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Damien Stehlé Computing with Euclidean lattices 01/11/2012 1/24



Euclidean lattices Applications of lattices The LLL algorithm A numeric-symbolic LLL Conclusion

Goals and plan of the talk

Goals:

An introduction to the computational aspects of lattices

An example of how floating-point arithmetic can be used to
accelerate an algebraic computation

Plan of the talk:

1 Euclidean lattices

2 Applications of lattices

3 The LLL algorithm

4 Speeding up LLL
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Euclidean lattices

Lattice ≡ discrete subgroup of Rn

≡ {∑i≤n xibi : xi ∈ Z}

If the bi ’s are linearly independent,
they are called a basis.

Bases are not unique, but they can
be obtained from each other by integer
transforms of determinant ±1:

[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[
1 1
2 1

]
.
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Lattice invariants

Minimum:
λ(L) = min(‖b‖ : b ∈ L \ 0)

Determinant:
det L = | det(bi )i |, for any basis

Minkowski theorem:
λ(L) ≤ √

n · (det L)1/n

Algorithmic approach: lattice reduction

Start from a basis, and progressively
improve its norm/orthogonality
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Damien Stehlé Computing with Euclidean lattices 01/11/2012 4/24



Euclidean lattices Applications of lattices The LLL algorithm A numeric-symbolic LLL Conclusion

Lattice invariants

Minimum:
λ(L) = min(‖b‖ : b ∈ L \ 0)

Determinant:
det L = | det(bi )i |, for any basis

Minkowski theorem:
λ(L) ≤ √

n · (det L)1/n

Algorithmic approach: lattice reduction

Start from a basis, and progressively
improve its norm/orthogonality
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Why do we care about lattices?

Computer algebra: factorisation of rational polynomials.

Cryptanalysis of variants of RSA.

Lattice-based cryptography.

Communications theory: MIMO, GPS.

Combinatorial optimisation, algorithmic group theory,
algorithmic number theory, computer arithmetic, etc.

Lattices tend to pop out when one wants to use linear algebra but
is restricted to discrete transformations.
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Main computational problem: SVP

SVPγ : Given a basis of L, find b ∈ L with

0 < ‖b‖ ≤ γ · λ(L).

Dec-SVPγ : Given a basis of L and t > 0, reply:

YES if λ(L) ≤ t and NO if λ(L) > γ · t.

Dec-SVPγ on the hardness scale

NP-hard for any γ ≤ O(1), under randomized reductions

In NP∩coNP for γ ≥ √
n

In P for γ ≥ 2
n log log n

log n
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SVP is easy in small dimensions!

b
(0)
1

b
(0)
2

0

That’s almost Euclid’s algorithm!

Returns a vector reaching λ(L)

Runs in polynomial time
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Plan of the talk

Plan of the talk:

1 Euclidean lattices
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Polynomial factorisation

Cryptanalysis
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Finding small integer relations between real numbers

BBP formula: π =
∑

i≥0

1

16i

(
4

8i + 1
− 2

8i + 4
− 1

8i + 5
− 1

8i + 6

)

 To compute a base-16 digit of π at any given position.

Assume we search a small Z-relation between y1, . . . , yd ∈ R

Take L := L[(bi )i ], with B =




y1 y2 . . . yd
1 0 . . . 0
0 1 . . . 0

...
. . .

...
0 0 . . . 1




A Z-relation
∑

xiyi = 0 leads to a small vector (0, x1, . . . , xd)
T

Using a large C makes it a shortest vector of L \ 0
Damien Stehlé Computing with Euclidean lattices 01/11/2012 9/24
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Damien Stehlé Computing with Euclidean lattices 01/11/2012 9/24



Euclidean lattices Applications of lattices The LLL algorithm A numeric-symbolic LLL Conclusion

Factoring integer polynomials

The previous idea may be used to factor polynomials in Z[x ]

Factoring polynomials with rational coefficients,

A. K. Lenstra, H. W. Lenstra Jr. and L. Lovász. Math. Ann., 1982

⇒ Cited ≥ 2500 times!!!

