Parameterized Complexity

Rebecca Robinson

September 28, 2006

Parameterized Complexity Rebecca Robinson

PARAMETERIZED COMPLEXITY

1 Parameterized complexity

In classical complexity, a decision problem is specified by:
e The input to the problem.
® The question to be answered.

Example:
VERTEX COVER
Instance: A graph G = (V, E), and a positive integer k.

Question: Does (= have a vertex cover of size < k? (that is, a collection of vertices
V' of G such that for all edges v1v5 of G either v; € V' orvy € V')

Parameterized Complexity Rebecca Robinson

PARAMETERIZED COMPLEXITY

A parameterized problem is one where the input to the problem is considered as

consisting of two parts, i.e., a pair of strings (x,y) € X* X ¥*. The string y is
defined as the parameter.

In parameterized complexity, the problem is specified by:

e The input to the problem.

® The aspects of the input that constitute the parameter.

® The question to be answered.

Parameterized Complexity Rebecca Robinson

PARAMETERIZED COMPLEXITY

Example:

VERTEX COVER

Instance: A graph G = (V, E)
Parameter: A positive integer k

Question: Does (G have a vertex cover of size < k?

Parameterized Complexity Rebecca Robinson

PARAMETERIZED COMPLEXITY

Helpful for problems that are NP-hard when the complexity is analysed in terms of

the input size only, but which can be solved in a time that is polynomial in the input

size and exponential in some parameter k.

By fixing k at a small value, these problems become tractable despite their

traditional classification.

Parameterized Complexity Rebecca Robinson

FIXED-PARAMETER TRACTABILITY

2 Fixed-parameter tractability

A parameterized problem L C »* X X* is fixed-parameter tractable (FPT) if there
is an algorithm that correctly decides, for input (z,y) € X* x X*, whether

(x,y) € Lintime f(k)n®, where |x| = n, |y| = k, ais a constant (independent
of k), and f is an arbitrary function [Downey and Fellows, Parameterized

Complexity].

Parameterized Complexity Rebecca Robinson

METHODS FOR FINDING FPT ALGORITHMS

3 Methods for finding FPT algorithms

3.1 Bounded Search Tree Method

Theorem (Downey and Fellows, 1992): VERTEX COVER is solvable in time
k
O2F|V(G)]).

Proof:

Construct a binary tree of height k. Label each node of the tree with (a) the vertices
included so far in a possible vertex cover, and (b) those parts of graph (G that are yet

to be covered.

Parameterized Complexity Rebecca Robinson

METHODS FOR FINDING FPT ALGORITHMS

Label the root of the tree with the empty set and graph G:

Search tree

@0 G

Parameterized Complexity Rebecca Robinson

METHODS FOR FINDING FPT ALGORITHMS

Choose an edge uv € E, then create the two children of the root node

corresponding to the two possibilities for the vertex cover.

Search tree

0, G

{u}, G —u {v}, G—v

Parameterized Complexity Rebecca Robinson

METHODS FOR FINDING FPT ALGORITHMS

Continue the process...

Parameterized Complexity

Search tree

0, G

choose edge uv

Rebecca Robinson

10

METHODS FOR FINDING FPT ALGORITHMS

If a node is created in the tree that is labelled with a graph having no edges, then a
vertex cover has been found. If no such node exists at tree height < k, then there is

no vertex cover of size < k.

Since the height of the search tree is at most &, the total number of nodes in the
tree is less than 2*. For each node, the task of choosing an edge from (7 in order to
create the two child nodes must be executed. Thus the complexity of the algorithm

s O(28|V(G))).

Parameterized Complexity Rebecca Robinson

11

METHODS FOR FINDING FPT ALGORITHMS

3.2 Reduction to a Problem Kernel

Theorem (Buss, 1989): VERTEX COVER is solvable in time O(n + kk)

Proof:

For a simple graph H, any vertex of degree > k must belong to every k-element

vertex cover of H.

Let S be the set of all vertices in H of degree > k. Letp = |S]|.

Parameterized Complexity Rebecca Robinson

12

METHODS FOR FINDING FPT ALGORITHMS

If p > k, there is no k-vertex cover.

Parameterized Complexity

Rebecca Robinson

13

METHODS FOR FINDING FPT ALGORITHMS

Letk’ =k —p.

