1 Motivation

2 Preliminaries
 - Definitions
 - Three examples

3 Problems
 - Sphere Packing Problem
 - Covering Problem
 - Quantization Problem
 - Channel Coding Problem

4 Relation
 - Probability of Error versus VNR
Motivation I: Geometry of Numbers

Initiated by Minkowski and studies convex bodies and integer points in \mathbb{R}^n.

1. Diophantine Approximation,

2. Functional Analysis

Examples Approximating real numbers by rationals, sphere packing problem, covering problem, factorizing polynomials, etc.
Motivation II: Telecommunication

1. Channel Coding Problem,
2. Quantization Problem

Examples Signal constellations, space-time coding, lattice-reduction-aided decoders, relaying protocols, etc.
Definition

A set $\Lambda \subseteq \mathbb{R}^n$ of vectors called **discrete** if there exist a positive real number β such that any two vectors of Λ have distance at least β.

Motivation

Preliminaries

- Problem
 -
- Problem
 -
- Problem
 -
- Problem
 -

Problems

- Problem
 -
- Problem
 -
- Problem
 -
- Problem
 -

Relation

-
-
-

Definitions

Definition

A set $\Lambda \subseteq \mathbb{R}^n$ of vectors called **discrete** if there exist a positive real number β such that any two vectors of Λ have distance at least β.

Lattice Coding I: From Theory To Application

Amin Sakzad
Definitions

Definition

A set \(\Lambda \subseteq \mathbb{R}^n \) of vectors called discrete if there exist a positive real number \(\beta \) such that any two vectors of \(\Lambda \) have distance at least \(\beta \).

Definition

An infinite discrete set \(\Lambda \subseteq \mathbb{R}^n \) is called a lattice if \(\Lambda \) is a group under addition in \(\mathbb{R}^n \).
Every lattice is generated by the integer combination of some linearly independent vectors $g_1, \ldots, g_m \in \mathbb{R}^n$, i.e.,

$$\Lambda = \{ u_1 g_1 + \cdots + u_m g_m : u_1, \ldots, u_m \in \mathbb{Z} \}.$$
Every lattice is generated by the integer combination of some linearly independent vectors $g_1, \ldots, g_m \in \mathbb{R}^n$, i.e.,

$$\Lambda = \{u_1 g_1 + \cdots + u_m g_m : u_1, \ldots, u_m \in \mathbb{Z}\}.$$

Definition

The $m \times n$ matrix $G = (g_1, \ldots, g_m)$ which has the generator vectors as its rows is called a generator matrix of Λ. A lattice is called full rank if $m = n$.

Lattice Coding I: From Theory To Application

Amin Sakzad
Every lattice is generated by the integer combination of some linearly independent vectors $g_1, \ldots, g_m \in \mathbb{R}^n$, i.e.,

$$\Lambda = \{u_1 g_1 + \cdots + u_m g_m : u_1, \ldots, u_m \in \mathbb{Z}\}.$$

Definition

The $m \times n$ matrix $G = (g_1, \ldots, g_m)$ which has the generator vectors as its rows is called a **generator matrix** of Λ. A lattice is called **full rank** if $m = n$.

Note that

$$\Lambda = \{x = uG : u \in \mathbb{Z}^n\}.$$
Definition

The Gram matrix of Λ is

$$M = GG^T.$$
Definition

The Gram matrix of Λ is

$$M = GG^T.$$

Definition

The minimum distance of Λ is defined by

$$d_{\text{min}}(\Lambda) = \min \{ \|x\| : x \in \Lambda \setminus \{0\} \},$$

where $\| \cdot \|$ stands for Euclidean norm.
Definition

The **determinate (volume)** of an n-dimensional lattice Λ, $\det(\Lambda)$, is defined as

$$\det[GG^T]^{\frac{1}{2}}.$$
Definition

The **coding gain** of a lattice Λ is defined as:

$$\gamma(\Lambda) = \frac{d_{\text{min}}^2(\Lambda)}{\det(\Lambda)^\frac{2}{n}}.$$

Geometrically, $\gamma(\Lambda)$ measures the increase in the density of Λ over the lattice \mathbb{Z}^n.
Definition

The set of all vectors in \mathbb{R}^n whose inner product with all elements of Λ is an integer form the dual lattice Λ^*.
Definition

The set of all vectors in \mathbb{R}^n whose inner product with all elements of Λ is an integer form the dual lattice Λ^*.

