Parameterized Complexity

Rebecca Robinson

September 28, 2006

1 Parameterized complexity

In classical complexity, a decision problem is specified by:

- The input to the problem.
- The question to be answered.

Example:

VERTEX COVER

Instance: A graph G = (V, E), and a positive integer k.

Question: Does G have a vertex cover of size $\leq k$? (that is, a collection of vertices V' of G such that for all edges v_1v_2 of G either $v_1 \in V'$ or $v_2 \in V'$.)

Parameterized Complexity

A parameterized problem is one where the input to the problem is considered as consisting of two parts, i.e., a pair of strings $(x, y) \in \Sigma^* \times \Sigma^*$. The string y is defined as the *parameter*.

In parameterized complexity, the problem is specified by:

- The input to the problem.
- The aspects of the input that constitute the parameter.
- The question to be answered.

Example:

VERTEX COVER

Instance: A graph G = (V, E)

Parameter: A positive integer k

Question: Does *G* have a vertex cover of size $\leq k$?

Helpful for problems that are NP-hard when the complexity is analysed in terms of the input size only, but which can be solved in a time that is polynomial in the input size and exponential in some parameter k.

By fixing k at a small value, these problems become tractable despite their traditional classification.

2 Fixed-parameter tractability

A parameterized problem $L \subseteq \Sigma^* \times \Sigma^*$ is *fixed-parameter tractable* (FPT) if there is an algorithm that correctly decides, for input $(x, y) \in \Sigma^* \times \Sigma^*$, whether $(x, y) \in L$ in time $f(k)n^{\alpha}$, where |x| = n, |y| = k, α is a constant (independent of k), and f is an arbitrary function [Downey and Fellows, *Parameterized Complexity*].

3 Methods for finding FPT algorithms

3.1 Bounded Search Tree Method

Theorem (Downey and Fellows, 1992): VERTEX COVER is solvable in time $O(2^k |V(G)|)$.

Proof:

Construct a binary tree of height k. Label each node of the tree with (a) the vertices included so far in a possible vertex cover, and (b) those parts of graph G that are yet to be covered.

Label the root of the tree with the empty set and graph G:

Choose an edge $uv \in E$, then create the two children of the root node corresponding to the two possibilities for the vertex cover.

Search tree

Continue the process...

If a node is created in the tree that is labelled with a graph having no edges, then a vertex cover has been found. If no such node exists at tree height $\leq k$, then there is no vertex cover of size $\leq k$.

Since the height of the search tree is at most k, the total number of nodes in the tree is less than 2^k . For each node, the task of choosing an edge from G in order to create the two child nodes must be executed. Thus the complexity of the algorithm is $O(2^k |V(G)|)$.

3.2 Reduction to a Problem Kernel

Theorem (Buss, 1989): VERTEX COVER is solvable in time $O(n+k^k)$.

Proof:

For a simple graph H, any vertex of degree > k must belong to every k-element vertex cover of H.

Let S be the set of all vertices in H of degree > k. Let p = |S|.

If p > k, there is no k-vertex cover.

Let k' = k - p.

Discard all p vertices of degree > k and the edges incident to them. Call the resulting graph H'.

For H to have a k-vertex cover, H' must have a k'-vertex cover.

The vertices in H' have degree bounded by k.

For H' to have a k'-vertex cover, H' must have no more than k'(k+1) vertices the k' vertices of the vertex cover plus a maximum of k vertices adjacent to each of those vertices: $k' + (k' \times k) = k'(k+1)$.

Thus, if H' has more than k'(k+1) vertices, reject.

Parameterized Complexity

Since we have now limited the size of H' to a function of the parameter k, we can establish in constant time if H' has a k'-vertex cover.

If H' has no k'-vertex cover, reject. Otherwise, any k'-vertex cover of H' plus the p vertices from the initial step gives a k-vertex cover of H.

Finding all p vertices of degree > k in H takes linear time.

Since H' has $\leq k'(k+1)$ vertices, there are at most $\binom{O(k)}{k'}$ possibilities to check in finding a k'-vertex cover of H', giving this step a complexity of $O(k^k)$.