Discard all p vertices of degree > k and the edges incident to them. Call the

resulting graph H'.

H =H\S

For H to have a k-vertex cover, Hl must have a k’-vertex cover.

Parameterized Complexity Rebecca Robinson

14

METHODS FOR FINDING FPT ALGORITHMS

The vertices in H' have degree bounded by k.

For H' to have a k’-vertex cover, H' must have no more than k’(k + 1) vertices -
the k' vertices of the vertex cover plus a maximum of k vertices adjacent to each of
those vertices: k' + (k' x k) = K'(k 4+ 1).

k' vertices
In vertex cover H'

Thus, if H' has more than k' (k + 1) vertices, reject.

Parameterized Complexity Rebecca Robinson

15

METHODS FOR FINDING FPT ALGORITHMS

Since we have now limited the size of H' to a function of the parameter k, we can

establish in constant time if H' has a k’-vertex cover.

If H' has no k’-vertex cover, reject. Otherwise, any k’-vertex cover of H' plus the

p vertices from the initial step gives a k-vertex cover of H.

Parameterized Complexity Rebecca Robinson

16

METHODS FOR FINDING FPT ALGORITHMS

Finding all p vertices of degree > k in H takes linear time.

Since H' has < k’'(k + 1) vertices, there are at most (Ok(:,k)) possibilities to check
in finding a k’-vertex cover of H’, giving this step a complexity of O (k¥).

Thus the complexity of the whole procedure is O(n + kk)

Parameterized Complexity Rebecca Robinson

17

METHODS FOR FINDING FPT ALGORITHMS

3.3 Reduction to a Problem Kernel: Example 2

k-LEAF SPANNING TREE
Instance: A graph G = (V, E)
Parameter: A positive integer k

Question: Is there a spanning tree of (G (a tree that contains all the vertices in
V (@)) with at least k leaves?

Theorem (Downey, Doyle and Fellows, 1995):

k-LEAF SPANNING TREE is solvable in time O(n + (2k)%F).

Parameterized Complexity Rebecca Robinson

18

METHODS FOR FINDING FPT ALGORITHMS

Suppose (7 has a k-leaf spanning tree. Then GG must be connected.

A vertex v is called useless if it has degree exactly 2, and both of its neighbours

have degree exactly 2.

A useless vertex v is resolved by deleting v from (G and adding an edge between
its two neighbours. Call G’ the graph obtained from G by resolving all useless

vertices. This process can be completed in linear time.

Ceee e

G

Parameterized Complexity Rebecca Robinson 19

METHODS FOR FINDING FPT ALGORITHMS

Algorithm for k-LEAF SPANNING TREE

Step 1. Check whether (G is connected and whether there is a vertex of degree > k. If

(7 has such a vertex, the answer is yes.

Parameterized Complexity Rebecca Robinson

20

METHODS FOR FINDING FPT ALGORITHMS

Step 2. Compute G'. If G’ has at least 4(k + 2)(k + 1) vertices, the answer is yes.
(See proof later on.)

Step 3. If G’ has fewer than 4(k + 2)(k + 1) vertices, exhaustively analyse G'. G
has a k-leaf spanning tree if and only if G’ does.

Parameterized Complexity Rebecca Robinson

21

METHODS FOR FINDING FPT ALGORITHMS

Claim:

If H is a connected simple resolved graph with at least 4(k + 2)(k + 1) vertices,
H has a spanning tree with at least k leaves.

Proof:

(*) If atree 1" has 7 internal (nonleaf) vertices of degree > 3, then I’ has at least

1 + 2 leaves.

Simplest tree with 1 internal Need to add at least 2 leaves
vertex of degree > 3 to increase number of vertices
has 3 leaves of degree > 3

Parameterized Complexity Rebecca Robinson

22

METHODS FOR FINDING FPT ALGORITHMS

Suppose H has at least 4(k + 2)(k + 1) vertices.
If H has a vertex of degree k, then H has a k-leaf spanning tree.

Suppose then that H has no vertex of degree k.

Parameterized Complexity Rebecca Robinson

23

METHODS FOR FINDING FPT ALGORITHMS

Let T' be a spanning tree of H with maximum number of leaves [.

Suppose | < k — 1.

