Secure Multiparty Computation from Graph Colouring

Ron Steinfeld
Monash University

July 2012
Acknowledgements

Based on joint work with (subsets of):
Yvo Desmedt, Josef Pieprzyk, Huaxiong Wang, Xiaoming Sun,
Christophe Tartary, Andrew Chi-Chih Yao
Outline

- **The Problem**: Secure multiparty computation in black-box groups
 - Motivation / definition
 - Attack model (computationally unbounded, passive)
 - Previous approaches

- **Our Results**:
 - Reduction: n-Product to Shared 2-Product
 - Reduction: Shared 2-Product to t-Reliable Planar Graph Colouring
 - Constructions of t-Reliable Planar Graph Colourings
 - Extensions (briefly):
 - Computing arbitrary functions
 - Security against active adversaries

- **Open Problems**
What is secure multiparty computation?

Typical example: Electronic Auction

- n parties: P_1, \ldots, P_n
- Each P_i commits his bid $x_i \in \mathbb{N}$.
- At the end, the highest bidder wins auction

Basic requirements (informal):

- Correctness: All parties learn the winning bid / bidder:

 $$f(x_1, \ldots, x_n) = (\max_i x_i, \arg \max_i x_i)$$

- Privacy: No party learns anything about losing bids, except what is leaked by winning bid.
What is secure multiparty computation?

Typical example: **Electronic Auction**

- n parties: P_1, \ldots, P_n
- Each P_i commits his bid $x_i \in \mathbb{N}$.
- At the end, the highest bidder wins auction

Basic requirements (informal):

- **Correctness:** All parties learn the winning bid / bidder:
 $$f(x_1, \ldots, x_n) = (\max_i x_i, \arg \max_i x_i)$$

- **Privacy:** No party learns anything about losing bids, except what is leaked by winning bid.
What is secure multiparty computation?

Typical example: **Electronic Auction**

- n parties: P_1, \ldots, P_n
- Each P_i commits his bid $x_i \in \mathbb{N}$.
- At the end, the highest bidder wins auction

Basic requirements (informal):

- **Correctness**: All parties learn the winning bid / bidder:
 \[
 f(x_1, \ldots, x_n) = (\max_i x_i, \arg \max_i x_i)
 \]

- **Privacy**: No party learns anything about losing bids, except what is leaked by winning bid.
What is secure multiparty computation?

How to achieve this?
If we live in an ideal world: use a Trusted Party (TP)
- TP serves as the auctioneer
- Each P_i sends his bid $x_i \in \mathbb{N}$ to TP
- TP privately computes and announces $(\max_i x_i, \arg \max_i x_i)$ to all P_i’s

What if, in real world, such a TP does not exist?
Possible answer: t-private secure multiparty computation
- Parties run a distributed computation protocol among themselves
 - Every pair of parties can communicate privately from all other parties
- At protocol end, all parties can compute result $f(x_1, \ldots, x_n)$.
- Privacy holds as long as not more than t parties collude
What is secure multiparty computation?

How to achieve this?

If we live in an ideal world: use a Trusted Party (TP)

- TP serves as the auctioneer
- Each P_i sends his bid $x_i \in \mathbb{N}$ to TP
- TP privately computes and announces $(\max_i x_i, \arg \max_i x_i)$ to all P_i’s

What if, in real world, such a TP does not exist?

Possible answer: t-private secure multiparty computation

- Parties run a distributed computation protocol among themselves
 - Every pair of parties can communicate privately from all other parties
- At protocol end, all parties can compute result $f(x_1, \ldots, x_n)$.
- Privacy holds as long as not more than t parties collude
What is secure multiparty computation?

How to achieve this?
If we live in an ideal world: use a Trusted Party (TP)
- TP serves as the auctioneer
- Each P_i sends his bid $x_i \in \mathbb{N}$ to TP
- TP privately computes and announces $(\max_i x_i, \arg \max_i x_i)$ to all P_i’s

What if, in real world, such a TP does not exist?
Possible answer: t-private secure multiparty computation
- Parties run a distributed computation protocol among themselves
 - Every pair of parties can communicate privately from all other parties
- At protocol end, all parties can compute result $f(x_1, \ldots, x_n)$.
- Privacy holds as long as not more than t parties collude
What is secure multiparty computation?

How to achieve this?
If we live in an ideal world: use a Trusted Party (TP)
- TP serves as the auctioneer
- Each P_i sends his bid $x_i \in \mathbb{N}$ to TP
- TP privately computes and announces $(\max_i x_i, \arg \max_i x_i)$ to all P_i’s

What if, in real world, such a TP does not exist?
Possible answer: t-private secure multiparty computation
- Parties run a distributed computation protocol among themselves
 - Every pair of parties can communicate privately from all other parties
- At protocol end, all parties can compute result $f(x_1, \ldots, x_n)$.
- Privacy holds as long as not more than t parties collude
Secure Multiparty computation: attack model

Several possible flavours of security, depending on:

- **Computational abilities**
 - Computationally bounded: security only guaranteed if attack computing time \leq (large) bound T.
 - Computationally unbounded (‘information theoretic’): security holds regardless of attack computation time.