For a lattice Λ, with generator matrix G, the matrix G^{-T} forms a basis matrix for Λ^*.
Let

$$G = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}.$$
Three examples

Barens-Wall Lattices

- Let $G = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.
- Let $G \otimes^m$ denote the m-fold Kronecker (tensor) product of G.

$Lattice Coding I: From Theory To Application$
Let \(G \) denote the \(m \)-fold Kronecker (tensor) product of \(G \).

A basis matrix for Barens-Wall lattice \(BW_n \), \(n = 2^m \), can be formed by selecting the rows of matrices \(G \otimes m, \ldots, 2^{\lfloor \frac{m}{2} \rfloor} G \otimes m \) which have a square norm equal to \(2^{m-1} \) or \(2^m \).
Let

\[G = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}. \]

Let \(G \otimes m \) denote the \(m \)-fold Kronecker (tensor) product of \(G \).

A basis matrix for Barnes-Wall lattice \(\mathcal{BW}_n \), \(n = 2^m \), can be formed by selecting the rows of matrices \(G \otimes m, \ldots, 2^{\lfloor \frac{m}{2} \rfloor} G \otimes m \) which have a square norm equal to \(2^{m-1} \) or \(2^m \).

\[d_{\min}(\mathcal{BW}_n) = \sqrt{\frac{n}{2}} \] and \(\det(\mathcal{BW}_n) = \left(\frac{n}{2} \right)^{n/4} \), which confirms that \(\gamma(\mathcal{BW}_n) = \sqrt{\frac{n}{2}} \).
For $n \geq 3$, D_n can be represented by the following basis matrix:

$$
G = \begin{pmatrix}
-1 & -1 & 0 & \cdots & 0 \\
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -1
\end{pmatrix}.
$$
For $n \geq 3$, \mathcal{D}_n can be represented by the following basis matrix:

$$
G = \begin{pmatrix}
-1 & -1 & 0 & \cdots & 0 \\
1 & -1 & 0 & \cdots & 0 \\
0 & 1 & -1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & -1
\end{pmatrix}.
$$

We have $\det(\mathcal{D}_n) = 2$ and $d_{\text{min}}(\mathcal{D}_n) = \sqrt{2}$, which result in $\gamma(\mathcal{D}_n) = 2^{\frac{n-2}{n}}$.
- Sphere Packing Problem,
- Covering Problem,
- Quantization,
- Channel Coding Problem.
Let us put a sphere of radius $\rho = d_{\min}(\Lambda)/2$ at each lattice point Λ.
Let us put a sphere of radius $\rho = d_{\min}(\Lambda)/2$ at each lattice point Λ.

Definition

The *density* of Λ is defined as

$$\Delta(\Lambda) = \frac{\rho^n V_n}{\det(\Lambda)},$$

where V_n is the volume of an n-dimensional sphere with radius 1.

Note that

$$V_n = \frac{\pi^{n/2}}{(n/2)!}.$$
Definition

The *kissing number* \(\tau(\Lambda) \) is the number of spheres that touches one sphere.
Definition

The *kissing number* $\tau(\Lambda)$ is the number of spheres that touches one sphere.

Definition

The *center density* of Λ is then $\delta = \frac{\Lambda}{V_n}$.

Note that $4\delta(\Lambda)^{2/n} = \gamma(\Lambda)$.

Lattice Coding I: From Theory To Application

Amin Sakzad
Definition

The **kissing number** $\tau(\Lambda)$ is the number of spheres that touches one sphere.

Definition

The **center density** of Λ is then $\delta = \frac{\Delta}{V_n}$.

Note that $4\delta(\Lambda)^{2/n} = \gamma(\Lambda)$.