Given P ∈ Z[x ]:

0- If degP ≤ 1, then stop

1- Compute a root α ∈ C of P

2- Find the minimal polynomial Pα(x) of α, by searching
for Z-combinations between 1, α, . . . , αi for increasing i

3- Divide P by Pα and restart

Damien Stehlé Computing with Euclidean lattices 01/11/2012 10/24
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Cryptographic design and cryptanalysis

Lattice-based cryptography:

Secret key: very short basis of a lattice

Public key: long basis of the same lattice

Relies on the assumed hardness of SVP

Very popular research topic:

More secure: post-quantum

More efficient: no modular exponentiation

More versatile: fully homomorphic encryption

Lattice reduction algorithms are the best known attack.
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Plan of the talk

Plan of the talk:

1 Euclidean lattices

2 Applications of euclidean lattices

3 The LLL algorithm

4 Speeding up LLL
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Gram-Schmidt orthogonalization (GSO)

(bi )i linearly independent

The GSO (b∗i )i is defined by:

∀i : b∗i = bi −
∑

j<i

µijb
∗
j

∀i > j : µij =
(bi ,b

∗
j )

‖b∗j ‖2

Triangularisation of B = (bi )i

b
2

b
3

b
1

For any basis (bi )i of L, we have λ(L) ≥ mini ‖b∗i ‖
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Damien Stehlé Computing with Euclidean lattices 01/11/2012 13/24



Euclidean lattices Applications of lattices The LLL algorithm A numeric-symbolic LLL Conclusion

Gram-Schmidt orthogonalization (GSO)

(bi )i linearly independent

The GSO (b∗i )i is defined by:

∀i : b∗i = bi −
∑

j<i

µijb
∗
j

∀i > j : µij =
(bi ,b

∗
j )

‖b∗j ‖2

Triangularisation of B = (bi )i

=

b
∗

2

b
∗

3

b
2

b
3

b
1

b
∗

1

For any basis (bi )i of L, we have λ(L) ≥ mini ‖b∗i ‖
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The Lenstra-Lenstra-Lovász reduction

Let δ ∈ (1/4, 1). A basis B = (bi )i≤n ∈ R
n×n is said LLL-reduced if

∀i , j : |µij | ≤ 1/2 [Size-reduction]

∀i : δ · ‖b∗i ‖2 ≤ ‖b∗i+1‖2 + µ2
i+1,i‖b∗i ‖2 [Lovász’ condition]
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The ‖b∗i ‖’s can’t drop too fast:

∀i : ‖b∗i+1‖2 ≥ (δ − 1
4)‖b∗i ‖2

⇒ λ(L) ≤ ‖b1‖ ≤ 2O(n) · λ(L)

δ < 1 is important to get a polynomial complexity
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The Lenstra-Lenstra-Lovász algorithm

Let δ ∈ (1/4, 1). A basis B = (bi )i≤n ∈ R
n×n is said LLL-reduced if

∀i , j : |µij | ≤ 1/2 [Size-reduction]

∀i : δ · ‖b∗i ‖2 ≤ ‖b∗i+1‖2 + µ2
i+1,i‖b∗i ‖2 [Lovász’ condition]

1 Enforce size-reduction, using a modified Gaussian elimination

2 If there is an i with δ · ‖b∗i ‖2 > ‖b∗i+1‖2 + µ2
i+1,i‖b∗i ‖2,

then swap bi and bi+1, and go to Step 1

3 Return the current basis (b1, . . . ,bn)

⇒ Correctness is trivial

⇒ Termination is much less so:

O(n2β) loop iterations, with β = maxi ‖biniti ‖
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Bit-complexity of LLL and practical run-time

[LLL82,Kaltofen83]

