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Random graphs with a given degree sequence: Gn,d

Definition
Let d = (d1, . . . , dn). Then let G (d ) be a uniformly chosen simple

graph with labelled vertices {1, . . . , n} and degree sequence d .

The probability space of such graphs is Gn,d .

• Pro: these graphs are much more like most real-world graphs

than G(n, p).

• Con: they are much more complicated to analyse.

Example
In G(n, p), P (u ∼ v) = p trivially. In Gn,d , P (u ∼ v) is not known

in general.
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Switchings

vt w
St−1

y x

vt w
St−1

y x

A switching is an operation that takes G (d ) to G ′(d ).

They are used to find the probability of certain events occurring

that we previously got via configuration model, such as:

• probability of specific edges being present,

• probability that a given undiscovered vertex is found at the

next step,

• probability of a giant component in the preprocessed vertices.
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Giant component problem

Problem
Given a random graph model, what is the distribution of the size of

the largest connected component?

Older results
“Double jump” threshold for Erdős–Rényi random graphs at

around 1
2n edges.

• Below the threshold, all components are order O(log n).

• At the threshold, largest component has order Θ(n2/3).

• Above the threshold, largest component has order Θ(n).
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Results for fixed degree sequences

Theorem (Molloy and Reed (1995))
Let D(n) be a “well behaved” degree sequence with max. degree

at most n
1
4
−ε. Then define

Q(D) :=
1

n

∑
j∈[n]

d(j)(d(j)− 2).

• If Q(D) < 0, then all components have size O(log n).

• If Q(D) > 0, then there exists a component with at least αn

vertices and βn cycles for α, β > 0.

5



Proof sketch

• Breadth first search on the graph.

• Keep track of Xt , the number of “half edges” in your

component that can be explored still.

vt wt

St−1

• Show Et−1 [Xt − Xt−1] stays positive (or negative) for a

sufficiently long time.
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vt wt
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Figure 1: “Superman using his laser vision on the four-vertex

empty graph, soon to be the three-vertex empty graph” - Tim
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Limitations of MR result

• Proven in configuration model rather than Gn,d .

• Handling of large degree vertices is nonexistent.

• Criterion does not extend to general degree sequences:

Consider n = k2 for large odd k , and d = (1, . . . , 1, 2k). Then

Q(D) ≈ 3, so we would expect a giant component according to

the MR criterion.

· · ·

1
2 (n − 1− 2k)

Figure 1: “ An evil spider that can pick between 1 and n toothpicks as

its weapon” - Tim 7
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The more comprehensive result

Theorem (Joos et al. (2018))
For any function δ → 0 as n→∞, for every γ > 0, if RD ≤ δMD ,

the probability that G (D) has a component of order at least γn is

o(1).

If there exists an ε > 0 such that RD ≥ εMD , then the probability

that G (D) contains a component of size γn for some γ > 0 is

1− o(1).

1 jD n

RD

MD (+2n2)

Small Big
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Proof sketch

• Breadth first search again.

• Now with added preprocessing!

1 j∗D jD n

RD

P

M (+2n2)

• Suppression of degree 2 vertices.

• Switchings used to work in the graph model to get edge

probabilities.
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Subcritical case

Let H be the graph G with all degree 2 vertices contracted, let

ω > 0 be small such that RD ≤ ωMD .

Let S be the smallest set of vertices of H such that∑
i∈S di ≥ 5ω1/4M and no vertex outside of S is larger.

Define initial exploration set S0 to be S ∪ {v} for any vertex v .

Define X ′t by

X ′0 =
∑
u∈S0

d(u),

X ′t = X ′0 +
t∑

i=1

(d(wi )− 2).
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Subcritical case

We get the following results about the initial stages of the

exploration:

Lemma

•
∑

w∈V \S d(w) (d(w)− 2) ≤ −4ω1/4M,

• there is a vertex in S of degree at most ω−1/4.

So the vertices outside the preprocessing set are “small”.

• Process is highly concentrated around its mean.

• All degrees outside St−1 being low helps the bounds on

switchings.
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Subcritical case

The game is now to bound

Et−1 [d(wt)− 2] ,

the expected increase between X ′t−1 and X ′t .