Definition

The **Hermite's constant** γ_n is the highest attainable coding gain of an n-dimensional lattice.
Find the densest lattice packing of equal nonoverlapping, solid spheres (or balls) in n-dimensional space.
Summary of Well-Known Results

For large \(n \)'s we have

\[
\frac{1}{2\pi e} \leq \frac{\gamma_n}{n} \leq \frac{1.744}{2\pi e},
\]
Theorem

For large n’s we have

\[
\frac{1}{2\pi e} \leq \frac{\gamma_n}{n} \leq \frac{1.744}{2\pi e},
\]

The densest lattice packings are known for dimensions 1 to 8 and 12, 16, and 24.
Let us suppose a set of spheres of radius R covers \mathbb{R}^n.
Let us suppose a set of spheres of radius R covers \mathbb{R}^n.

Definition

The *thickness* of Λ is defined as

$$\Theta(\Lambda) = \frac{R^n V_n}{\det(\Lambda)}$$
Let us suppose a set of spheres of radius R covers \mathbb{R}^n

Definition

The *thickness* of Λ is defined as

$$\Theta(\Lambda) = \frac{R^n V_n}{\det(\Lambda)}$$

Definition

The *normalized thickness* of Λ is then $\theta(\Lambda) = \frac{\Theta}{V_n}$.
Lattice Covering Problem

Ask for the thinnest lattice covering of equal overlapping, solid spheres (or balls) in n-dimensional space.
Summary of Well-Known Results

Theorem

- *The thinnest lattice coverings are known for dimensions 1 to 5, (all A_n^*).*
- *Davenport’s Construction of thin lattice coverings, (thinner than A_n^* for $n \leq 200$).*
Definition

For any point \(x \) *in a constellation* \(A \) *the Voroni cell* \(\nu(x) \) *is defined by the set of points that are at least as close to* \(x \) *as to any other point* \(y \in A \), *i.e.,*

\[
\nu(x) = \{ v \in \mathbb{R}^n : \| v - x \| \leq \| v - y \|, \forall y \in A \}.
\]
Quantization Problem

<table>
<thead>
<tr>
<th>Motivation</th>
<th>Preliminaries</th>
<th>Problems</th>
</tr>
</thead>
</table>

Definition

For any point x in a constellation A the **Voroni cell** $\nu(x)$ is defined by the set of points that are at least as close to x as to any other point $y \in A$, i.e.,

$$\nu(x) = \{v \in \mathbb{R}^n : \|v - x\| \leq \|v - y\|, \forall y \in A\}.$$

We simply denote $\nu(0)$ by ν.

Lattice Coding I: From Theory To Application
Amin Sakzad
Definition

An n-dimensional quantizer is a set of points chosen in \mathbb{R}^n. The input x is an arbitrary point of \mathbb{R}^n; the output is the closest point to x.
Definition

An n-dimensional quantizer is a set of points chosen in \mathbb{R}^n. The input x is an arbitrary point of \mathbb{R}^n; the output is the closest point to x.

A good quantizer attempts to minimize the mean squared error of quantization.
finds and n-dimentional lattice Λ for which

$$G(\nu) = \frac{1}{n} \int_{\nu} x \cdot x dx \left/ \det(\nu)^{1+\frac{2}{n}} \right.$$

is a minimum.
Summary of Well-Known Results

Theorem

- The optimum lattice quantizers are only known for dimensions 1 to 3.
- As $n \to \infty$, we have

$$G_n \to \frac{1}{2\pi e}.$$
The optimum lattice quantizers are only known for dimensions 1 to 3.

As $n \rightarrow \infty$, we have

$$G_n \rightarrow \frac{1}{2\pi e}.$$

It is worth remarking that the best n-dimensional quantizers presently known are always the duals of the best packings known.
For two points x and y in \mathbb{F}_q^n the Hamming distance is defined as

$$d(x, y) = \| \{ i : x_i \neq y_i \} \|.$$
Definition

For two points x and y in \mathbb{F}_q^n the Hamming distance is defined as

$$d(x, y) = \|\{i : x_i \neq y_i\}\|.$$

Definition

A q-ary (n, M, d_{min}) code C is a subset of M points in \mathbb{F}_q^n, with minimum distance

$$d_{\text{min}}(C) = \min_{x \neq y \in C} d(x, y).$$
Suppose that x, which is in a constellation A, is sent,