- **Allowed deviation from prescribed protocol**
 - Passive attacks (‘Honest But Curious’): colluding parties follow protocol, but analyze protocol messages they receive to learn about other party’s inputs.
 - Active attacks: colluding parties can misbehave arbitrarily, to disrupt correctness and/or breach privacy of other parties.

Focus on computationally unbounded, passive attacks (at end: a little on active security).
Several possible flavours of security, depending on:

- **Computational abilities**
 - Computationally bounded: security only guaranteed if attack computing time \(\leq \) (large) bound \(T \).
 - Computationally unbounded (‘information theoretic’): security holds regardless of attack computation time.

- **Allowed deviation from prescribed protocol**
 - Passive attacks (‘Honest But Curious’): colluding parties follow protocol, but analyze protocol messages they receive to learn about other party’s inputs.
 - Active attacks: colluding parties can misbehave arbitrarily, to disrupt correctness and/or breach privacy of other parties.

Focus on computationally unbounded, passive attacks (at end: a little on active security).
Secure Multiparty computation: attack model

Several possible flavours of security, depending on:

- **Computational abilities**
 - Computationally bounded: security only guaranteed if attack computing time \leq (large) bound T.
 - Computationally unbounded (‘information theoretic’): security holds regardless of attack computation time.

- **Allowed deviation from prescribed protocol**
 - Passive attacks (‘Honest But Curious’): colluding parties follow protocol, but analyze protocol messages they receive to learn about other party’s inputs.
 - Active attacks: colluding parties can misbehave arbitrarily, to disrupt correctness and/or breach privacy of other parties

Focus on computationally unbounded, passive attacks (at end: a little on active security).
Secure Multiparty computation: attack model

Several possible flavours of security, depending on:

- **Computational abilities**
 - Computationally bounded: security only guaranteed if attack computing time \leq (large) bound T.
 - Computationally unbounded (‘information theoretic’): security holds regardless of attack computation time.

- **Allowed deviation from prescribed protocol**
 - Passive attacks (‘Honest But Curious’): colluding parties follow protocol, but analyze protocol messages they receive to learn about other party’s inputs.
 - Active attacks: colluding parties can misbehave arbitrarily, to disrupt correctness and/or breach privacy of other parties

Focus on computationally unbounded, passive attacks (at end: a little on active security).
Our Problem: Secure Product in Black-Box Groups

Fix a finite group G. For $i = 1, \ldots, n$ party P_i holds input $x_i \in G$. Our goal - a secure n-Party protocol for computing n-Product function over G:

$$f_G(x_1, \ldots, x_n) = x_1 \cdots x_n.$$

Our protocols treat G as a black-box – the only computations allowed in the protocol are:

- Group operation: $(x, y) \in G^2 \mapsto x \cdot y \in G$
- Group inverse: $x \in G \mapsto x^{-1} \in G$
- Sampling a uniformly random element of G

At end: secure computation of any function by reduction to (a variant of) our problem over $G = S_5$.

Ron Steinfeld
Secure Multiparty Computation from Graph Colouring
July 2012
Our Problem: Secure Product in Black-Box Groups

Fix a finite group G. For $i = 1, \ldots, n$ party P_i holds input $x_i \in G$. Our goal - a secure n-Party protocol for computing n-Product function over G:

$$f_G(x_1, \ldots, x_n) = x_1 \cdots x_n.$$

Our protocols treat G as a black-box – the only computations allowed in the protocol are:

- Group operation: $(x, y) \in G^2 \mapsto x \cdot y \in G$
- Group inverse: $x \in G \mapsto x^{-1} \in G$
- Sampling a uniformly random element of G

At end: secure computation of any function by reduction to (a variant of) our problem over $G = S_5$.

Ron Steinfeld
Secure Multiparty Computation from Graph Colouring
July 2012 7/34
Our Problem: Secure Product in Black-Box Groups

Fix a finite group G. For $i = 1, \ldots, n$ party P_i holds input $x_i \in G$. Our goal - a secure n-Party protocol for computing n-Product function over G:

$$f_G(x_1, \ldots, x_n) = x_1 \cdots x_n.$$

Our protocols treat G as a black-box – the only computations allowed in the protocol are:

- Group operation: $(x, y) \in G^2 \mapsto x \cdot y \in G$
- Group inverse: $x \in G \mapsto x^{-1} \in G$
- Sampling a uniformly random element of G

At end: secure computation of any function by reduction to (a variant of) our problem over $G = S_5$.
Secure Multiparty computation: attack model

Precise formulation of t-privacy of protocol Π:

Let

- Inputs be $\vec{x} = (x_1, \ldots, x_n)$,
- $\text{VIEW}_I(\vec{x})$ denote protocol view of parties in subset $I \subseteq [n]$.
- \vec{x}_I denotes the inputs of parties in I.
- Protocol output $y = f_G(x_1, \ldots, x_n) = x_1 \cdots x_n$.

