamma_1 \rangle = \begin{cases}
1 & \text{if the resulting curves on the cylinder form a single connected curve;} \\
0 & \text{if the result is disconnected.}
\end{cases}
\]

This function has a nice relationship with *bypasses*. Suppose \(\Gamma, \Gamma', \Gamma'' \) form a bypass triple.
An “inner product" on chord diagrams

Define an “inner product" function based on this construction.

Definition

\[
\langle \cdot | \cdot \rangle : \{\text{Div sets on } D^2\} \times \{\text{Div sets on } D^2\} \rightarrow \mathbb{Z}_2
\]

\[
\langle \Gamma_0 | \Gamma_1 \rangle = \begin{cases}
1 & \text{if the resulting curves on the cylinder form a single connected curve;} \\
0 & \text{if the result is disconnected.}
\end{cases}
\]

This function has a nice relationship with *bypasses*. Suppose \(\Gamma, \Gamma', \Gamma''\) form a bypass triple.

Proposition (M.)

For any \(\Gamma, \Gamma', \Gamma''\) as above and any \(\Gamma_1\),

\[
\langle \Gamma | \Gamma_1 \rangle + \langle \Gamma' | \Gamma_1 \rangle + \langle \Gamma'' | \Gamma_1 \rangle = 0.
\]
A vector space of chord diagrams

Idea of proof:

\[\begin{array}{ccc}
\text{\includegraphics[width=0.2\textwidth]{chord_diagram1}} & + & \text{\includegraphics[width=0.2\textwidth]{chord_diagram2}} \\
= 1 + 0 + 1 = 0
\end{array} \]
A vector space of chord diagrams

Idea of proof:

\[
\begin{align*}
\quad & = 1 + 0 + 1 = 0
\end{align*}
\]

These ideas lead us to define a *relation* on chord diagrams: three chord diagrams forming a bypass triple sum to 0.

\[
\begin{align*}
\quad & = 0
\end{align*}
\]
A vector space of chord diagrams

Idea of proof:

\[\begin{align*}
& = 1 + 0 + 1 = 0 \\
& 0 = 0
\end{align*} \]

These ideas lead us to define a relation on chord diagrams: three chord diagrams forming a bypass triple sum to 0.

\[\begin{align*}
& = 0
\end{align*} \]

Leads to the definition of a vector space (over \(\mathbb{Z}_2 \)).

Definition

\[V_n = \frac{\mathbb{Z}_2 \langle \text{Chord diagrams with } n \text{ chords} \rangle}{\text{Bypass relation}} \]

(One can show \(V_n \) is a rudimentary form of Floer homology...)
A vector space of chord diagrams

Theorem (M.)

V_n has *dimension* 2^{n-1}, *with natural bases indexed by binary strings of length* $n - 1$.
A vector space of chord diagrams

Theorem (M.)

1. V_n has dimension 2^{n-1}, with natural bases indexed by binary strings of length $n - 1$.
2. $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n.
Theorem (M.)

1. V_n has dimension 2^{n-1}, with natural bases indexed by binary strings of length $n - 1$.
2. $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n.

The C_n chord diagrams are distributed in a combinatorially interesting way in a vector space with $2^{2^{n-1}}$ elements.
A vector space of chord diagrams

Theorem (M.)

1. V_n has dimension 2^{n-1}, with natural bases indexed by binary strings of length $n - 1$.
2. $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n.

The C_n chord diagrams are distributed in a combinatorially interesting way in a vector space with $2^{2^{n-1}}$ elements. We’ll describe two separate combinatorially interesting bases of V_n, indexed by $b \in B_{n-1}$, where

$$B_n = \{ \text{binary strings of length } n \}.$$
A vector space of chord diagrams

Theorem (M.)

1. V_n has dimension 2^{n-1}, with natural bases indexed by binary strings of length $n-1$.
2. $\langle \cdot | \cdot \rangle$ is a nondegenerate bilinear form on V_n.

