Covering random graphs by monochromatic cycles

Rajko Nenadov

(joint with D. Korándi, F. Mousset, N. Škorić, and B. Sudakov)
The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue path.
Theorem (Gerencsér, Gyárfás 1967)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue path.

Take a maximal red-blue-path:
Theorem (Gerencsér, Gyárfás 1967)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue path.

Take a maximal red-blue-path:
Warmup

Theorem (Gerencsér, Gyárfás 1967)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue path.

Take a maximal red-blue-path:

![Diagram showing a red-blue path in a graph]
Warmup

Theorem (Gerencsér, Gyárfás 1967)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a **red** and a **blue** path.

Take a maximal **red-blue**-path:

![Diagram of a red-blue path in a complete graph](image)
Theorem (Gerencsér, Gyárfás 1967)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue path.

Take a maximal red-blue-path:
Warmup

Theorem (Gerencsér, Gyárfás 1967)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue path.

Take a maximal red-blue-path:

![Diagram of a red-blue-path]

$\text{Diagram of a red-blue-path}$
Theorem (Gerencsér, Gyárfás 1967)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue path.
Covering and partitioning by monochromatic cycles

For an edge-coloured graph G, let

- $\text{cp}(G) = \text{minimum no. of vertex-disjoint monochromatic cycles covering } V(G)$
- $\text{cc}(G) = \text{minimum no. of monochromatic cycles covering } V(G)$

$\text{cc}(G) \leq \text{cp}(G)$
Covering and partitioning by monochromatic cycles

For an edge-coloured graph G, let

$\text{cp}(G) = \text{minimum no. of vertex-disjoint monochromatic cycles covering } V(G)$

$\text{cc}(G) = \text{minimum no. of monochromatic cycles covering } V(G)$

$\text{cc}(G) \leq \text{cp}(G)$

For a graph G, let

$\text{cp}_r(G) = \text{maximum of } \text{cp}(G) \text{ over all } r\text{-colourings of } G$

$\text{cc}_r(G) = \text{maximum of } \text{cc}(G) \text{ over all } r\text{-colourings of } G$
Conjecture (Lehel 1979)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue cycle,

$$cp_2(K_n) = 2.$$
Conjecture (Lehel 1979)

The vertex set of any 2-edge-coloured complete graph K_n can be partitioned into a red and a blue cycle,

$$\text{cp}_2(K_n) = 2.$$

- Gyárfás (1983) → cover by two cycles intersecting in at most one vertex;
- Łuczak, Rödl, Szemerédi (1998) → proof for large n;
- Allen (2008) → proof for smaller n;
- Bessy, Thomassé (2010) → proof for all n.
Conjecture (Erdős, Gyárfás, Pyber 1991)

For every $r \geq 2$

$$cp_r(K_n) \leq r.$$
Conjecture (Erdős, Gyárfás, Pyber 1991)

For every $r \geq 2$

\[cp_r(K_n) \leq r. \]

- Erdős, Gyárfás, Pyber (1991) \rightarrow $cp_r(K_n) = O(r^2 \log r)$
- Gyárfás, Ruszinkó, Sárközy, Szemerédi (2006) \rightarrow $O(r \log r)$.
More colours

Conjecture (Erdős, Gyárfás, Pyber 1991)

For every $r \geq 2$

$$\text{cp}_r(K_n) \leq r.$$

- Erdős, Gyárfás, Pyber (1991) $\rightarrow \text{cp}_r(K_n) = O(r^2 \log r)$
- Gyárfás, Ruszinkó, Sárközy, Szemerédi (2006) $\rightarrow O(r \log r)$.
- Pokrovskiy (2012) \rightarrow the conjecture is wrong
What about non-complete graphs?

Similar results hold in
- complete bipartite graphs
- graphs with sufficiently large minimum degree
- graphs with bounded independence number
What about non-complete graphs?

