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Three classes of algebras

1. Groups (∗,−1,e)

Defining equations

(x ∗ y) ∗ z = x ∗ (y ∗ z)

x ∗ e = x

x ∗ x−1 = e

Representation

A collection of permutations
of a set, closed under

I composition (∗),
I inverse (−1),
I identity (e).
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Three classes of algebras

2. Semigroups (∗)

Defining equations

(x ∗ y) ∗ z = x ∗ (y ∗ z)

Representation

A collection of self-maps
of a set, closed under

I composition (∗).
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Three classes of algebras

3. Distributive lattices (∨,∧)

Defining equations

(x ∨ y) ∨ z = x ∨ (y ∨ z)
(x ∧ y) ∧ z = x ∧ (y ∧ z)

x ∨ y = y ∨ x
x ∧ y = y ∧ x

x ∨ x = x
x ∧ x = x

x ∨ (x ∧ y) = x
x ∧ (x ∨ y) = x

x ∧ (y ∨ z) = (x ∧ y)∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y)∧ (x ∨ z)

Representation

A collection of subsets of a set,
closed under

I union (∨),
I intersection (∧).
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Concrete examples of distributive lattices

1. All subsets of a set S:

〈℘(S); ∪,∩〉.

2. Finite and cofinite subsets of N:

〈℘FC(N); ∪,∩〉.

3. Open subsets of a topological space X:

〈O(X); ∪,∩〉.
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More examples of distributive lattices

4. 〈{T ,F}; or ,and〉.

5. 〈N ∪ {0}; lcm,gcd〉.

(Represent a number as its set of prime-power divisors.)

6. Subgroups of a cyclic group G,

〈Sub(G); ∨,∩〉, where H ∨ K := 〈H ∪ K 〉.
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Drawing distributive lattices
Any distributive lattice 〈L;∨,∧〉 has a natural order
corresponding to set inclusion: a 6 b ⇐⇒ a ∨ b = b.

1

2

3

∨ max
∧ min
6 usual

12

64

2 3

1

∨ lcm
∧ gcd
6 division

{1,2,3}

{1,2} {1,3} {2,3}

{1} {2} {3}

∅

∨ union
∧ intersection
6 inclusion
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More pictures of distributive lattices

24

Note: Every distributive lattice embeds into 2S, for some set S.
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Representing finite distributive lattices

Original representation

A collection of subsets of a set,
closed under union and intersection.

New representation

The collection of all down-sets of an ordered set,
under union and intersection.
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More examples

Distributive
lattice

Ordered set
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Duality for finite distributive lattices
The classes of

finite distributive lattices and finite ordered sets

are dually equivalent.

surjections ←→ embeddings

embeddings ←→ surjections

products ←→ disjoint unions
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Dilworth’s Theorem for Ordered Sets

Let P be a finite ordered set.
The minimum number of chains needed to cover P is equal to
the width of P (i.e. the maximum size of an anti-chain in P).
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Aside: Hall’s Marriage Theorem
Let P be an ordered set of height 1.

P

G := Min(P)

B := Max(P)

Assume that |S| 6 |↑S \ S|, for each S ⊆ G.

Then P can be covered by |B| chains
(i.e., each girl can be paired with a boy she likes).

Proof.
Using Dilworth’s Theorem, we just need to show that P has
width |B|.
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Dual version of Dilworth’s Theorem

Let L be a finite distributive lattice.
The smallest n such that L embeds into a product of n chains
is exactly the width of the join-irreducibles of L.
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Infinite distributive lattices

Example
The finite-cofinite lattice 〈℘FC(N); ∪,∩〉 cannot be obtained as
the down-sets of an ordered set.

Proof.
I The ordered set would have to be an anti-chain.

I The ordered set would have to be infinite.
I So there would be at least 2N down-sets.
I But ℘FC(N) is countable.

But it can be obtained as the clopen down-sets of a topological
ordered set.

1 2 3 4 5 ∞
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More examples

Distributive lattice:

All finite subsets of N, as well as N itself,
〈℘fin(N) ∪ {N}; ∪,∩〉.

Topological ordered set:

1 2
3

4
5

∞
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More examples

Distributive lattice:

All finite subsets of N, as well as N itself,

〈N ∪ {0}; lcm,gcd〉.

Topological ordered set:

2

22

23

3

32
5

∞
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Setting up Priestley duality

1. From distributive lattices to topological ordered sets

Let L = 〈L;∨,∧〉 be a distributive lattice.

Define the dual of L by

D(L) := hom(L,2) 6 2∼
L,

where
I 2 is the two-element lattice with 0 6 1,
I 2∼ is the two-element discrete ordered set with 0 6 1.

Note
The topological ordered sets obtained in this way are called
Priestley spaces.
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Setting up Priestley duality, continued
2. From Priestley spaces to distributive lattices

Let X = 〈X ;6,T〉 be a Priestley space.

Define the dual of X by

E(X) := hom(X, 2∼) 6 2X .

3. The duality

Every distributive lattice is encoded by a Priestley space:

ED(L) ∼= L and DE(X) ∼= X,

for each distributive lattice L and Priestley space X.

Indeed, the classes of distributive lattices and Priestley spaces
are dually equivalent.
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Natural dualities in general

1. Distributive lattices ↔ Priestley spaces
2 = 〈{0,1};∨,∧〉 2∼ = 〈{0,1};6,T〉

2. Abelian groups ↔ Compact abelian groups
A = 〈S1; ·,−1,1〉 A∼ = 〈S1; ·,−1,1,T〉

3. Boolean algebras ↔ Boolean spaces
B = 〈{0,1};∨,∧,¬〉 B∼ = 〈{0,1};T〉
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