The C_n chord diagrams are distributed in a combinatorially interesting way in a vector space with $2^{2^{n-1}}$ elements. We’ll describe two separate combinatorially interesting bases of V_n, indexed by $b \in B_{n-1}$, where

$$B_n = \{\text{binary strings of length } n\}.$$

1. The **Slalom basis** $\{S_b\}_{b \in B_{n-1}}$
2. The **Turing tape basis** $\{T_b\}_{b \in B_{n-1}}$
The slalom basis

Construction of the *slalom chord diagram* of a binary string.
The slalom basis

Construction of the \textit{slalom} chord diagram of a binary string.

\begin{align*}
1011
\end{align*}
The slalom basis

Construction of the *slalom* chord diagram of a binary string.

1011 ↔

In this basis, the bilinear form $\langle \cdot | \cdot \rangle$ has a simple description:

\[
\langle S_a | S_b \rangle = \begin{cases}
1 & \text{if } a \preceq b \\
0 & \text{otherwise},
\end{cases}
\]

where \preceq is a certain partial order on binary strings.
The slalom basis

Construction of the *slalom* chord diagram of a binary string.

1011 ↔

\[= S_{1011} \]
The slalom basis

Construction of the *slalom* chord diagram of a binary string.

In this basis, the bilinear form $\langle \cdot | \cdot \rangle$ has a simple description:

Theorem (M.)

$$\langle S_a | S_b \rangle = \begin{cases} 1 & \text{if } a \leq b \\ 0 & \text{otherwise,} \end{cases}$$

where \leq is a certain *partial order* on binary strings.
A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \preceq b$ holds if

1. a and b both contain the same number of 0s and 1s
A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \preceq b$ holds if

1. *a and b both contain the same number of 0s and 1s*

2. *Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.*
A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \preceq b$ holds if

1. a and b both contain the same number of 0s and 1s
2. Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

\[
\begin{align*}
0011 & \preceq 1001 & \preceq 1010 & \preceq 1100 \\
\preceq & 0110 & \preceq &
\end{align*}
\]
A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \preceq b$ holds if

1. a and b both contain the same number of 0s and 1s
2. Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

\[
\begin{align*}
0011 & \preceq 1001 & \preceq 1010 & \preceq 1100 \\
\preceq 0110 & \preceq & & \preceq \\
\end{align*}
\]

but 1001, 0110 are not comparable with respect to \preceq.
A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \preceq b$ holds if

1. a and b both contain the same number of 0s and 1s
2. Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

\[
\begin{array}{cccc}
0011 & \preceq & 1001 & \preceq & 1010 & \preceq & 1100 \\
\preceq & & 0110 & \preceq & & \\
\end{array}
\]

but 1001, 0110 are not comparable with respect to \preceq.

Note \preceq is a *sub-order* of the lexicographic/numerical order \leq.
A partial order on binary strings

Definition

For two binary strings a, b, the relation $a \preceq b$ holds if

1. a and b both contain the same number of 0s and 1s
2. Each 0 in a occurs to the left of, or same position as, the corresponding 0 in b.

E.g.

\[
egin{align*}
0011 & \preceq 1001 & \preceq 1010 & \preceq 1100 \\
\preceq & 0110 & \preceq
\end{align*}
\]

but 1001, 0110 are not comparable with respect to \preceq.

Note \preceq is a sub-order of the lexicographic/numerical order \preceq.

Inserting chord diagrams into a cylinder is a “topological machine” for comparing binary strings with respect to \preceq.
Properties of \preceq

Recall we said the slalom chord diagrams form a *basis* for V_n. E.g.
Properties of \preceq

Recall we said the slalom chord diagrams form a *basis* for V_n.
E.g.

$$\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
+
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}
\end{array}$$
Properties of \preceq

Recall we said the slalom chord diagrams form a *basis* for V_n. E.g.

$$
\begin{array}{c}
\begin{array}{c}
\includegraphics{example1.png}
\end{array}
\end{array}
= \begin{array}{c}
\begin{array}{c}
\includegraphics{example2.png}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\includegraphics{example3.png}
\end{array}
\end{array}