Similar results hold in

- complete bipartite graphs
- graphs with sufficiently large minimum degree
- graphs with bounded independence number

These graphs are all very dense.
Theorem (Kohayakawa, Mota, Schacht, 2017+)

If \(p \gg (\log n / n)^{1/2} \) then whp every 2-colouring of \(G_{n,p} \) contains a partition into two monochromatic trees,

\[
\text{tp}_2(G_{n,p}) \leq 2.
\]
Theorem (Kohayakawa, Mota, Schacht, 2017+)

If \(p \gg (\log n/n)^{1/2} \) then whp every 2-colouring of \(G_{n,p} \) contains a partition into two monochromatic trees,

\[
\text{tp}_2(G_{n,p}) \leq 2.
\]

- Haxell, Kohayakawa (1996) \(\rightarrow \) \(\text{tp}_r(K_n) \leq r \)
Tree partitioning of random graphs

Theorem (Kohayakawa, Mota, Schacht, 2017+)

If $p \gg (\log n/n)^{1/2}$ then whp every 2-colouring of $G_{n,p}$ contains a partition into two monochromatic trees,

$$tp_2(G_{n,p}) \leq 2.$$

- Haxell, Kohayakawa (1996) → $tp_r(K_n) \leq r$
- The statement is false if $p \ll (\log n/n)^{1/2}$.
Tree partitioning of random graphs

Theorem (Kohayakawa, Mota, Schacht, 2017+)

If \(p \gg (\log n/n)^{1/2} \) then whp every 2-colouring of \(G_{n,p} \) contains a partition into two monochromatic trees,

\[tp_2(G_{n,p}) \leq 2. \]

- Haxell, Kohayakawa (1996) \(\rightarrow \) \(tp_r(K_n) \leq r \)
- The statement is false if \(p \ll (\log n/n)^{1/2} \).
- Proved by Bal and DeBiasio (2016) for \(p \gg (\log n/n)^{1/3} \).
Cycle covering of random graphs

Theorem (Korándi, Mousset, N., Škorić, Sudakov)

Given $r \geq 2$ and $\epsilon > 0$, if $p \gg n^{-1/r+\epsilon}$ then whp

$$cc_r(G_{n,p}) \leq Cr^6 \log r.$$

- Note: this is covering, not partitioning.
This is almost tight: if $p \ll n^{-1/r}$ then $cc_r(G_{n,p}) = \omega(1)$.

This is almost tight: if \(p \ll n^{-1/r} \) then \(\text{cc}_r(G_{n,p}) = \omega(1) \).

Construction for \(r = 2 \):
This is almost tight: if $p \ll n^{-1/r}$ then $cc_r(G_{n,p}) = \omega(1)$.

Construction for $r = 2$:

\[
\Pr[v \text{ has at least two neighbours in } \{1, \ldots, k\}] \leq \binom{k}{2} p^2
\]
This is almost tight: if \(p \ll n^{-1/r} \) then \(cc_r(G_{n,p}) = \omega(1) \).

Construction for \(r = 2 \):

\[\Pr[v \text{ has at least two neighbours in } \{1, \ldots, k\}] \leq \binom{k}{2} p^2 \]

For any constant \(k \):

\[\Pr[\text{such } v \text{ exists}] \leq n \binom{k}{2} p^2 \rightarrow 0 \]
This is almost tight: if $p \ll n^{-1/r}$ then $cc_r(G_{n,p}) = \omega(1)$.

Construction for $r = 2$:

Pr[v has at least two neighbours in \{1, \ldots, k\}] \leq \binom{k}{2} p^2

For any constant k:

$$\Pr[\text{such } v \text{ exists}] \leq n \binom{k}{2} p^2 \to 0$$

A similar construction works for $r > 2$.
Theorem

If \(p \gg n^{-1/r+\epsilon} \) then

\[
\text{cc}_r(G_{n,p}) \leq f(r).
\]
Theorem

If \(p \gg n^{-1/r+\epsilon} \) then

\[
\text{cc}_r(G_{n,p}) \leq f(r).
\]

Proof idea. Show that:

1. constantly many monochromatic cycles can cover all but \(O(1/p) \) vertices;
2. every set of \(O(1/p) \) can be covered by constantly many monochromatic cycles.
Covering all but $O(1/p)$ vertices
Covering all but $O(1/p)$ vertices

Split the vertices randomly into constantly many small parts.
Goal: cover each part using vertices from other parts (except for $O(1/p)$ vertices).
Covering all but $O(1/p)$ vertices

Each vertex has a **majority colour** to the top (at least np/r neighbours in that colour).
Covering all but $O(1/p)$ vertices

Classify the vertices according to the majority colour.
Covering all but $O(1/p)$ vertices

We handle each colour independently.
Covering all but $O(1/p)$ vertices

Each vertex has at least np/r red edges going to the right.
Covering all but $O(1/p)$ vertices

If two vertices have αnp^2 red common neighbours, place an auxiliary edge between them (here $\alpha > 0$ is a small constant).
In this way, we obtain an auxiliary graph on the red-majority vertices.
In this way, we obtain an auxiliary graph on the red-majority vertices.