Thus the complexity of the whole procedure is $O(n + k^k)$.

3.3 Reduction to a Problem Kernel: Example 2

$k\text{-}\mathsf{LEAF}$ spanning tree

Instance: A graph G = (V, E)

Parameter: A positive integer k

Question: Is there a spanning tree of G (a tree that contains all the vertices in V(G)) with at least k leaves?

Theorem (Downey, Doyle and Fellows, 1995):

k-LEAF SPANNING TREE is solvable in time $O(n + (2k)^{4k})$.

Suppose G has a k-leaf spanning tree. Then G must be connected.

A vertex v is called *useless* if it has degree exactly 2, and both of its neighbours have degree exactly 2.

A useless vertex v is *resolved* by deleting v from G and adding an edge between its two neighbours. Call G' the graph obtained from G by resolving all useless vertices. This process can be completed in linear time.

Algorithm for $k\mbox{-}\mbox{LEAF}$ SPANNING TREE

Step 1. Check whether G is connected and whether there is a vertex of degree $\geq k$. If G has such a vertex, the answer is *y*es.

- Step 2. Compute G'. If G' has at least 4(k+2)(k+1) vertices, the answer is yes. (See proof later on.)
- Step 3. If G' has fewer than 4(k+2)(k+1) vertices, exhaustively analyse G'. G has a k-leaf spanning tree if and only if G' does.

Claim:

If H is a connected simple resolved graph with at least 4(k+2)(k+1) vertices, H has a spanning tree with at least k leaves.

Proof:

(*) If a tree T has i internal (nonleaf) vertices of degree ≥ 3 , then T has at least i+2 leaves.

Suppose H has at least 4(k+2)(k+1) vertices.

If H has a vertex of degree k, then H has a k-leaf spanning tree.

Suppose then that H has no vertex of degree k.

Let T be a spanning tree of H with maximum number of leaves l.

The number of internal vertices in T with degree ≥ 3 is $\leq k-3$ (from (*))

So T has:

- 4(k+2)(k+1) vertices
- $\bullet \ {\rm at \ most} \ k-1 \ {\rm leaves}$
- at most k-3 vertices with degree ≥ 3

Thus T must have at least 4(k+2)(k+1)-(k-3)-(k-1) vertices of degree 2.

Let S be the set of all vertices of degree 2 in T that are not adjacent in H to any leaf of T.

Since there are at most k - 1 leaves in T, and the maximum degree of any vertex in H is k - 1, the maximum possible number of vertices in H that are adjacent to some leaf in T is (k - 1)(k - 1).

Since T has at least 4(k+2)(k+1)-(k-3)-(k-1) vertices of degree 2, the size of S is at least:

$$4(k+2)(k+1) - (k-3) - (k-1) - (k-1)(k-1) = 3k^2 + 12k + 11 = 3(k+1)(k+3) + 2$$

There are two cases.

Case 1

Suppose at least 2k - 4 of the 3(k + 1)(k + 3) + 2 vertices in S have degree ≥ 3 in H.

Let v be some such vertex not adjacent in H to any leaf of T. Regard T as rooted with root v.

Since v has degree 2 in T, but degree ≥ 3 in H, v must be adjacent to some vertex w in H which is not a child of v in T, such that w is not a leaf of T.

Suppose firstly that there is some choice of v such that one internal vertex of the path from v to w has degree 2 in T.

Let u be some node of degree 2 in T on the path from v to w. Let w' be the child of u.

Change T into a new tree T' as follows:

Make u a leaf by deleting edge uw'.

Add a new edge vw to the new tree.

Since neither v nor w were leaves in T, this must increase the net number of leaves.

Suppose now that for any choice of v and w, every internal vertex on the path in T from v to w is of degree ≥ 3 in T.

For each possible choice of v, call s(v) the child of v that lies on the path in T from v to w.

There are 2k - 4 possible choices of v, so there are also 2k - 4 possible values for s(v). However, some values of s(v) may be the same for different choices of v — they may not all be distinct vertices.