= \begin{array}{c}
\begin{array}{c}
\includegraphics{example4.png}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\includegraphics{example5.png}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\includegraphics{example6.png}
\end{array}
\end{array} + \begin{array}{c}
\begin{array}{c}
\includegraphics{example7.png}
\end{array}
\end{array}
\end{array}$$
Recall we said the slalom chord diagrams form a *basis* for V_n. E.g.,

\[
\begin{align*}
\text{= } & \begin{array}{c}
\text{Diagram 1}\n\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{= } & \begin{array}{c}
\text{Diagram 2}\n\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{= } & \begin{array}{c}
\text{Diagram 3}\n\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{= } & \begin{array}{c}
\text{Diagram 4}\n\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{= } & S_{0011} + S_{0110} + S_{1001} + S_{1010}
\end{align*}
\]
Properties of \(\preceq \)

Recall we said the slalom chord diagrams form a basis for \(V_n \).

E.g.

\[
\begin{align*}
\text{=} & \quad \text{+} \\
\text{=} & \quad \text{+} \\
\text{=} & \quad \text{+} \\
\text{=} & \quad S_{0011} \quad + \quad S_{0110} \quad + \quad S_{1001} \quad + \quad S_{1010}
\end{align*}
\]

- We say the *component strings* of \(\Gamma \) are 0011, 0110, 1001, 1010.
- Given a chord diagram \(\Gamma \), let \(b_-(\Gamma) \) denote the *numerically least*, and \(b_+(\Gamma) \) the *numerically greatest*, component string.

So for the example \(\Gamma \) above, \(b_-(\Gamma) = 0011 \) and \(b_+(\Gamma) = 1010 \).
Partial order \preceq and Catalan numbers

The partial order \preceq has interesting combinatorics...
Partial order \preceq and Catalan numbers

The partial order \preceq has interesting combinatorics...

Theorem (M.)

1. For any chord diagram Γ, $b_-(\Gamma) \preceq b_+(\Gamma)$.

... and produces the Catalan numbers again.

Corollary

The number of pairs of strings s^-, s^+ of length n such that $s^- \preceq s^+$ is C_{n+1}.
Partial order \preceq and Catalan numbers

The partial order \preceq has interesting combinatorics...

Theorem (M.)

1. For any chord diagram Γ, $b_-(\Gamma) \preceq b_+(\Gamma)$.
2. For any pair of strings s_-, s_+ satisfying $s_- \preceq s_+$, there exists a unique chord diagram Γ such that $b_-(\Gamma) = s_-$ and $b_+(\Gamma) = s_+$.
Partial order \preceq and Catalan numbers

The partial order \preceq has interesting combinatorics...

Theorem (M.)

1. For any chord diagram Γ, $b_-(\Gamma) \preceq b_+(\Gamma)$.
2. For any pair of strings s_-, s_+ satisfying $s_- \preceq s_+$, there exists a unique chord diagram Γ such that $b_-(\Gamma) = s_-$ and $b_+(\Gamma) = s_+$.

... and produces the Catalan numbers again.

Corollary

The number of pairs of strings s_-, s_+ of length n such that $s_- \preceq s_+$ is C_{n+1}.
Outline

1. Overview
2. Discrete aspects of contact geometry
3. Combinatorics of surfaces and dividing sets
4. Contact-representable automata
 - Turing tape basis
 - Cubulated inner product
 - Finite state automata
The Turing tape basis

Divide the disc with $|F| = 2n$ into $n - 1$ squares:

```
  |   |   |
  |   |   |
  |   |   |
  |   |   |
```
The Turing tape basis

Divide the disc with $|F| = 2n$ into $n - 1$ squares:

On each square there are two “basic” possible sets of sutures

0: , 1: ,
The Turing tape basis

Divide the disc with $|F| = 2n$ into $n - 1$ squares:

On each square there are two “basic” possible sets of sutures

0:

1:

Draw them according to a string b to obtain Turing tape basis diagrams T_b — another basis for V_n. E.g.

$T_{1011} =$
Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes “cubulated"...
Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes “cubulated"...