$y = x + z$ is received, where the components of z are i.i.d. based on $\mathcal{N}(0, \sigma^2)$,

The **probability of error** is defined as

$$P_e(A, \sigma^2) = 1 - \frac{1}{(\sqrt{2\pi\sigma})^n} \int_{\nu} \exp \left(\frac{-\|x\|^2}{2\sigma^2} \right) \, dx.$$
Rate

Definition

The rate r of an (n, M, d_{min}) code C is

$$r = \frac{\log_2(M)}{n}.$$
Rate

Definition

The rate r of an (n, M, d_{min}) code C is

$$r = \frac{\log_2(M)}{n}.$$

The power of a transmission has a close relation with the rate of the code.
Rate

Definition

The rate r of an (n, M, d_{min}) code C is

$$r = \frac{\log_2(M)}{n}.$$

The power of a transmission has a close relation with the rate of the code.

Normalized Logarithmic Density

Definition

The normalized logarithmic density (NLD) of an n-dimensional lattice Λ is

$$\frac{1}{n} \log \left(\frac{1}{\det(\Lambda)} \right).$$
Capacity

Definition

The capacity of an AWGN channel with noise variance σ^2 is

$$C = \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right),$$

where $\frac{P}{\sigma^2}$ is called the signal-to-noise ratio.
Capacity

Definition

The *capacity* of an AWGN channel with noise variance σ^2 is

$$C = \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2} \right),$$

where $\frac{P}{\sigma^2}$ is called the *signal-to-noise ratio*.

Generalized Capacity

Definition

The *capacity* of an “unconstrained” AWGN channel with noise variance σ^2 is

$$C_\infty = \frac{1}{2} \ln \left(\frac{1}{2\pi e\sigma^2} \right).$$
Channel Coding Problem

Approaching Capacity

Capacity-Achieving Codes

Definition

A (n, M, d_{min}) code C is called capacity-achieving for the AWGN channel with noise variance σ^2, if $r = C$ when $P_e(C, \sigma^2) \approx 0$.

Sphere-Bound-Achieving Lattices

Definition

An n-dimensional lattice Λ is called capacity-achieving for the unconstrained AWGN channel with noise variance σ^2, if $NLD(\Lambda) = C_\infty$ when $P_e(\Lambda, \sigma^2) \approx 0$.

Lattice Coding I: From Theory To Application
Amin Sakzad
Definition

The *volume-to-noise ratio* of a lattice \(\Lambda \) over an unconstrained AWGN channel with noise variance \(\sigma^2 \) is defined as

\[
\alpha^2(\Lambda, \sigma^2) = \frac{\det(\Lambda)^2}{2\pi e \sigma^2}.
\]
Definition

The volume-to-noise ratio of a lattice \(\Lambda \) over an unconstrained AWGN channel with noise variance \(\sigma^2 \) is defined as

\[
\alpha^2(\Lambda, \sigma^2) = \frac{\det(\Lambda)^{\frac{2}{n}}}{2\pi e \sigma^2}.
\]

Note that \(\alpha^2(\Lambda, \sigma^2) = 1 \) is equivalent to \(\text{NLD}(\Lambda) = C_\infty \).
Using the formula of coding gain and $\alpha^2(\Lambda, \sigma^2)$, we obtain an estimate upper bound for the probability of error for a maximum-likelihood decoder:

$$P_e(\Lambda, \sigma^2) \leq \frac{\tau(\Lambda)}{2}\text{erfc}\left(\sqrt{\frac{\pi e}{4}} \gamma(\Lambda) \alpha^2(\Lambda, \sigma^2)\right),$$

where

$$\text{erfc}(t) = \frac{2}{\sqrt{\pi}} \int_t^\infty \exp(-t^2)dt.$$
Probability of Error versus VNR

- VNR (dB)
- Normalized Error Probability (NEP)

- Sphere bound
- Uncoded system
Thanks for your attention! Friday 18 Oct. Building 72, Room 132.
Thanks for your attention! Friday 18 Oct. Building 72, Room 132.