Definition

Π is a t-private protocol for computing f_G if there exists a probabilistic polynomial-time algorithm S, such that, for every $I \subseteq [n]$ with $|I| \leq t$ and every $(x_1, \ldots, x_n) \in G^n$, the random variables $S(I, \vec{x}_I, y)$ and $\text{VIEW}_I(\vec{x})$ are identically distributed.
Some background and related work

- Research on secure computation began in early 1980’s: Yao’s Millionaire problem
- General result by end of ’80’s
 - Theorem (Cramer et al ’88, Ben-Or et al ’88): Any function \(f : (\{0, 1\}^\ell)^n \rightarrow \{0, 1\}^\ell_o \) can be \(t \)-privately computed by an \(n \)-party protocol (in the passive, computationally unbounded model) if and only if \(t < n/2 \). The protocol communication complexity is \(O(Poly(n) \cdot |C|) \), where \(C \) is a boolean circuit computing \(f \).
 - These protocols reduce to a computation over a finite field:
 - \(f \) is expressed as a Boolean circuit \(C \) (i.e. an arithmetic circuit over finite field \(\mathbb{F}_2 \)).
 - Secret inputs shared over a finite field \(\mathbb{F}_q \) among \(n \) parties (using Shamir’s \((t + 1)\)-of-\(n \) threshold secret sharing scheme).
 - At each AND gate of \(C \), use Shamir multiplicative property to multiply shared inputs to shared output (resharing also needed).
Some background and related work

- Research on secure computation began in early 1980’s: Yao’s Millionaire problem
- General result by end of ’80’s
 - **Theorem (Cramer et al ’88, Ben-Or et al ’88):** Any function $f : (\{0, 1\}^\ell)^n \rightarrow \{0, 1\}^{\ell_o}$ can be t-privately computed by an n-party protocol (in the passive, computationally unbounded model) if and only if $t < n/2$. The protocol communication complexity is $O(Poly(n) \cdot |C|)$, where C is a boolean circuit computing f.

- These protocols reduce to a computation over a finite field:
 - f is expressed as a Boolean circuit C (i.e. an arithmetic circuit over finite field \mathbb{F}_2).
 - Secret inputs shared over a finite field \mathbb{F}_q among n parties (using Shamir’s $(t + 1)$-of-n threshold secret sharing scheme).
 - At each AND gate of C, use Shamir multiplicative property to multiply shared inputs to shared output (resharing also needed)
Introduction

Some background and related work

- Research on secure computation began in early 1980’s: Yao’s Millionaire problem
- General result by end of ’80’s
 - **Theorem (Cramer et al ’88, Ben-Or et al ’88):** Any function \(f : (\{0, 1\}^\ell_i)^n \rightarrow \{0, 1\}^\ell_o \) can be \(t \)-privately computed by an \(n \)-party protocol (in the passive, computationally unbounded model) if and only if \(t < n/2 \). The protocol communication complexity is \(O(Poly(n) \cdot |C|) \), where \(C \) is a boolean circuit computing \(f \).
 - These protocols reduce to a computation over a finite field:
 - \(f \) is expressed as a Boolean circuit \(C \) (i.e. an arithmetic circuit over finite field \(\mathbb{F}_2 \)).
 - Secret inputs shared over a finite field \(\mathbb{F}_q \) among \(n \) parties (using Shamir’s \((t + 1)\)-of-\(n \) threshold secret sharing scheme).
 - At each AND gate of \(C \), use Shamir multiplicative property to multiply shared inputs to shared output (resharing also needed).
Secure Product in a Group: Abelian case (folklore)

- Efficient Black-Box Protocol for **Abelian** Groups ($t < n$)
 - Building Block: n-of-n secret sharing over **Abelian** group G:
 $$ x = s_x(1) \cdot s_x(2) \cdots s_x(n). $$
 - **Abelian** G implies Multiplicative Property:
 $$ x \cdot y = s_x(1) \cdot \cdots \cdot s_x(n) \cdot s_y(1) \cdots s_y(n) = s_x(1) \cdot s_y(1) \cdots s_x(n) \cdot s_y(n) $$

![Diagram of secret sharing and multiplication in an Abelian group](image)
Secure Computation of \(n \)-Product

