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Random graphs with a given degree sequence: G, 4

Definition
Let d = (di,...,d,). Then let G(d) be a uniformly chosen simple
graph with labelled vertices {1, ..., n} and degree sequence d.

The probability space of such graphs is G, 4.

e Pro: these graphs are much more like most real-world graphs
than G(n, p).

e Con: they are much more complicated to analyse.

Example
In G(n,p), P(u~ v)=p trivially. In G, 4, P(u ~ v) is not known

in general.



A switching is an operation that takes G(d) to G'(d).



A switching is an operation that takes G(d) to G'(d).

They are used to find the probability of certain events occurring
that we previously got via configuration model, such as:

e probability of specific edges being present,

e probability that a given undiscovered vertex is found at the
next step,

e probability of a giant component in the preprocessed vertices.



Giant component problem

Problem
Given a random graph model, what is the distribution of the size of

the largest connected component?



Giant component problem

Problem
Given a random graph model, what is the distribution of the size of

the largest connected component?

Older results
“Double jump” threshold for Erdés—Rényi random graphs at

1
around 5n edges.

e Below the threshold, all components are order O(log n).
e At the threshold, largest component has order ©(n?/3).
e Above the threshold, largest component has order ©(n).



Results for fixed degree sequences

Theorem (Molloy and Reed (1995))
Let D(n) be a “well behaved” degree sequence with max. degree

1 .
at most n4~¢. Then define

Zd (d(j) —2).

J€[n

e If Q(D) < 0, then all components have size O(log n).

o If Q(D) > 0, then there exists a component with at least an
vertices and (3n cycles for a;, B > 0.
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Proof sketch

e Breadth first search on the graph.
e Keep track of X;, the number of “half edges” in your
component that can be explored still.

Wt

Figure 1: "Superman using his laser vision on the four-vertex
empty graph, soon to be the three-vertex empty graph” - Tim



Proof sketch

e Breadth first search on the graph.

e Keep track of X;, the number of “half edges” in your
component that can be explored still.

Wt

e Show E;_; [X; — X;_1] stays positive (or negative) for a
sufficiently long time.
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Limitations of MR result

e Proven in configuration model rather than G, 4.
e Handling of large degree vertices is nonexistent.
e Criterion does not extend to general degree sequences:

Consider n = k? for large odd k, and d = (1,...,1,2k). Then
Q(D) ~ 3, so we would expect a giant component according to

the MR criterion.

T(n—1-2k)

Figure 1: “ An evil spider that can pick between 1 and n toothpicks as
its weapon” - Tim 7



The more comprehensive result

Theorem (Joos et al. (2018))
For any function § — 0 as n — oo, for every v > 0, if Rp < dMp,

the probability that G(D) has a component of order at least yn is
o(1).
If there exists an € > 0 such that Rp > €Mp, then the probability

that G(D) contains a component of size yn for some v > 0 is
1—o0(1).



The more comprehensive result

Theorem (Joos et al. (2018))
For any function § — 0 as n — oo, for every v > 0, if Rp < dMp,

the probability that G(D) has a component of order at least yn is
o(1).
If there exists an € > 0 such that Rp > €Mp, then the probability

that G(D) contains a component of size yn for some v > 0 is
1—o0(1).
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Proof sketch
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Proof sketch

e Breadth first search again.
e Now with added preprocessing!
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M (—i—2n2)

e Suppression of degree 2 vertices.
e Switchings used to work in the graph model to get edge
probabilities.



Subcritical case

Let H be the graph G with all degree 2 vertices contracted, let
w > 0 be small such that Rp < wMp.
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Subcritical case

Let H be the graph G with all degree 2 vertices contracted, let
w > 0 be small such that Rp < wMp.

Let S be the smallest set of vertices of H such that
Yiesdi > 5w/*M and no vertex outside of S is larger.

Define initial exploration set Sy to be S U {v} for any vertex v.

Define X/ by

ueSy

X! =X, + Z(d(w,-) —2).
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Subcritical case

We get the following results about the initial stages of the
exploration:

Lemma

o > ens dw) (d(w) —2) < —4wl/*M,

e there is a vertex in S of degree at most w~1/%.
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Subcritical case

We get the following results about the initial stages of the
exploration:

Lemma
o Y dw) (d(w) —2) < —4w'/*Mm,
e there is a vertex in S of degree at most w~1/%.
So the vertices outside the preprocessing set are “small”.

e Process is highly concentrated around its mean.

e All degrees outside S;_1 being low helps the bounds on
switchings.
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Subcritical case

The game is now to bound
Et—l [d(Wt) — 2] ,

the expected increase between X/ _; and X].
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Subcritical case

The game is now to bound
Et—l [d(Wt) — 2] ,
the expected increase between X/ _; and X].

