Let G be a finite simple graph with n vertices and m edges.
Let G be a finite simple graph with n vertices and m edges.

A thrackle drawing of G on the plane is a drawing $\mathcal{T} : G \to \mathbb{R}^2$, in which every pair of edges meets precisely once, either at a common vertex or at a point of proper crossing.
Introduction

Let G be a finite simple graph with n vertices and m edges.

A thrackle drawing of G on the plane is a drawing $\mathcal{T} : G \rightarrow \mathbb{R}^2$, in which every pair of edges meets precisely once, either at a common vertex or at a point of proper crossing.

Figure 1: Thrackled 6-cycle

Figure 2: Thrackled 7-cycle
An *n*-gonal musquash is a thrackled *n*-cycle whose successive edges e_0, \ldots, e_{n-1} intersect in the following manner: if the edge e_0 intersects the edges $e_{k_1}, \ldots, e_{k_{n-3}}$ in that order, then for all $j = 1, \ldots, n - 1$, the edge e_j intersects the edges $e_{k_1+j}, \ldots, e_{k_{n-3}+j}$ in that order, where the edge subscripts are computed modulo n [Woodall, 1969].
An *n*-gonal musquash is a thrackled *n*-cycle whose successive edges e_0, \ldots, e_{n-1} intersect in the following manner: if the edge e_0 intersects the edges $e_{k_1}, \ldots, e_{k_{n-3}}$ in that order, then for all $j = 1, \ldots, n - 1$, the edge e_j intersects the edges $e_{k_1+j}, \ldots, e_{k_{n-3}+j}$ in that order, where the edge subscripts are computed modulo n [Woodall, 1969].

A **standard odd musquash** is the simplest example of a thrackled cycle: for *n* odd, distribute *n* vertices evenly on a circle and then join by an edge every pair of vertices at the maximal distance from each other.
An \textit{n-gonal musquash} is a thrackled \textit{n}-cycle whose successive edges e_0, \ldots, e_{n-1} intersect in the following manner: if the edge e_0 intersects the edges $e_{k_1}, \ldots, e_{k_{n-3}}$ in that order, then for all $j = 1, \ldots, n - 1$, the edge e_j intersects the edges $e_{k_1+j}, \ldots, e_{k_{n-3}+j}$ in that order, where the edge subscripts are computed modulo n [Woodall, 1969].

A \textit{standard odd musquash} is the simplest example of a thrackled cycle: for n odd, distribute n vertices evenly on a circle and then join by an edge every pair of vertices at the maximal distance from each other.

Every musquash is either isotopic to a standard n-musquash, or is a thrackled six-cycle [CK, 1999, 2001].
Conjecture

Conway’s Thrackle Conjecture [1967]

For a thrackle drawing of a graph on the plane, one has $m \leq n$.
Conjecture

Conway’s Thrackle Conjecture [1967]

For a thrackle drawing of a graph on the plane, one has \(m \leq n \).

The current known bound is \(m \leq 1.4n \) [Yian Xu, 2012].
Conway’s Thrackle Conjecture [1967]

For a thrackle drawing of a graph on the plane, one has \(m \leq n \).

The current known bound is \(m \leq 1.4n \) [Yian Xu, 2012].

The Conjecture is however known to be true for some classes of thrackles such as

(i) straight line thrackles,
(ii) spherical thrackles,
(iii) outerplanar thrackles.
Outerplanar Thrackles

Outerplanar thrackles are thrackles whose vertices all lie on the boundary of a single disc D_1. Such thrackles are very well understood.
Outerplanar thrackles are thrackles whose vertices all lie on the boundary of a single disc D_1. Such thrackles are very well understood.

Theorem 1

Suppose a graph G admits an outerplanar thrackle drawing. Then

(a) any cycle in G is odd [CN 2012];

(b) the number of edges of G does not exceed the number of vertices [PS 2011];

(c) if G is a cycle, then the drawing is Reidemeister equivalent to a standard odd musquash [CN 2012].
Outerplanar thrackles are thrackles whose vertices all lie on the boundary of a single disc D_1. Such thrackles are very well understood.