How to extend the Abelian protocol to Non-Abelian groups? Order is important: for correctness in non-Abelian \(G \), restrict to \textbf{planar} communication graphs.
Constructions, Step 1: n-Product to 2-Product

- Reducing n-Product to Shared 2-Product:
 - Use binary tree for computing $y = x_1 \cdots x_n$ from x_1, \ldots, x_n, with x_i's at leaves, and product at each internal node.
 - Input Sharing: ith party shares x_i to ℓ parties according to sharing functions O_x, O_y of subprotocol Π_S.
 - For each internal node of tree, invoke instance of subprotocol Π_S to multiply shared inputs to a shared output.
 - Obtain shared root value $y = x_1 \cdots , x_n$. Shares $s_z(1), \ldots, s_z(\ell)$ broadcast to all parties, who compute $y = s_z(1) \cdots s_z(\ell)$.
Constructions, Step 1: \(n \)-Product to Shared 2-Product

To get \(t \)-privacy of \(n \)-Product protocol \(\Pi \), require **strong \(t \)-privacy** for Shared 2-product subprotocol \(\Pi_S \):

- For each \(t \)-collusion \(I \), given:
 - All ‘\(x \)-input’ shares except one not held by \(I \) (\(j^* \)th share)
 - All ‘\(y \)-input’ shares except one not held by \(I \) (\(j^*_y \)th share)
- It is possible to simulate internal view and all output shares except one not held by \(I \) (\(j^* \)th share).
Constructions, Step 1: n-Product to Shared 2-Product

- **Lemma.** For any binary computation tree for f_G, if Shared 2-product subprotocol Π_S satisfies strong t-privacy, then n-Product protocol Π is t-private.

- **Proof Idea:**
 - For each collusion I (by ℓ-of-ℓ property of input sharing), all $\ell - 1$ except one share of each x_i can be simulated by a t-collusion I.
 - At each internal node of the tree, apply simulator for Π_S to simulate view of I in corresponding subprotocol run and $\ell - 1$ output shares (use as x-input shares to following simulator run).
 - Finally get simulated $\ell - 1$ shares of output value (root node), and compute remaining ℓth share from known $\ell - 1$ shares and the given protocol output y.

Ron Steinfeld
Secure Multiparty Computation from Graph Colouring
July 2012
14/34
Constructions, Step 2: 2-Product from Graph Colouring

- Use planar communication graphs which preserve product at each row - **Admissible PDAGs** (Planar Directed Acyclic Graphs).
Q. Which n-Colourings of a given graph give strong t-privacy?

A. t-reliable n-colouring: For each t-collusion I, there is:
 - An I-avoiding path from j^*th x-input to j^*th output
 - An I-avoiding path from j_yth y-input to j^*th output
Constructions, Step 2: 2-Product from Graph Colouring

Q. Which \(n \)-Colourings of a given graph give strong \(t \)-privacy?

A. \textbf{\(t \)-reliable \(n \)-colouring:} For each \(t \)-collusion \(I \), there is:

- An \(I \)-avoiding path from \(j^* \)th \(x \)-input to \(j^* \)th output
- An \(I \)-avoiding path from \(j_y \)th \(y \)-input to \(j^* \)th output
Lemma. If \mathcal{G} is an admissible PDAG and C is a t-Reliable n-Colouring for \mathcal{G} then $\Pi_S(\mathcal{G}, C)$ achieves strong t-privacy.

Proof Idea: At each node along path, one outgoing share is not in collusion’s view; remaining $k - 1$ shares are random and independent of the node value (proof extends also to paths with upward edges).
Step 3: Realizing \(t \)-reliable \(n \)-Colourings

Two constructions:

- Deterministic: \(t < n/2 \) optimal, but size \(\ell \) exponential in \(n \)
- Probabilistic: \(t < n/2 \) optimal, size \(\ell = \mathcal{P}oly(n) \), but error probability \(\delta \) exponentially small in \(n \).

Recursive deterministic construction [Sun et al, 2008] trades off resilience \(t < n^{1-\varepsilon} \) for smaller size \(\ell = O(\mathcal{P}oly(n)) \).
Step 3: t-reliable n-Colourings – Deterministic construction

- We consider the $\ell \times \ell$ square admissible PDAG $G_{tri}(\ell, \ell)$.

![Diagram of a square grid with labelled nodes and edges]
Step 3: \(t \)-Reliable \(n \)-Colourings – Deterministic Construction

- Example colouring, \(n = 5 \), \(t = 2 \), \(\ell = \binom{5}{2} = 10 \).
Step 3: t-Reliable n-Colourings – Deterministic Construction

Generalisation to any n, t gives:

Lemma

For $t < n/2$, C_{comb} is a Symmetric t-Reliable n-Colouring for graph $G_{tri}(\ell, \ell)$, with $\ell = \left(\begin{array}{c} n \\ t \end{array}\right)$.

