Euler Characteristic

Rebecca Robinson

May 15, 2007

1 Planar graphs

$$
\begin{gathered}
v=5, e=4, f=1 \\
v-e+f=2
\end{gathered}
$$

$v=6, e=7, f=3$
$v-e+f=2$

$$
\begin{gathered}
v=4, e=6, f=4 \\
v-e+f=2
\end{gathered}
$$

Euler characteristic: $\chi=v-e+f$
If a finite, connected, planar graph is drawn in the plane without any edge intersections, and:

- v is the number of vertices,
- e is the number of edges, and
- f is the number of faces
then:

$$
\chi=v-e+f=2
$$

ie. the Euler characteristic is 2 for planar surfaces.

Proof.

Start with smallest possible graph:

$v=1, e=0, f=1$
$v-e+f=2$
Holds for base case

Increase size of graph:

- either add a new edge and a new vertex, keeping the number of faces the same:

- or add a new edge but no new vertex, thus completing a new cycle and increasing the number of faces:

2 Polyhedra

- Euler first noticed this property applied to polyhedra
- He first mentions the formula $v-e+f=2$ in a letter to Goldbach in 1750
- Proved the result for convex polyhedra in 1752
- Holds for polyhedra where the vertices, edges and faces correspond to the vertices, edges and faces of a connected, planar graph

- In 1813 Lhuilier drew attention to polyhedra which did not fit this formula

$v=16, e=24, f=12$ $v-e+f=4$

$v=20, e=40, f=20$
$v-e+f=0$

Euler's theorem. (Von Staudt, 1847) Let P be a polyhedron which satisfies:
(a) Any two vertices of P can be connected by a chain of edges.
(b) Any loop on P which is made up of straight line segments (not necessarily edges) separates P into two pieces.

Then $v-e+f=2$ for P.

Von Staudt's proof:

For a connected, planar graph G, define the dual graph G^{\prime} as follows:

- add a vertex for each face of G; and
- add an edge for each edge in G that separates two neighbouring faces.

Choose a spanning tree T in G.

Now look at the edges in the dual graph G^{\prime} of $T^{\prime} s$ complement $(G-T)$.

The resulting graph T^{\prime} is a spanning tree of G^{\prime}.

- Number of vertices in any tree $=$ number of edges +1 .

$$
\begin{aligned}
& |V(T)|-|E(T)|=1 \text { and }\left|V\left(T^{\prime}\right)\right|-\left|E\left(T^{\prime}\right)\right|=1 \\
& |V(T)|-\left[|E(T)|+\left|E\left(T^{\prime}\right)\right|\right]+\left|V\left(T^{\prime}\right)\right|=2 \\
& |V(T)|=|V(G)|, \text { since } T \text { is a spanning tree of } G \\
& \left|V\left(T^{\prime}\right)\right|=|F(G)|, \text { since } T^{\prime} \text { is a spanning tree of } G^{\prime} \text { s dual } \\
& |E(T)|+\left|E\left(T^{\prime}\right)\right|=|E(G)|
\end{aligned}
$$

- Therefore $V-E+F=2$.
- Platonic solid: a convex, regular polyhedron, i.e. one whose faces are identical and which has the same number of faces around each vertex.
- Euler characteristic can be used to show there are exactly five Platonic solids.

Proof.
Let n be the number of edges and vertices on each face. Let d be the degree of each vertex.
$n F=2 E=d V$

Rearrange:
$e=d V / 2, f=d V / n$
By Euler's formula:

$$
\begin{aligned}
& V-d V / 2+d V / n=2 \\
& V(2 n+2 d-n d)=4 n
\end{aligned}
$$

Since n and V are positive:

$$
\begin{aligned}
& 2 n+2 d-n d>0 \\
& (n-2)(d-2)<4
\end{aligned}
$$

Thus there are five possibilities for (d, n) :
$(3,3)$ (tetrahedron), $(3,4)$ (cube), $(3,5)$ (dodecahedron), $(4,3)$ (octahedron), $(5,3)$ (icosahedron).

3 Non-planar surfaces

- $\chi=v-e+f=2$ applies for graphs drawn on the plane - what about other surfaces?
- Genus of a graph: a number representing the maximum number of cuttings that can be made along a surface without disconnecting it - the number of handles of the surface.
- In general: $\chi=2-2 g$, where g is the genus of the surface
- Plane has genus 0 , so $2-2 g=2$

Torus (genus 1): $v-e+f=0$

Double torus (genus 2): $v-e+f=-2$

- Topological equivalence: two surfaces are topologically equivalent (or homeomorphic) if one can be 'deformed' into the other without cutting or gluing.
- Examples: the sphere is topologically equivalent to any convex polyhedron; a torus is topologically equivalent to a 'coffee cup' shape.
- Topologically equivalent surfaces have the same Euler number: the Euler characteristic is called a topological invariant