Theorem 1

Suppose a graph G admits an outerplanar thrackle drawing. Then

- any cycle in G is odd [CN 2012];
- the number of edges of G does not exceed the number of vertices [PS 2011];
- if G is a cycle, then the drawing is Reidemeister equivalent to a standard odd musquash [CN 2012].

We say that a thrackle drawing **belongs to the class** T_d, $d \geq 1$, if all the vertices of the drawing lie on the boundaries of d disjoint discs D_1, \ldots, D_d.
Thrackles of class T_2

A thrackle drawing of class T_2 is called annular thrackle. This is a thrackle whose vertices lie on the boundary of 2 discs, D_1 and D_2.
A thrackle drawing of class T_2 is called annular thrackle. This is a thrackle whose vertices lie on the boundary of 2 discs, D_1 and D_2.

Figure 3: An annular thrackle drawing.
Thrackle drawings of class T_3 are called pants thrackle drawings or pants thrackles.
Thrackle drawings of class T_3 are called pants thrackle drawings or pants thrackles.

Figure 4: Pants thrackle drawing of a six-cycle.
Edge removal operation

Figure 5: The edge removal operation.
Figure 5: The edge removal operation.

Edge removal does not necessarily result in a thrackle drawing. Consider the triangular domain \triangle bounded by the arcs v_2v_3, Qv_2 and v_3Q and not containing the vertices v_1 and v_4 (if we consider the drawing on the plane, \triangle can be unbounded).
Edge removal does not necessarily result in a thrackle drawing. Consider the triangular domain \triangle bounded by the arcs v_2v_3, Qv_2 and v_3Q and not containing the vertices v_1 and v_4 (if we consider the drawing on the plane, \triangle can be unbounded).

Lemma 1

Edge removal results in a thrackle drawing if and only if \triangle contains no vertices of $T(G)$.
For a thrackle drawing of class T_d;

(a) the condition of Lemma 1 is satisfied if \triangle contains none of the d circles bounding the discs D_k;

(b) edge removal on an n-cycle, if possible, produces a thrackle drawing of the same class T_d of an $(n - 2)$-cycle.
For a thrackle drawing of class T_d;

(a) the condition of Lemma 1 is satisfied if \triangle contains none of the d circles bounding the discs D_k;

(b) edge removal on an n-cycle, if possible, produces a thrackle drawing of the same class T_d of an $(n-2)$-cycle.

We call a thrackle drawing irreducible if it admits no edge removals and reducible otherwise.
Theorem 2

Suppose a graph G admits an annular thrackle drawing. Then

(a) any cycle in G is odd;

(b) the number of edges of G does not exceed the number of vertices;

(c) if G is a cycle, then the drawing is, in fact, outerplanar (and as such, is Reidemeister equivalent to a standard odd musquash).
Theorem 3

Suppose a graph G admits a pants thrackle drawing. Then

(a) any even cycle in G is a six-cycle, and its drawing is Reidemeister equivalent to the one in Figure 4;

(b) if G is an odd cycle, then the drawing can be obtained from a pants drawing of a three-cycle by a sequence of edge insertions;

(c) the number of edges of G does not exceed the number of vertices.
To a path in a thrackle drawing of class T_d we associate a word W in the alphabet $X = \{x_1, \ldots, x_d\}$ in such a way that the i-th letter of W is x_k if the i-th vertex of the path lies on the boundary of the disc D_k.
The word W

To a path in a thrackle drawing of class T_d we associate a word W in the alphabet $X = \{x_1, \ldots, x_d\}$ in such a way that the i-th letter of W is x_k if the i-th vertex of the path lies on the boundary of the disc D_k.

For a word w and an integer m, w^m denote the word obtained by m consecutive repetitions of w.
The word W

To a path in a thrackle drawing of class T_d we associate a word W in the alphabet $X = \{x_1, \ldots, x_d\}$ in such a way that the i-th letter of W is x_k if the i-th vertex of the path lies on the boundary of the disc D_k.

For a word w and an integer m, w^m denote the word obtained by m consecutive repetitions of w.