AN

~._ =k —1leaves o L
“~._ spanning tree I°__--

~

The number of internal vertices in 1" with degree > 3 is < k — 3 (from (*))

Parameterized Complexity Rebecca Robinson

24

METHODS FOR FINDING FPT ALGORITHMS

So 1’ has:
o 4(k+ 2)(k + 1) vertices
e at most k — 1 leaves
e at most k — 3 vertices with degree > 3

Thus T must have at least 4(k + 2)(k + 1) — (k — 3) — (k — 1) vertices of
degree 2.

Parameterized Complexity Rebecca Robinson

25

METHODS FOR FINDING FPT ALGORITHMS

Let S be the set of all vertices of degree 2 in I’ that are not adjacent in H to any
leaf of 1.

Parameterized Complexity Rebecca Robinson 26

METHODS FOR FINDING FPT ALGORITHMS

Since there are at most £ — 1 leaves in T', and the maximum degree of any vertex

in H is k — 1, the maximum possible number of vertices in H that are adjacent to
some leafin T'is (k — 1)(k — 1).

Since T has at least 4(k + 2)(k + 1) — (k — 3) — (k — 1) vertices of degree 2,

the size of .S is at least:

4k+2)(k+1)—(k=3)—(k—-1)—(k—1)(k—-1) =
3k +12k+11=3(k+ 1)(k+3) + 2

Parameterized Complexity Rebecca Robinson

27

METHODS FOR FINDING FPT ALGORITHMS

There are two cases.

Case l

Suppose at least 2k — 4 of the 3(k + 1)(k 4+ 3) + 2 vertices in S have degree
> 3in H.

Parameterized Complexity Rebecca Robinson

28

METHODS FOR FINDING FPT ALGORITHMS

Let v be some such vertex not adjacent in H to any leaf of T". Regard " as rooted

with root v.

Parameterized Complexity Rebecca Robinson

29

METHODS FOR FINDING FPT ALGORITHMS

Since v has degree 2 in T', but degree > 3 in H, v must be adjacent to some

vertex w in H which is not a child of v in T’, such that w is not a leaf of 1.
v

Parameterized Complexity Rebecca Robinson

30

METHODS FOR FINDING FPT ALGORITHMS

Suppose firstly that there is some choice of v such that one internal vertex of the
path from v to w has degree 2 in 7.

Let % be some node of degree 2 in 1" on the path from v to w. Let w’ be the child of
U.

Parameterized Complexity Rebecca Robinson

31

METHODS FOR FINDING FPT ALGORITHMS

Change T into a new tree 7" as follows:

Make u a leaf by deleting edge uw’.

Add a new edge vw to the new tree.
U

H

Since neither v nor w were leaves in T', this must increase the net number of

leaves.

Parameterized Complexity Rebecca Robinson 32

METHODS FOR FINDING FPT ALGORITHMS

Suppose now that for any choice of v and w, every internal vertex on the path in I’

from v to w is of degree > 3in T

For each possible choice of v, call s(v) the child of v that lies on the path in T" from

U to w.

s(v

Parameterized Complexity Rebecca Robinson

33

METHODS FOR FINDING FPT ALGORITHMS

There are 2k — 4 possible choices of v, so there are also 2k — 4 possible values
for s(v). However, some values of $(v) may be the same for different choices of v

— they may not all be distinct vertices.
Let vy be some choice of v. Let wg be the vertex adjacent to vg in H but notin 1.

Suppose that the vertex s(vg) is also an s-value for some other choice of v, say v7.
Let wy be the vertex adjacent to v in H but notin 7'

Parameterized Complexity Rebecca Robinson 34

METHODS FOR FINDING FPT ALGORITHMS

The vertex v1 cannot lie internally on the path from s(vq) to wg, since vy is of

degree 2 in T', and this path has only internal vertices of degree > 3.

Thus there are two options for v1: either it is a child of $(vg) in T" which does not lie

on the path from s(vo) to wq; or v1 and wq are the same vertex.

Assume the first of these is true.

Parameterized Complexity Rebecca Robinson

35

METHODS FOR FINDING FPT ALGORITHMS

The path from v; to w; in 1" cannot internally contain v, since vg is of degree 2 in

T.