Corollary

For any $t < n/2$, there exists a black-box t-private protocol for f_G with communication complexity $O(n\left(\frac{2t+1}{t}\right)^2)$ group elements.

Remark. The condition $t < n/2$ is necessary for existence of a t-reliable n-coloring:

- If $n = 2t$, an I-avoiding top-bottom path contains $\leq |[n] \setminus I| = 2t - t = t$ colours – it is a left-right cutset!
Step 3: \(t \)-Reliable \(n \)-Colourings – Deterministic Construction

Generalisation to any \(n, t \) gives:

Lemma
For \(t < n/2 \), \(C_{\text{comb}} \) is a Symmetric \(t \)-Reliable \(n \)-Colouring for graph \(G_{\text{tri}}(\ell, \ell) \), with \(\ell = \binom{n}{t} \).

Corollary
For any \(t < n/2 \), there exists a black-box \(t \)-private protocol for \(f_G \) with communication complexity \(O(n\binom{2t+1}{t}^2) \) group elements.

Remark. The condition \(t < n/2 \) is necessary for existence of a \(t \)-reliable \(n \)-coloring:
- If \(n = 2t \), an \(l \)-avoiding top-bottom path contains \(\leq \left| [n] \setminus l \right| = 2t - t = t \) colours – it is a left-right cutset!
Step 3: \(t \)-Reliable \(n \)-Colourings – Probabilistic Construction

- We add diagonal edges and allow for rectangular \(\ell' \times \ell \) admissible PDAG \(G_{\text{tri}}(\ell', \ell) \).
Step 3: t-Reliable n-Colourings – Probabilistic Construction

- Question: Can we get t-Reliable n-Colourings with ℓ polynomial in t?
 - YES - use a random colouring!
 - Actually, we will show a random colouring is only weakly t-Reliable, i.e. for each t-colour subset $I \subset [n]$:
 - There exists an I-avoiding top-bottom path P_x
 - There exists an I-avoiding right-left path P_y
 - No need to worry about matching entry and exit positions
Step 3: t-Reliable n-Colourings – Probabilistic Construction

Question: Can we get t-Reliable n-Colourings with ℓ polynomial in t?

YES - use a random colouring!

Actually, we will show a random colouring is only weakly t-Reliable, i.e. for each t-colour subset $I \subset [n]$:
- There exists an I-avoiding top-bottom path P_x
- There exists an I-avoiding right-left path P_y
- No need to worry about matching entry and exit positions
Step 3: t-Reliable n-Colourings – Probabilistic Construction

- Question: Can we get t-Reliable n-Colourings with ℓ polynomial in t?
- YES - use a random colouring!
- Actually, we will show a random colouring is only weakly t-Reliable, i.e. for each t-colour subset $I \subset [n]$:
 - There exists an I-avoiding top-bottom path P_x
 - There exists an I-avoiding right-left path P_y
 - No need to worry about matching entry and exit positions
Step 3: \(t \)-Reliable \(n \)-Colourings – Probabilistic Construction

- **Lemma (Mirror).** Any weakly \(t \)-Reliable \(n \)-Colouring for PDAG \(G_{\text{tri}}(\ell, \ell) \) can be converted into a (standard) \(t \)-Reliable \(n \)-Colouring for a rectangular admissible PDAG \(G_{\text{gtri}}(2\ell - 1, \ell) \).
Step 3: t-Reliable n-Colourings – Probabilistic Construction

Goal: Find an upper bound on error probability δ that C_{rand} is not weakly t-Reliable.

Link with percolation theory!

Fix collusion $I \subset [n]$ with $|I| = t$. Since we use a uniformly random n-colouring:

- Each node of graph is in I (‘closed’) with probability $p = t/n$.
- Want to upper bound probability that there is no open top-bottom path in graph.

Observation ("Self-Duality" Property of $T"): For triangular lattice $G_{tri}(\ell, \ell)$, there is no open top-bottom path iff there is a closed left-right ‘cutting’ path.

So, suffices to upper bound the probability of a closed left-right path.
Step 3: \(t \)-Reliable \(n \)-Colourings – Probabilistic Construction

Goal: Find an upper bound on error probability \(\delta \) that \(C_{rand} \) is not weakly \(t \)-Reliable.

Link with percolation theory!

Fix collusion \(I \subset [n] \) with \(|I| = t \). Since we use a uniformly random \(n \)-colouring:

- Each node of graph is in \(I \) (‘closed’) with probability \(p = t/n \).
- Want to upper bound probability that there is no open top-bottom path in graph.

Observation (“Self-Duality” Property of \(T \)): For triangular lattice \(\mathcal{G}_{tri}(\ell, \ell) \), there is no open top-bottom path iff there is a closed left-right ‘cutting’ path.