Using Hall’s condition a cycle in the auxiliary graph can be transformed into a red cycle in the real graph, covering at least the same vertices.
In this way, we obtain an auxiliary graph on the red-majority vertices.

Using Hall’s condition a cycle in the auxiliary graph can be transformed into a red cycle in the real graph, covering at least the same vertices.
In this way, we obtain an auxiliary graph on the red-majority vertices.

Using Hall’s condition a cycle in the auxiliary graph can be transformed into a red cycle in the real graph, covering at least the same vertices.
Goal: show that the auxiliary graph contains cycles covering all but $O(1/p)$ vertices.
Goal: show that the auxiliary graph contains cycles covering all but \(O(1/p)\) vertices.

Lemma (Structural lemma)

Let \(C\) be large enough and let \(X_1, \ldots, X_{r+1}\) be disjoint subsets of \(C/p\) vertices in the auxiliary graph.

Then there are \(i \neq j\) such that the auxiliary graph has an edge going from \(X_i\) to \(X_j\).
Goal: show that the auxiliary graph contains cycles covering all but $O(1/p)$ vertices.

Lemma (Structural lemma)

Let C be large enough and let X_1, \ldots, X_{r+1} be disjoint subsets of C/p vertices in the auxiliary graph.

Then there are $i \neq j$ such that the auxiliary graph has an edge going from X_i to X_j.

In other words: the complement of the auxiliary graph does not contain a complete $(r + 1)$-partite graph with parts of size C/p.
Covering all but $O(1/p)$ vertices

The proof of the first step is thus completed by showing:

Lemma

Let G be a graph whose complement does not contain a complete k-partite graph with parts of size m. Then G contains k^2 vertex disjoint cycles covering all but $k^2 m$ vertices.
Covering C/p vertices

Next step: show that every subset of C/p vertices can be covered by a constant number of cycles.
Covering C/p vertices

Suppose $|X| \leq C/p$. Here’s the strategy:

- We again define an auxiliary graph on X, but this time, an **edge-coloured** one.
Covering C/p vertices

Suppose $|X| \leq C/p$. Here’s the strategy:

- We again define an auxiliary graph on X, but this time, an edge-coloured one.
- Place a red auxiliary edge between u and v if $G_{n,p}$ contains “many” short red paths from u to v. (Same for other colours.)
Covering C/p vertices

Suppose $|X| \leq C/p$. Here’s the strategy:

- We again define an auxiliary graph on X, but this time, an edge-coloured one.
- Place a red auxiliary edge between u and v if $G_{n,p}$ contains “many” short red paths from u to v. (Same for other colours.)
- A monochromatic cycle in the auxiliary graph will correspond to a monochromatic cycle in $G_{n,p}$.
Covering C/p vertices

Suppose $|X| \leq C/p$. Here’s the strategy:

- We again define an auxiliary graph on X, but this time, an edge-coloured one.
- Place a red auxiliary edge between u and v if $G_{n,p}$ contains “many” short red paths from u to v. (Same for other colours.)
- A monochromatic cycle in the auxiliary graph will correspond to a monochromatic cycle in $G_{n,p}$.
- Moreover, the auxiliary graph will have bounded independence number.
Covering C/p vertices

Suppose $|X| \leq C/p$. Here’s the strategy:

- We again define an auxiliary graph on X, but this time, an edge-coloured one.
- Place a red auxiliary edge between u and v if $G_{n,p}$ contains “many” short red paths from u to v. (Same for other colours.)
- A monochromatic cycle in the auxiliary graph will correspond to a monochromatic cycle in $G_{n,p}$.
- Moreover, the auxiliary graph will have bounded independence number.
- Thus it can be partitioned into constantly many monochromatic cycles (Sárközy 2010).
There is no independent set of size 6

\[\Omega(np^2) \]
There is no independent set of size 6

\[\Omega(n^2 p^4) \]

\[\Omega(np^2) \]
There is no independent set of size 6
There is no independent set of size 6

\[\Omega\left(\frac{\log n}{p}\right) \]
There is no independent set of size 6

\[\Omega\left(\frac{\log n}{p}\right) \]

\[\Omega\left(\frac{\log n}{p}\right) \]
There is no independent set of size 6
Open problems

Cycles:

- Partitioning instead of covering
Cycles:
- Partitioning instead of covering
- Better p (get rid of the ϵ)
Open problems

Cycles:
- Partitioning instead of covering
- Better p (get rid of the ϵ)

Trees:
- if $p \gg (\log n/n)^{1/r}$ then whp $t_{p_r}(G_{n,p}) \leq r$