Parameterized Complexity Rebecca Robinson

36

METHODS FOR FINDING FPT ALGORITHMS

Vertex wq can be positioned in the following ways:

Vg

Parameterized Complexity Rebecca Robinson

37

METHODS FOR FINDING FPT ALGORITHMS

In each of these cases, T' can be changed into a new tree 7" as follows:

Make s(vg) a leaf by deleting the edge v15(vg) and all edges incident to s(vg)

except s(vg)vp.

Add the new edges vgv1 and vgwy to the tree.

Parameterized Complexity Rebecca Robinson

38

METHODS FOR FINDING FPT ALGORITHMS

This increases the net number of leaves in the tree, which contradicts our initial

condition that 7" have maximum number of leaves.

Thus v1 must be wg, and w1 must be vg.

Parameterized Complexity Rebecca Robinson

39

METHODS FOR FINDING FPT ALGORITHMS

vo/ w1

This means that each possible vertex s(v) can only be an s-value for at most two

choices of v. So the minimum number of s-values in T is 2k2_4 =k — 2.

Thus there are at least kK — 2 internal vertices of degree > 3 in T". But this means

from (*) that there are k leaves, which contradicts our initial condition that

[<k-—-1.

Parameterized Complexity Rebecca Robinson 40

METHODS FOR FINDING FPT ALGORITHMS

Case 2

Suppose at most 2k — 5 of the 3(k + 1)(k + 3) + 2 vertices in S have degree
> 3in H.

Parameterized Complexity Rebecca Robinson

41

METHODS FOR FINDING FPT ALGORITHMS

Each of the remaining 3k% + 10k + 16 vertices in S which are of degree 2 in both
T and H are connected to at least one vertex of degree > 3 in H (otherwise they

are useless vertices).

If every one of these adjacent vertices of degree > 3 in H is distinct, then there are

3k? + 10k + 16 such vertices. However, this may not be the case.

Parameterized Complexity Rebecca Robinson

42

METHODS FOR FINDING FPT ALGORITHMS

Since each vertex of H has maximum degree k — 1, the number of such vertices of

degree > 3 in H is at least:

Since vertices in S cannot be adjacent in H to leaves of T', there must be at least

3k + 14 vertices of degree > 3 in H that are internal vertices of 1.

Parameterized Complexity Rebecca Robinson

43

METHODS FOR FINDING FPT ALGORITHMS

At most 2k — 5 of these internal vertices can have degree 2 in T'.

Therefore at least (3k + 14) — (2k — 5) = k + 19 of these internal vertices will
have degree > 3in 1",

Thus (from (*)), 1" has at least k + 21 leaves. This gives us a spanning tree with
more than k leaves.

Parameterized Complexity Rebecca Robinson

44

METHODS FOR FINDING FPT ALGORITHMS

Claim:

If there exists an algorithm for solving a parameterized problem which runs in time
f(k)n®, there also exists an algorithm for solving the same problem that runs in

time at most g(k) + n°!.
Let M}, be an algorithm that solves some parameterized problem.
My (z, k) acceptsiff (z, k) € L.

On input (x, k), algorithm My, runs in time f(k)n®.

Parameterized Complexity Rebecca Robinson

45

METHODS FOR FINDING FPT ALGORITHMS

Compare f(k)n¢ and n¢*1.

Complexity for given k

o n

For larger values, n°T1 will have the greater complexity. Let ng be the point at
g g

which the two values are the same.

Parameterized Complexity Rebecca Robinson

46

METHODS FOR FINDING FPT ALGORITHMS

New algorithm:

For all values of n where f(k)n¢ > n°t! (ie., up to ng), determine if (z, k) € L
using algorithm M}, and list the results in some table 7'. The complexity of this step

is a function of k, since the size of the table (the value of ng) is dependent on k.

Parameterized Complexity Rebecca Robinson

47

METHODS FOR FINDING FPT ALGORITHMS

Then:

If |£| > mq, run My, oninput (z, k). The algorithm runs in time < || with this
input.
If || < myg, look up x in table T to find if (x, k) € L. This step runs in a time

which is some function of k.

Thus, if there exists an algorithm for solving a parameterized problem which runs in
time f(k)nc there also exists an algorithm for solving the same problem that runs

in time at most g(k) + n°!.

Parameterized Complexity Rebecca Robinson 48

