Transitivity of properties of two-generator subgroups of finite groups

Primož Moravec

University of Ljubljana

(joint work with Costantino Delizia and Chiara Nicotera)

Monash University, 2016

(visit funded by Robert Bartnik Visiting Fellowship)
Let G be a group and

$$G^\times = G \setminus \{1\}.$$

Consider the **commutativity relation** on G^\times:

$$x \leftrightarrow y \iff xy = yx.$$

The relation \leftrightarrow is reflexive and symmetric on G^\times.

Definition

G is a **CT-group** if commutativity is a transitive relation on G^\times.
Q_8 is not a CT-group
Role of the center

Let G be a group. Then

$$Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}$$

is called the center of G.

Proposition

Let G be a non-abelian CT-group. Then

$$Z(G) = \{ 1 \}.$$
A_5 is a CT-group
Main questions

- Classification of finite CT-groups?
- What can be said about infinite CT-groups?
- Possible generalizations?
Characterizations of CT-groups

Proposition

Let G be a group. The following are equivalent:

1. G is a CT-group.
2. $C_G(g)$ is abelian for every $g \in G^\times$.
3. The connected components of the relation graph of \leftrightarrow on G^\times are complete graphs.
Commutative-transitive groups

L. Weisner (1925).

\[G \text{ finite CT-group} \Rightarrow G \text{ solvable or simple.} \]

M. Suzuki (1957).

\[G \text{ finite non-abelian simple CT-group} \iff G \sim = \text{PSL}(2, f), f > 1. \]

\[G \text{ finite non-abelian solvable CT-group} \iff G \text{ finite Frobenius group with abelian kernel and cyclic complement.} \]
Commutative-transitive groups

L. Weisner (1925). \(G \) finite CT-group \(\iff \) \(G \) solvable or simple.
Commutative-transitive groups

L. Weisner (1925). G finite CT-group \iff G solvable or simple.

M. Suzuki (1957). G finite non-abelian simple CT-group \iff
$G \cong \text{PSL}(2, 2^f)$, $f > 1$.
Commutative-transitive groups

L. Weisner (1925). G finite CT-group $\iff G$ solvable or simple.

M. Suzuki (1957). G finite non-abelian simple CT-group $\iff G \cong PSL(2, 2^f), \ f > 1.$

Y.F. Wu (1998). G finite non-abelian solvable CT-group $\iff G$ finite Frobenius group with abelian kernel and cyclic complement.
A Lie algebra L is called **commutative transitive (CT)** if for all $x, y, z \in L \setminus \{0\}$, $[x, y] = [y, z] = 0$ imply $[x, z] = 0$.
Let L be a Lie algebra, N any ideal in L and U a subalgebra in L. Then U acts on N by derivations, that is,

$$(u, n) \mapsto [u, n],$$

where $u \in U$ and $n \in N$. Each action of U induces \textbf{conjugation}

$$(u, n) \mapsto n + [u, n].$$

An action of an algebra U on an ideal N of L is said to be \textbf{fixed-point-free} if the stabilizer of any nonzero element of N in U under conjugation is trivial.
Solvable CT Lie algebras

Theorem

Let L be a finite dimensional solvable CT Lie algebra over k. If L is nonabelian, then:

- L is a semidirect product of its nil radical N which is abelian, and an abelian Lie algebra that acts fixed-point-freely on N.
- If U and V are two complements to N in L, then there exists $a \in N$ such that $V = (1 + \text{ad } a)(U)$.
- If k is algebraically closed, then the complements are one-dimensional.
Simple CT Lie algebras and general case

Theorem

If k is algebraically closed, then the only finite dimensional simple CT Lie algebra over k is \mathfrak{sl}_2.
Theorem

If k is algebraically closed, then the only finite dimensional simple CT Lie algebra over k is \mathfrak{sl}_2.