Lemma 2

For a thrackle drawing of a graph G of class T_d,

(a) For no two different $i, j = 1, \ldots, d$, may a thrackle drawing of class T_d contain two edges with the words x_i^2 and x_j^2.

(b) Suppose that for some $i = 1, \ldots, d$, a thrackle drawing of class T_d contains a two-path with the word x_i^3 the first two vertices of which have degree 2. Then the drawing is reducible.
Proof of the Theorems

To prove Theorem 2(a) and Theorem 3(a, b) we need Lemma 3 and Lemma 4, respectively:

Lemma 3

If an n-cycle admits an irreducible annular thrackle drawing, then $n = 3$.

Lemma 4

If a cycle C admits an irreducible pants thrackle drawing, then C is either a three-cycle or a six-cycle, and in the latter case, the drawing is Reidemeister equivalent to the one in Figure 4.
To deduce Theorem 3(a) from Lemma 4 we look at all the thrackled 8-cycles.

Up to isotopy and Reidemeister moves, there exist exactly three thrackled eight-cycles [MY 2016], each of which can be obtained by edge insertion in a thrackled six-cycle but none of them is a pants thrackle.

Figure 6: All thrackled eight-cycles up to Reidemeister equivalency.
To prove Theorem 2(c), we analyse short thrackled paths and show that any annular thrackled cycle is alternating; i.e., for every edge e and every two-path fg vertex-disjoint from e, the crossings of e by f and g have opposite orientations.

The claim then follows from the fact that every alternating thrackle is outerplanar [CN, 2012].

Finally to prove Conways Thackle Conjecture for the class T_2 and T_3, i.e., Theorem 2(b) and Theorem 3(c) respectively, we analyse the forbidden configurations.
To prove Theorem 2(c), we analyse short thrackled paths and show that any annular thrackled cycle is alternating; i.e, for every edge e and every two-path fg vertex-disjoint from e, the crossings of e by f and g have opposite orientations.

The claim then follows from the fact that every alternating thrackle is outerplanar [CN, 2012].
To prove Theorem 2(c), we analyse short thrackled paths and show that any annular thrackled cycle is alternating; i.e, for every edge e and every two-path fg vertex-disjoint from e, the crossings of e by f and g have opposite orientations.

The claim then follows from the fact that every alternating thrackle is outerplanar [CN, 2012].

Finally to prove Conways Thackle Conjecture for the class T_2 and T_3, i.e, Theorem 2(b) and Theorem 3(c) respectively, we annalyse the forbidden configurations.
A counter example to Conway’s Thrackle Conjecture, if it exists, would be a graph containing either a theta-graph, a dumbbell, or a figure-8 graph.
Forbidden configurations

A counter example to Conway’s Thrackle Conjecture, if it exists, would be a graph containing either a theta-graph, a dumbbell, or a figure-8 graph.

Given a thrackle drawing of class T_d of a figure-8 graph, one can always perform vertex-splitting operation [MY2016] on the vertex of degree 4 to obtain a thrackle drawing of the same class T_d of a dumbbell graph.
A counter example to Conway’s Thrackle Conjecture, if it exists, would be a graph containing either a theta-graph, a dumbbell, or a figure-8 graph.

Given a thrackle drawing of class T_d of a figure-8 graph, one can always perform vertex-splitting operation [MY2016] on the vertex of degree 4 to obtain a thrackle drawing of the same class T_d of a dumbbell graph.

It follows that to prove Conway’s Thrackle Conjecture for thrackle drawings in a class T_d it is sufficient to prove that no dumbbell and no theta-graph admit a thrackle drawing of class T_d.
For Theorem 2(b), the proof follows from Lemma 3 and the fact that we must have at least one even cycle [LPS, 1997].
For Theorem 2(b), the proof follows from Lemma 3 and the fact that we must have at least one even cycle [LPS, 1997].
For Theorem 2(b), the proof follows from Lemma 3 and the fact that we must have at least one even cycle [LPS, 1997].

For Theorem 3(c), we have a dumb-bell graph or a theta graph consisting of a six-cycle and another graph.

By analysing small trees attached to the standard pants thrackled six-cycle we get a contradiction.