So, suffices to upper bound the probability of a closed left-right path.
Step 3: t-Reliable n-Colourings – Probabilistic Construction

Goal: Find an upper bound on error probability δ that C_{rand} is not weakly t-Reliable.

Link with percolation theory!

Fix collusion $I \subset [n]$ with $|I| = t$. Since we use a uniformly random n-colouring:

- Each node of graph is in I (‘closed’) with probability $p = t/n$.
- Want to upper bound probability that there is no open top-bottom path in graph

Observation ("Self-Duality" Property of T): For triangular lattice $G_{tri}(\ell,\ell)$, there is no open top-bottom path iff there is a closed left-right ‘cutting’ path.

So, suffices to upper bound the probability of a closed left-right path.
Step 3: t-Reliable n-Colourings – Probabilistic Construction

Percolation theory result, for the infinite triangular lattice T.

Theorem (Hammersely ‘57)

Fix node n of T. If each node closed independently with prob. p, there exists a **critical prob.** $p_c(T)$ such that, for for $p < p_c(T)$,

$$\Pr[\exists \text{ a closed path in } T \text{ of length } \ell \text{ starting at } n] < \exp(-\ell / r(p)),$$

where $r(p)$ depends on p but not on ℓ. Moreover, $p_c(T) = 1/2$.

In our case, $p = t/n$. If $t/n = \frac{1}{2+\varepsilon}$ for some constant $\varepsilon > 0$,

$$\delta = \Pr(C_{rand} \text{ is bad}) \leq 2 \cdot \binom{n}{t} \cdot \ell \cdot \exp(-(\ell - 1)/r(\varepsilon)),$$

so can use $\ell = O(n + \log \delta^{-1})$, for any desired error probability δ.
Step 3: \(t \)-Reliable \(n \)-Colourings – Probabilistic Construction

In the optimal case, \(t/n = 1/2 - \frac{1}{2n} = p_c(T) - o(1) \), we are in the ‘near-critical’ percolation region.

The function \(r(p) \) seems not so well understood for general graphs in this region...

But for the triangular lattice \(T \), celebrated results of [Smirnov, Werner 2001] can be used to show

\[
r(p) \to c \cdot (p - 1/2)^{-91/36 + o(1)} \quad \text{as} \quad p \to 1/2,
\]

which implies that we can take \(\ell = O(n^{91/36 + \varepsilon} \cdot (n + \log(\delta^{-1}))) \) for error probability \(\delta \).
Step 3: \(t \)-Reliable \(n \)-Colourings – Probabilistic Construction

In the optimal case, \(t/n = 1/2 - \frac{1}{2n} = p_c(T) - o(1) \), we are in the ‘near-critical’ percolation region. The function \(r(p) \) seems not so well understood for general graphs in this region...

But for the triangular lattice \(T \), celebrated results of [Smirnov, Werner 2001] can be used to show

\[
r(p) \to c \cdot (p - 1/2)^{-91/36 + o(1)} \quad \text{as} \quad p \to 1/2,
\]

which implies that we can take \(\ell = O(n^{91/36 + \varepsilon} \cdot (n + \log(\delta^{-1})) \) for error probability \(\delta \).
Step 3: \(t \)-Reliable \(n \)-Colourings – Probabilistic Construction

In the optimal case, \(t/n = 1/2 - \frac{1}{2n} = p_c(T) - o(1) \), we are in the ‘near-critical’ percolation region.
The function \(r(p) \) seems not so well understood for general graphs in this region...
But for the triangular lattice \(T \), celebrated results of [Smirnov, Werner 2001] can be used to show

\[
r(p) \rightarrow c \cdot (p - 1/2)^{-91/36 + o(1)} \text{ as } p \rightarrow 1/2,
\]

which implies that we can take \(\ell = O(n^{91/36 + \varepsilon} \cdot (n + \log(\delta^{-1})) \) for error probability \(\delta \).
Step 3: t-Reliable n-Colourings – Probabilistic Construction

In summary, we proved:

Theorem

For any $\delta > 0$, we can construct a black-box protocol \prod for f_G such that

- If $t < n/2$, \prod has communication complexity $O(n^{6.056}(n + \log \delta^{-1})^2)$ group elements.
- If $t \leq n/(2 + \epsilon)$ for some constant $\epsilon > 0$, \prod has communication complexity $O(n(n + \log \delta^{-1})^2)$ group elements,

and the probability that \prod is not t-private is at most δ.

Ron Steinfeld
Secure Multiparty Computation from Graph Colouring
July 2012 28/34
Extension: computing arbitrary functions

Our protocols easily generalize from computing $f_G(x_1, \ldots, x_n)$ to compute any G-circuit with two types of gates:

1. Mult: $(x, y) \mapsto x \cdot y$.
2. $\text{CMult}_{\alpha, \beta}: x \mapsto \alpha \cdot x \cdot \beta$

Question: Can any Boolean circuit be computed by a G-circuit, for some finite group G?