Theorem

Let k be algebraically closed. Then every finite dimensional CT Lie algebra over k is either solvable or simple.
Let \(\mathcal{X} \) be a class of groups, and let \(G \) be any group. Define a graph \(\Gamma_{\mathcal{X}}(G) \):

- **vertices**: all non-trivial elements of \(G \);
- **edges**: different vertices \(a \) and \(b \) are connected by an edge iff \(\langle a, b \rangle \in \mathcal{X} \).
A group G is said to be \textbf{\mathcal{X}-transitive} (briefly: an \mathcal{XT}-group) if

$$\langle a, b \rangle \in \mathcal{X} \text{ and } \langle b, c \rangle \in \mathcal{X} \text{ imply } \langle a, c \rangle \in \mathcal{X}$$

for all $a, b, c \in G \setminus \{1\}$.
Three important classes of groups

- A group G is called **solvable** if it has a subnormal series whose factor groups are all abelian.
- A group G is called **supersolvable** if it has a normal series whose factors are all cyclic.
- A group G is called **nilpotent** if it has a normal series whose factors are central.
A group theoretical property \(\mathcal{X} \) is **bigenetic** in the class of all finite groups when a finite group \(G \) is in \(\mathcal{X} \) if and only if all its two-generator subgroups are in \(\mathcal{X} \).
Bigenetic properties

A group theoretical property \mathcal{X} is **bigenetic** in the class of all finite groups when a finite group G is in \mathcal{X} if and only if all its two-generator subgroups are in \mathcal{X}.

The following properties are bigenetic in the class of all finite groups:

- (i) solvability [J.G. Thompson (1968)];
- (ii) supersolvability [R.W. Carter, B. Fischer and T. Hawkes (1968)];
- (iii) nilpotency [M. Zorn (1936)].
Bigenetic properties

A group theoretical property \mathcal{X} is **bigenetic** in the class of all finite groups when a finite group G is in \mathcal{X} if and only if all its two-generator subgroups are in \mathcal{X}.

The following properties are bigenetic in the class of all finite groups:

(i) solvability [J.G. Thompson (1968)].
Bigenetic properties

A group theoretical property \mathcal{X} is **bigenetic** in the class of all finite groups when a finite group G is in \mathcal{X} if and only if all its two-generator subgroups are in \mathcal{X}.

The following properties are bigenetic in the class of all finite groups:

(i) solvability [J.G. Thompson (1968)];
Bigenetic properties

A group theoretical property \mathcal{X} is **bigenetic** in the class of all finite groups when a finite group G is in \mathcal{X} if and only if all its two-generator subgroups are in \mathcal{X}.

The following properties are bigenetic in the class of all finite groups:

(i) solvability [J.G. Thompson (1968)];
(ii) supersolvability [R.W. Carter, B. Fischer and T. Hawkes (1968)];
(iii) nilpotency [M. Zorn (1936)].
Good classes of groups

A group theoretical class \mathcal{X} is a **good class** of groups if:
Good classes of groups

A group theoretical class \mathcal{X} is a **good class** of groups if:
- \mathcal{X} is subgroup closed;
A group theoretical class \mathcal{X} is a **good class** of groups if:

- \mathcal{X} is subgroup closed;
- \mathcal{X} contains all finite abelian groups;
A group theoretical class \mathcal{X} is a **good class** of groups if:

- \mathcal{X} is subgroup closed;
- \mathcal{X} contains all finite abelian groups;
- \mathcal{X} is bigenetic in the class of all finite groups.
The \mathcal{X}-radical of a group

Let \mathcal{X} be any class of groups. The \mathcal{X}-radical of a group G is the product $R_\mathcal{X}(G)$ of all normal \mathcal{X}-subgroups of G.
The \mathcal{X}-radical of a group

Let \mathcal{X} be any class of groups. The \mathcal{X}-radical of a group G is the product $R_{\mathcal{X}}(G)$ of all normal \mathcal{X}-subgroups of G.

If $R_{\mathcal{X}}(G) = 1$ the group G is said to be \mathcal{X}-semisimple.
The \mathcal{X}-radical of a group

Let \mathcal{X} be any class of groups. The \mathcal{X}-radical of a group G is the product $R_\mathcal{X}(G)$ of all normal \mathcal{X}-subgroups of G.

If $R_\mathcal{X}(G) = 1$ the group G is said to be \mathcal{X}-semisimple.

Lemma

Let \mathcal{X} be a good class of groups, and let G be a finite $\mathcal{X}T$-group. Then $R_\mathcal{X}(G) \in \mathcal{X}$.
Theorem

Let \mathcal{X} be a good class of groups, and let G be a finite \mathcal{X}_T-group. Then one of the following holds:

(i) $G \in \mathcal{X}$;

(ii) G is \mathcal{X}-semisimple;

(iii) G is a Frobenius group with kernel and complement both in \mathcal{X}.