Let v_0 be some choice of v. Let w_0 be the vertex adjacent to v_0 in H but not in T. Suppose that the vertex $s(v_0)$ is also an s-value for some other choice of v, say v_1 . Let w_1 be the vertex adjacent to v_1 in H but not in T.

The vertex v_1 cannot lie internally on the path from $s(v_0)$ to w_0 , since v_1 is of degree 2 in T, and this path has only internal vertices of degree ≥ 3 .

Thus there are two options for v_1 : either it is a child of $s(v_0)$ in T which does not lie on the path from $s(v_0)$ to w_0 ; or v_1 and w_0 are the same vertex.

Assume the first of these is true.

The path from v_1 to w_1 in T cannot internally contain v_0 , since v_0 is of degree 2 in T.

Vertex w_1 can be positioned in the following ways:

In each of these cases, T can be changed into a new tree T' as follows:

Make $s(v_0)$ a leaf by deleting the edge $v_1 s(v_0)$ and all edges incident to $s(v_0)$ except $s(v_0)v_0$.

Add the new edges v_0v_1 and v_0w_0 to the tree.

This increases the net number of leaves in the tree, which contradicts our initial condition that T have maximum number of leaves.

Thus v_1 must be w_0 , and w_1 must be v_0 .

This means that each possible vertex s(v) can only be an *s*-value for at most two choices of v. So the minimum number of *s*-values in T is $\frac{2k-4}{2} = k-2$.

Thus there are at least k-2 internal vertices of degree ≥ 3 in T. But this means from (*) that there are k leaves, which contradicts our initial condition that $l \leq k-1$.

Parameterized Complexity

Rebecca Robinson

Case 2

Suppose at most 2k-5 of the 3(k+1)(k+3)+2 vertices in S have degree ≥ 3 in H.

Each of the remaining $3k^2 + 10k + 16$ vertices in S which are of degree 2 in both T and H are connected to at least one vertex of degree ≥ 3 in H (otherwise they are useless vertices).

If every one of these adjacent vertices of degree ≥ 3 in H is distinct, then there are $3k^2 + 10k + 16$ such vertices. However, this may not be the case.

Since each vertex of H has maximum degree k-1, the number of such vertices of degree ≥ 3 in H is at least:

$$\left\lceil \frac{3k^2 + 10k + 16}{k - 1} \right\rceil = \left\lceil \frac{(3k + 13)(k - 1) + 19}{k - 1} \right\rceil \ge 3k + 14$$

Since vertices in S cannot be adjacent in H to leaves of T, there must be at least 3k + 14 vertices of degree ≥ 3 in H that are internal vertices of T.

At most 2k - 5 of these internal vertices can have degree 2 in T.

Therefore at least (3k + 14) - (2k - 5) = k + 19 of these internal vertices will have degree ≥ 3 in T.

Thus (from (*)), T has at least k + 21 leaves. This gives us a spanning tree with more than k leaves.

Claim:

If there exists an algorithm for solving a parameterized problem which runs in time $f(k)n^c$, there also exists an algorithm for solving the same problem that runs in time at most $g(k) + n^{c_1}$.

Let M_k be an algorithm that solves some parameterized problem.

```
M_k(x,k) accepts iff (x,k) \in L.
```

On input (x, k), algorithm M_k runs in time $f(k)n^c$.

For larger values, n^{c+1} will have the greater complexity. Let n_0 be the point at which the two values are the same.

New algorithm:

For all values of n where $f(k)n^c > n^{c+1}$ (i.e., up to n_0), determine if $(x, k) \in L$ using algorithm M_k , and list the results in some table T. The complexity of this step is a function of k, since the size of the table (the value of n_0) is dependent on k.

Then:

If $|x| > n_0$, run M_k on input (x, k). The algorithm runs in time $< |x|^{c+1}$ with this input.

If $|x| \leq n_0$, look up x in table T to find if $(x, k) \in L$. This step runs in a time which is some function of k.

Thus, if there exists an algorithm for solving a parameterized problem which runs in time $f(k)n^c$, there also exists an algorithm for solving the same problem that runs in time at most $g(k) + n^{c_1}$.