- Let $\phi_\sigma: \{0, 1\} \rightarrow G$ denote an encoding function mapping $0 \mapsto 1_G$ and $1 \mapsto \sigma$.
- G-circuit C computes a Boolean function g if there exists $\sigma \in G$ such that $g(x_1, \ldots, x_n) = \phi_\sigma^{-1}(f_C(\phi_\sigma(x_1), \ldots, \phi_\sigma(x_n)))$ for all $(x_1, \ldots, x_n) \in \{0, 1\}^n$.
Extension: computing arbitrary functions

Our protocols easily generalize from computing $f_G(x_1, \ldots, x_n)$ to compute any G-circuit with two types of gates:

1. **Mult**: $(x, y) \mapsto x \cdot y$.
2. **CMult$_{\alpha,\beta}$**: $x \mapsto \alpha \cdot x \cdot \beta$

Question: Can any Boolean circuit be computed by a G-circuit, for some finite group G?

- Let $\phi_{\sigma} : \{0, 1\} \rightarrow G$ denote an encoding function mapping $0 \mapsto 1_G$ and $1 \mapsto \sigma$.

- G-circuit C computes a Boolean function g if there exists $\sigma \in G$ such that $g(x_1, \ldots, x_n) = \phi_{\sigma}^{-1}(f_C(\phi_{\sigma}(x_1), \ldots, \phi_{\sigma}(x_n)))$ for all $(x_1, \ldots, x_n) \in \{0, 1\}^n$.
Extension: computing arbitrary functions

Our protocols easily generalize from computing $f_G(x_1, \ldots, x_n)$ to compute any G-circuit with two types of gates:

1. **Mult**: $(x, y) \mapsto x \cdot y$.
2. **CMult$_{\alpha, \beta}$**: $x \mapsto \alpha \cdot x \cdot \beta$

Question: Can any Boolean circuit be computed by a G-circuit, for some finite group G?

- Let $\phi_\sigma : \{0, 1\} \rightarrow G$ denote an encoding function mapping $0 \mapsto 1_G$ and $1 \mapsto \sigma$.
- G-circuit C computes a Boolean function g if there exists $\sigma \in G$ such that $g(x_1, \ldots, x_n) = \phi_\sigma^{-1}(f_C(\phi_\sigma(x_1), \ldots, \phi_\sigma(x_n)))$ for all $(x_1, \ldots, x_n) \in \{0, 1\}^n$.

Ron Steinfeld
Secure Multiparty Computation from Graph Colouring
July 2012
29/34
Extension: computing arbitrary functions

Theorem (Adapted from Barrington’86)

Let C be a Boolean circuit consisting of N_A 2-input AND gates, N_N NOT gates. There exists an S_5-circuit C' which computes the Boolean function computed by C. The circuit C' contains $N'_M = 3N_A$ Mult gates and $N'_{CM} = 4N_A + N_N$ CMult gates.

Proof idea:

- Take encoding ϕ_σ mapping 0 to 1_{S_5} and 1 to $\sigma = (12345)$.
- Recall: $x, y \in S_5$ are conjugates if $x = h \cdot y \cdot h^{-1}$ for some $h \in S_5$.
- **Facts.**:
 - Set J of all 5-cycles of S_5 is a conjugacy class of S_5.
 - J contains two elements σ_1, σ_2 whose commutator $\sigma_1 \sigma_2 \sigma_1^{-1} \sigma_2^{-1}$ belongs to J.
Extension: computing arbitrary functions

Hence, for $\sigma, \sigma' \in J$, can convert an encoding $\phi_\sigma(x)$ w.r.t. σ' to encoding $\phi_{\sigma'}(x)$ w.r.t. σ' by a CMult gate:

$$x_{\sigma'} = h_{\sigma,\sigma'} \cdot x_\sigma \cdot h^{-1}_{\sigma,\sigma'}$$

To compute AND $z = AND(x, y)$ w.r.t. encoding ϕ_{σ_1}, given inputs $x_{\sigma_1}, y_{\sigma_1} \in S_5$:

- Compute by encoding conversion $x_{\sigma_1^{-1}}, y_{\sigma_2}, y_{\sigma_2^{-1}}$.
- Compute $z_c = x_{\sigma_1} y_{\sigma_2} x_{\sigma_1^{-1}} y_{\sigma_2^{-1}}$ ($z_c = [x_{\sigma_1}, y_{\sigma_2}]$ is an encoding of $z = AND(x, y)$ w.r.t. $c = [\sigma_1, \sigma_2]$).
- Compute by encoding conversion z_{σ_1}.
Extension: Security against active attacks