The \mathcal{X}-centralizers of a group

Let \mathcal{X} be any class of groups, and let H be any subgroup of a group G. The subset

$$C^\mathcal{X}_G(H) = \{ x \in G : \langle x, h \rangle \in \mathcal{X}, \text{ for some } h \in H \setminus \{1\} \}$$

is called the \mathcal{X}-centralizer of H in G.
The \mathcal{X}-centralizers of a group

Let \mathcal{X} be any class of groups, and let H be any subgroup of a group G. The subset

$$C^\mathcal{X}_G(H) = \{ x \in G : \langle x, h \rangle \in \mathcal{X}, \text{ for some } h \in H \setminus \{1\} \}$$

is called the \mathcal{X}-centralizer of H in G.

Lemma

Let \mathcal{X} be a good class of groups. Let G be a finite $\mathcal{X}T$-group, and let H be an \mathcal{X}-subgroup of G. Then $C^\mathcal{X}_G(H)$ is an \mathcal{X}-subgroup of G containing H.

The \mathcal{X}-centralizers of a group

Let \mathcal{X} be any class of groups, and let H be any subgroup of a group G. The subset

$$C_G^\mathcal{X}(H) = \{x \in G : \langle x, h \rangle \in \mathcal{X}, \text{ for some } h \in H \setminus \{1\}\}$$

is called the **\mathcal{X}-centralizer of H in G.**

Lemma

Let \mathcal{X} be a good class of groups. Let G be a finite $\mathcal{X}T$-group, and let H be an \mathcal{X}-subgroup of G. Then $C_G^\mathcal{X}(H)$ is an \mathcal{X}-subgroup of G containing H.

Proposition

Let \mathcal{X} be a good class of groups, and let G be a finite Frobenius group with kernel F and complement H. Then G is an $\mathcal{X}T$-group if and only if $C_G^\mathcal{X}(F)$ and $C_G^\mathcal{X}(H)$ are \mathcal{X}-groups.
Lack of \mathcal{X}-semisimple groups

Theorem

Let \mathcal{X} be a good class of groups, and suppose the following:

- \mathcal{X} contains all finite dihedral groups,
- Every finite \mathcal{X}-group is solvable.

If G is a finite $\mathcal{X}T$-group which is not in \mathcal{X}, then G is a Frobenius group with complement belonging to \mathcal{X}. In particular, G is solvable.
Corollary

Every finite solvable-transitive group is solvable.
Corollary

Every finite solvable-transitive group is solvable.

Corollary

Let G be a finite supersolvable-transitive group. If G is not supersolvable, then G is a Frobenius group with supersolvable complement. In particular, G is solvable.
The supersolvable graph of A_4

Supersolvable-transitive \nRightarrow supersolvable:
An example

The following is an example of a Frobenius group with supersolvable complement, which is not supersolvable-transitive:

Example

Let $A = \langle x \rangle \oplus \langle y \rangle$ be an elementary group of order 9 and let α be the automorphism of A given by the matrix

$$\begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}.$$

Let $G = A \rtimes \langle \alpha \rangle$. This is a group of order 36 which is not supersolvable-transitive. For, $\langle \alpha^2, (\alpha y)^2 \rangle$ is a dihedral group, $\langle (\alpha y)^2, \alpha y \rangle$ is cyclic, whereas $\langle \alpha^2, \alpha y \rangle = G$ is not supersolvable. Note that $C_G^G(\langle \alpha \rangle)$ has 20 elements, so it is not a subgroup of G.
The nilpotent graph of $\text{PSL}(2, 9)$
The nilpotent graph of $\text{PSL}(2, 9)$

This graph contains a component of the form
Nilpotent-transitive groups

Theorem

Let G be a finite \mathfrak{NT}-group. Then one of the following holds:

(i) G is nilpotent;

(ii) G is a Frobenius group with nilpotent complement;

(iii) $G \cong \text{PSL}(2, 2^f)$ for some $f > 1$;

(iv) $G \cong \text{Sz}(q)$ with $q = 2^{2n+1} > 2$.

Conversely, every finite group under (i)–(iv) is an \mathfrak{NT}-group.