LLL terminates in O(n4β2(n + β)) operations, with β = logmaxi ‖biniti ‖

With MAGMA V2.16:

> n := 25; B := RMatrixSpace(Integers(),n,n)!0;

> for i:=1 to 25 do

> B[i][i]:=1; B[i][1]:=RandomBits(2000);

> end for;

> time C := LLL(B:Method:=‘‘Integral’’);

Time: 11.700

> time C := LLL(B);

Time: 0.240
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Plan of the talk

Plan of the talk:

1 Euclidean lattices

2 Applications of euclidean lattices

3 The LLL algorithm

4 Speeding up LLL

Section based on joint works with X.-W. Chang, I. Morel,
P. Q. Nguyen, A. Novocin, X. Pujol and G. Villard
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LLL in practice: the numeric-symbolic approach

The Gram-Schmidt computations dominate the cost

Odlyzko’s hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact

Floating-point numbers: x1.x2x3 . . . xp · Be , where:

p is the precision

B is the base, and xi ∈ {0, . . . ,B − 1}
e ∈ Z is the exponent

Floating-point arithmetic:
fl(a op b) is a nearest fp number to a op b, for any op ∈ {+,−, /,×}
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Odlyzko’s hybrid approach is only heuristic

Odlyzko’s hybrid approach

Replace the rational computations on the GSO by floating-point
approximations, but keep the basis operations exact

Principle: For p small, fp arith. may efficiently simulate rational arith.
⇒ In practice: we aim for 53-bit machine precision

But Odlyzko’s approach is heuristic:

Fp arithmetic is inexact

Small errors can be amplified

⇒ Infinite loops

⇒ Incorrect outputs
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Making the numeric-symbolic approach rigorous

Underlying mathematical phenomenon [CSV12]

Any LLL-reduced basis is well-conditioned with respect to GSO

Well-conditioned? The GSO computed in small precision
is close to the genuine GSO

⇒ We’d like to rely on LLL-reduced bases as much as we can

Use a greedy LLL algorithm [NS05,MSV09]:

Consider the first i s.t. b1, . . . ,bi is not LLL-reduced

⇒ b1, . . . ,bi−1 is well-conditioned

Iterate on bi until nothing happens (iterative refinement)
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Bit complexity of floating-point LLL

Small precision? O(n) bits suffice for correctness.

Bit-complexity:

O(n2β)︸ ︷︷ ︸
1

· O(n2)︸ ︷︷ ︸
2

·
[
O(nβ)︸ ︷︷ ︸

3

+O(n2)︸ ︷︷ ︸
4

]
= O

(
n5β(n + β)

)
.

1 loop iterations

2 size-reduction arithmetic steps

3 integer arithmetic

4 floating-point arithmetic

Asymptotically not much better than LLL’s O(n4β2(n + β)),
but much better in practice
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Can we do better? [NSV10,PSV13?]

The totally numeric approach

LLL can be accelerated further by using approximations for the
bases too!
⇒ Õ(n5β1.5) operations

The totally numeric approach, continued

Do the same with several levels of recursion
⇒ Õ(n5β) operations

The totally numeric approach with blocking

Consider sub-matrices of the GSO
⇒ Õ(n4β) operations
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Plan of the talk

Plan of the talk:

1 Euclidean lattices

2 Applications of euclidean lattices

3 The LLL algorithm

4 Speeding up LLL

5 Conclusion

Damien Stehlé Computing with Euclidean lattices 01/11/2012 23/24



Euclidean lattices Applications of lattices The LLL algorithm A numeric-symbolic LLL Conclusion

Open problems

On LLL:

Lower the cost further: as fast as matrix multiplication?

Improve current implementations

In the general area of lattices

Faster algorithms computing shorter vectors than LLL

Quantum algorithms

Hardness proofs for worst-case lattice problems

Hardness proofs for average-case lattice problems
(crucial for lattice-based cryptography)
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