E.g. $\langle T_{1011} | T_{1000} \rangle = \begin{array}{c}
\text{Chord diagram 1} \\
\text{Chord diagram 2}
\end{array}$
Cubulated inner product

With chord diagrams are drawn in "Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes "cubulated"...

E.g. $\langle T_{1011} | T_{1000} \rangle =$

\[
\begin{array}{c}
\includegraphics[width=0.5\textwidth]{cubulated_inner_product_1} \\
\includegraphics[width=0.5\textwidth]{cubulated_inner_product_2}
\end{array}
\]
Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes “cubulated"...

E.g. $\langle T_{1011} | T_{1000} \rangle =$

\begin{align*}
\begin{array}{cccc}
\vdots & \vdots & \vdots & \vdots \\
\end{array}
\end{align*}
Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes “cubulated"...

E.g. $\langle T_{1011} | T_{1000} \rangle =$

\[
\begin{array}{c}
\includegraphics[width=0.3\textwidth]{cubulated_inner_product_1} \\
\includegraphics[width=0.3\textwidth]{cubulated_inner_product_2} \\
\includegraphics[width=0.3\textwidth]{cubulated_inner_product_3}
\end{array}
\]
With chord diagrams are drawn in “Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes “cubulated"...

E.g. $\langle T_{1011} | T_{1000} \rangle =$

\[\begin{array}{c}
\text{Diagram 1} \\
\text{Diagram 2} \\
\text{Diagram 3}
\end{array} \]

\[\leftrightarrow \]

\[\begin{array}{c}
\text{Diagram 4} \\
\text{Diagram 5} \\
\text{Diagram 6}
\end{array} \]
Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes “cubulated"...

E.g. $\langle T_{1011} | T_{1000} \rangle = \cdots \rightsquigarrow \cdots = \cdots$
Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner product \(\langle T_{1011} | T_{1000} \rangle = \)

E.g. \(\langle T_{1011} | T_{1000} \rangle = \)
Cubulated inner product

With chord diagrams are drawn in “Turing tape" form, the inner product $\langle \cdot | \cdot \rangle$ becomes “cubulated"...

E.g. $\langle T_{1011} | T_{1000} \rangle =$

\[
\begin{array}{c}
\begin{array}{c}
\end{array}
\end{array}
\]
Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.
Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.
Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.
Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.
Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.
Cubulation, step by step

Draw curves curvier, and analyse this computation in step-by-step fashion.
Cubulation, step by step
Cubulation, step by step
Cubulation, step by step
Cubulation, step by step
A finite state automaton

We can consider this process as a *finite state automaton*.
We can consider this process as a *finite state automaton*.

3 states:

- **A**:

- **B**:

- **⊥**: (or anything with a closed curve)
We can consider this process as a *finite state automaton*.

3 states:
A: ![State A](image)
B: ![State B](image)
⊥: ![State ⊥](image) (or anything with a closed curve)

4 inputs:
00
01
10
11

Figure: A finite state automaton with 3 states and 4 inputs.
A finite state automaton

We can consider this process as a finite state automaton.

3 states:
- A: [diagram]
- B: [diagram]
- ⊥: [diagram] (or anything with a closed curve)

4 inputs:
- 00
- 01
- 10
- 11

Transitions e.g.:

A \rightarrow B

B \rightarrow A
A finite state automaton

Can check that the calculation of the inner product on the "cubulated cylinder" on the "Turing tape basis" computes the finite state automaton:
A finite state automaton

Can check that the calculation of the inner product on the “cubulated cylinder” on the “Turing tape basis" computes the finite state automaton:
A finite state automaton

Can check that the calculation of the inner product on the "cubulated cylinder" on the "Turing tape basis" computes the finite state automaton:
Definition

A finite state automaton is contact-representable if:

- To every state $s \in S$ is associated a dividing set Γ_s on a disc with $2n$ fixed boundary points.
- To each input $\sigma \in \Sigma$ is associated a dividing set Γ_σ on an annulus with $2n$ fixed points on each boundary circle.
A finite state automaton is contact-representable if:

- To every state $s \in S$ is associated a dividing set Γ_s on a disc with $2n$ fixed boundary points.
- To each input $\sigma \in \Sigma$ is associated a dividing set Γ_σ on an annulus with $2n$ fixed points on each boundary circle.
- The transition function $S \times \Sigma \rightarrow S$ is achieved by gluing annuli to discs: if $(s, \sigma) \mapsto s'$ then $\Gamma_s \cup \Gamma_\sigma = \Gamma_{s'}$.