Et−1 [d(wt)− 2] =
∑

w /∈St−1

(d(w)− 2)Pt−1(wt = w).
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Lemma
If t ≤ ω1/9M and X ′t−1 ≤ ω1/5M, and Xt′ > 0 for all t ′ < t, then:

• If w ∈ V \St−1 and d(w) = 1, then

P (wt = w) ≥ (1− 9ω1/5)
1

Mt−1
.

• If w ∈ V \St−1, then

P (wt = w) ≤ (1 + 9ω1/5)
d(w)

Mt−1
.
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Switchings II

vt w
St−1

y x

vt w
St−1

y x

Want to find the number of forward and backward switchings.

Number of forward switchings is at most Mt−1. How many of

these are ‘bad’?

• x or y ∈ St−1

• vt ∼ x

• w ∼ y

• Vertices overlap
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Subcritical case: finishing touches

Lemma
Define Yt = d(wt)− Et−1(d(wt)). The probability that there

exists a t such that
∑

t′≤t Yt′ > M2/3 is less than e−M
1/4

.

Lemma

For t ≤ bω1/9M
2 c, we have that

Et−1 (d(wt)− 2) ≤ − t

M
+ 19ω1/5.

Lemma
With probability greater than 1− e−M

1/4
, there exists a time

t ≤ bω1/9M
3 c such that Xt = 0.

15
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Supercritical case

Same exploration process, but different preprocessing.

Preprocessing – supercritical case
Expose all components in H containing a vertex of degree larger

than
√
M

logM . Call the set of exposed vertices U.

Analysis splits into two cases:

•
∑

u∈U d(u) ≥ R
100 – then U contains a giant component,

•
∑

u∈U d(u) < R
100 – same exploration as in the subcritical

case.
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Supercritical case

Lemma
Let U be a set of vertices containing all vertices with degree greater

than
√
M

logM and let 1
4 < c < 1 be such that

∑
u∈U d(u) ≤ cR. Then

∑
u∈V \U

d(u) (d(u)− 2) ≥ (1− c)

2
R.
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Supercritical switching analysis

vt w
St−1

y x

vt w
St−1

y x

Same switching, more complicated bounds: need a lower bound on

#backward.

Bad backward switchings are:

• vt ∼ w

• x ∼ y

• y = x
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Supercritical case

Lemma
Let β = 10−6ε2 be a fixed constant. If Mt−1 ≥ 3M

4 and

Xt−1 ≤ βM, then for every w ∈ St−1,

(1− 10
√
β)

d(w)

Mt−1
≤ P (w = wt) ≤ (1 + 10

√
β)

d(w)

Mt−1
.

Futhermore,

P
(
d ′t(w) ≥ b2

√
βd(w)c+ i

∣∣∣w = wt

)
≤ βi/2,

where d ′t(w) is the number of edges from w to St−1\ {vt} in H

and the number of loops at w in H.

• Conditions imply linear but still early stages of exploration

• Probabilities no longer asymptotically equal
19
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Lemma

For t ≤ τ , E [d(wt)− 2] ≥ ε
4 , E [d ′t(wt)] ≤ E[d(wt)−2]

3 , and thus

E [Xt − Xt−1] ≥ ε
12 .

Here τ is the smallest t for which either Xt ≥ βM or

Mt ≤
(
1− R

4M

)
M0.

Xt ≥ Xt−1 + (d(wt)− 2)− 2d ′t(wt), so we can use this recursively

to get...

20
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Xτ ≥ E [Xτ ] +
∑
t≤τ

At +
∑
t≤τ

Bt ,

where At = d(wt)− E [d(wt)] and Bt = d ′s(wt)− E [d ′t(wt)].

Lemma
With probability 1− o(1), there exists no t ≤ τ for which

∑
s≤t As

or
∑

s≤t Bs are greater than M
log logM .

Lemma
With probability 1− o(1), Xτ ≥ βM.
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Small caveats

• We found bounds on the number of edges in each component,

not vertices!

• What about degree 2 vertices?

• Degree 2 vertices in components of H(D)

• Degree 2 vertices in cyclic components

• The case of too many degree 2 vertices

22
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Thank you!
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