- Recently [SCN’12, to appear], we constructed variants of these protocols with active security
- Works for \(t < n/3 \) (optimal for active attacks)
- But, so far we can only make this work for graphs with \(\ell \) exponential in \(n \)...
Extension: Security against active attacks

- Recently [SCN’12, to appear], we constructed variants of these protocols with active security.
- Works for $t < n/3$ (optimal for active attacks).
- But, so far we can only make this work for graphs with ℓ exponential in n...
Extension: Security against active attacks

- Recently [SCN’12, to appear], we constructed variants of these protocols with active security.
- Works for $t < n/3$ (optimal for active attacks).
- But, so far we can only make this work for graphs with ℓ exponential in n...
Extension: Security against active attacks

Main ideas:

- Use a variant of the deterministic coloring, but with $2t + 1$-subsets colouring the edges
- At each node, two incoming $2t + 1$-subsets jointly perform the node multiplication and resharing:
 - All parties in intersection of incoming $2t + 1$-subsets perform the multiplication; one is honest.
 - Consistency among products is verified by the honest majority in each $2t + 1$-subset
- Problem in reducing exponential complexity:
 - Each $2t + 1$-subset ‘color’ excludes a unique t-subset
 - Corresponding edge can only be used for one I-avoiding path
 - But in a $\mathcal{Poly}(n)$-sized graph, edges must be re-used for exp. many I's!
Extension: Security against active attacks

Main ideas:

- Use a variant of the deterministic coloring, but with $2t + 1$-subsets colouring the edges
- At each node, two incoming $2t + 1$-subsets jointly perform the node multiplication and resharing:
 - All parties in intersection of incoming $2t + 1$-subsets perform the multiplication; one is honest.
 - Consistency among products is verified by the honest majority in each $2t + 1$-subset

Problem in reducing exponential complexity:

- Each $2t + 1$-subset ‘color’ excludes a unique t-subset
- Corresponding edge can only be used for one I-avoiding path
- But in a $\mathcal{P}oly(n)$-sized graph, edges must be re-used for exp. many I's!
Extension: Security against active attacks

Main ideas:

- Use a variant of the deterministic coloring, but with $2t + 1$-subsets colouring the edges.
- At each node, two incoming $2t + 1$-subsets jointly perform the node multiplication and resharing:
 - All parties in intersection of incoming $2t + 1$-subsets perform the multiplication; one is honest.
 - Consistency among products is verified by the honest majority in each $2t + 1$-subset.
- Problem in reducing exponential complexity:
 - Each $2t + 1$-subset ‘color’ excludes a unique t-subset.
 - Corresponding edge can only be used for one I-avoiding path.
 - But in a $\mathcal{Poly}(n)$-sized graph, edges must be re-used for exp. many I’s!
Extension: Security against active attacks

Main ideas:

- Use a variant of the deterministic coloring, but with $2t + 1$-subsets colouring the edges.
- At each node, two incoming $2t + 1$-subsets jointly perform the node multiplication and resharing:
 - All parties in intersection of incoming $2t + 1$-subsets perform the multiplication; one is honest.
 - Consistency among products is verified by the honest majority in each $2t + 1$-subset.
- Problem in reducing exponential complexity:
 - Each $2t + 1$-subset ‘color’ excludes a unique t-subset.
 - Corresponding edge can only be used for one I-avoiding path.
 - But in a $\mathcal{P}oly(n)$-sized graph, edges must be re-used for exp. many I’s!
Extension: Security against active attacks

Main ideas:

- Use a variant of the deterministic coloring, but with $2t + 1$-subsets colouring the edges.
- At each node, two incoming $2t + 1$-subsets jointly perform the node multiplication and resharling:
 - All parties in intersection of incoming $2t + 1$-subsets perform the multiplication; one is honest.
 - Consistency among products is verified by the honest majority in each $2t + 1$-subset.
- Problem in reducing exponential complexity:
 - Each $2t + 1$-subset ‘color’ excludes a unique t-subset.
 - Corresponding edge can only be used for one I-avoiding path.
 - But in a Poly(n)-sized graph, edges must be re-used for exp. many I’s!
Conclusions and Open Problems

- We designed black-box n-Product protocols over any finite group based on k-of-k secret sharing schemes by reduction to a combinatorial graph colouring problem.

- Open Problems:
 - Can one obtain a deterministic construction of an admissible PDAG with t-reliable coloring, polynomial size, and optimal privacy ($t < n/2$)?
 - Can one obtain a protocol for black-box groups with active security having optimal resilience ($t < n/3$) and polynomial communication complexity?
 - Is it possible to construct black-box secure computation protocol for ‘weaker’ algebraic structures than groups?
 - Other applications for our protocols?