Ee1[d(we) =2l = Y (d(w) — 2)Pe_1(we = w).
wé&S: 1
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Lemma
If t <w'M and X!_; <w*M, and Xy > 0 for all t’ < t, then:

o If we V\S;_1 and d(w) =1, then

P(we = w) > (1 — 9w/ ——.
t—1
o If we V\S;_1, then

P(w; =w) < (1+ 9w1/5)/‘\’/§”’)_

13



Switchings Il

Want to find the number of forward and backward switchings.
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Switchings Il

Want to find bounds on the number of forward and backward
switchings.
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Switchings Il

Want to find bounds on the number of forward and backward
switchings.

Number of forward switchings is at most M;_;. How many of
these are ‘bad’?

e xory€ S 1
® Vi~ X
oW~y

e Vertices overlap 14
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Subcritical case: finishing touches

Lemma
Define Y; = d(wt) — Et—1(d(w:)). The probability that there

exists a t such that 3 ,,, Yy > M?/3 is less than =M/

Lemma
For t < L“’l/;MJ, we have that
t
Ee-1(d(we) =2) < =+ 19w/5.
Lemma

With probability greater than 1 — e_M1/4, there exists a time

t < L“JI/%J such that X; = 0.

ii5)



Supercritical case

Same exploration process, but different preprocessing.
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Preprocessing — supercritical case
Expose all components in H containing a vertex of degree larger

than Iﬂ/,. Call the set of exposed vertices U.
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Supercritical case

Same exploration process, but different preprocessing.

Preprocessing — supercritical case
Expose all components in H containing a vertex of degree larger

than Iﬂ/,. Call the set of exposed vertices U.

Analysis splits into two cases:

o > cud(u)> 1—50 — then U contains a giant component,

e Y,y d(u) < {55 — same exploration as in the subcritical

Case.
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Supercritical case

Lemma
Let U be a set of vertices containing all vertices with degree greater

than k;é% and let 2 < c < 1 be such that 3, ., d(u) < cR. Then

(1-¢)
> d(u) -2)> =R

ue VAU

17



Supercritical switching analysis

Same switching, more complicated bounds: need a lower bound on
#backward.
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Supercritical switching analysis

Same switching, more complicated bounds: need a lower bound on
#backward.

Bad backward switchings are:
o Vi~ w
e X~y
e y—X

18



Supercritical case

Lemma
Let B = 10792 be a fixed constant. If M;_; > % and

Xi—1 < M, then for every w € 5;_1,

(1-10v/B)

) < (w = w) < (1 + 20V XY,
Mt—l t—1

M
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Supercritical case

Lemma
Let B = 10792 be a fixed constant. If M;_; > % and

Xi—1 < M, then for every w € 5;_1,

(1-10v/B)

,C\//;tvfz <P(w=w) < (1+10v/5) /C\];:/z

Futhermore,
P ((di(w) > |2/Bd(w)] +i| w = w;) < 872,

where d(w) is the number of edges from w to S;—1\ {v:} in H
and the number of loops at w in H.
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Supercritical case

Lemma
Let B = 10792 be a fixed constant. If M;_; > % and

Xi—1 < M, then for every w € 5;_1,

(1-10v/B)

d(w)
Me_1

d(w) <P(w=w) < (1+10y/p)
M;_1

Futhermore,
P ((di(w) > |2/Bd(w)] +i| w = w;) < 872,

where d(w) is the number of edges from w to S;—1\ {v:} in H
and the number of loops at w in H.

e Conditions imply linear but still early stages of exploration

e Probabilities no longer asymptotically equal
19



Lemma
For t <7, E[d(w;) —2] > §, E[d{(w:)] < w, and thus
E[X: — Xe_1] > 5.

Here 7 is the smallest t for which either X; > M or
M < (1 - 55) M.
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Lemma
For t <7, E[d(w;) —2] > §, E[d{(w:)] < w, and thus
E[X: — Xe_1] > 5.

Here 7 is the smallest t for which either X; > M or
M < (1 - 55) M.

Xe > Xe—1 + (d(we) — 2) — 2d;(wy), so we can use this recursively
to get...

20



Xr 2EX]+) At ) B,

t<t t<rt

where A; = d(w;) — E [d(w:)] and B = d.(w;) — E [df(w:)].
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Xr 2EX]+) At ) B,

t<t t<rt

where A; = d(w;) — E [d(w:)] and B = d.(w;) — E [df(w:)].

Lemma
With probability 1 — o(1), there exists no t < 7 for which > _, As

M
or ngt Bs are greater than Toglog M-

Lemma
With probability 1 — o(1), X; > M.

21



Small caveats

e We found bounds on the number of edges in each component,
not vertices!
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Small caveats

e We found bounds on the number of edges in each component,
not vertices!
e What about degree 2 vertices?

e Degree 2 vertices in components of H(D)
e Degree 2 vertices in cyclic components
e The case of too many degree 2 vertices

22



Thank you!
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