E.g. for the previous example $n=2$, 3 states: $\Gamma_A = \Gamma_B = \Gamma_\perp$: (or anything with a closed curve) 4 inputs: $\Gamma_00 = \Gamma_01 = \ldots$
A finite state automaton is contact-representable if:

- To every state $s \in S$ is associated a dividing set Γ_s on a disc with $2n$ fixed boundary points.
- To each input $\sigma \in \Sigma$ is associated a dividing set Γ_σ on an annulus with $2n$ fixed points on each boundary circle.
- The transition function $S \times \Sigma \rightarrow S$ is achieved by gluing annuli to discs: if $(s, \sigma) \mapsto s'$ then $\Gamma_s \cup \Gamma_\sigma = \Gamma_{s'}$.

E.g. for the previous example $n = 2$,

3 states:

$\Gamma_A = \bigcirc, \Gamma_B = \bigcirc, \Gamma_{\perp} = \bigcirc$ (or anything with a closed curve)
A finite state automaton is contact-representable if:

- To every state $s \in S$ is associated a dividing set Γ_s on a disc with $2n$ fixed boundary points.
- To each input $\sigma \in \Sigma$ is associated a dividing set Γ_σ on an annulus with $2n$ fixed points on each boundary circle.
- The transition function $S \times \Sigma \longrightarrow S$ is achieved by gluing annuli to discs: if $(s, \sigma) \mapsto s'$ then $\Gamma_s \cup \Gamma_\sigma = \Gamma_{s'}$.

E.g. for the previous example $n = 2$,

3 states:
- $\Gamma_A = \bigcirc$
- $\Gamma_B = \bigcirc$
- $\Gamma_\perp = \bigcirc$

(or anything with a closed curve)

4 inputs:
- Γ_{00}
- Γ_{01}
- \ldots
Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?
Quantum information theory and computation

Question
Which finite state automata can be represented by contact geometry in this way?

Various applications:
- These constructions give linear maps $V_n \rightarrow V_n$ which form a Topological quantum field theory.
Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

Various applications:

- These constructions give linear maps $V_n \rightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: “it from bit”.

Moreover, this is a TQFT which explicitly encodes computation.

Quantum states based on curves on surfaces and topology are considered in the physical theory of “anyons”.

A very combinatorial, geometric way of performing certain computations.

A reversible/conservative type of computation.
Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

Various applications:

- These constructions give linear maps $V_n \rightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: “it from bit”.
- Moreover, this is a TQFT which explicitly encodes computation.
Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

Various applications:

- These constructions give linear maps $V_n \rightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: “it from bit”.
- Moreover, this is a TQFT which explicitly encodes computation.
- Quantum states based on curves on surfaces and topology are considered in the physical theory of “anyons”.

A very combinatorial, geometric way of performing certain computations.

A reversible/conservative type of computation.
Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

Various applications:

- These constructions give linear maps $V_n \rightarrow V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: “it from bit”.
- Moreover, this is a TQFT which explicitly encodes computation.
- Quantum states based on curves on surfaces and topology are considered in the physical theory of “anyons”.
- A very combinatorial, geometric way of performing certain computations.
Quantum information theory and computation

Question

Which finite state automata can be represented by contact geometry in this way?

Various applications:

- These constructions give linear maps $V_n \to V_n$ which form a Topological quantum field theory.
- The above is a toy model of a quantum theory which explicitly encodes information: “it from bit”.
- Moreover, this is a TQFT which explicitly encodes computation.
- Quantum states based on curves on surfaces and topology are considered in the physical theory of “anyons”.
- A very combinatorial, geometric way of performing certain computations.
- A reversible / conservative type of computation.
Thanks for listening!

References:

