A moment’s thought: physical derivations of Fibonacci summations

David Treeby
Two pretty formulas

\[\sum_{j=1}^{n} j^3 = \left(\sum_{j=1}^{n} j \right)^2 \]

\[\sum_{j=1}^{n} F_j^3 F_{j+1}^3 = \left(\sum_{j=1}^{n} F_j^2 F_{j+1} \right)^2 \]
Two models of the Fibonacci numbers

1. A combinatorial model
2. A geometric model
A combinatorial model for Fibonacci numbers

Theorem

The number of ways to tile a board of length \(j \) with squares and dominoes is \(f_j \) where \(f_0 = f_1 = 1 \) and \(f_j = f_{j-1} + f_{j-2} \).

\[
\begin{array}{c|c|c|c|c}
\hline
& & & & \\
\hline
\text{square} & & & & \\
\hline
\text{domino} & & & & \\
\end{array}
\]
\[f_4 = 5 \]
Proof.

Consider a j-board. Suppose that this can be tiled in f_j ways.

Case 1. If the first tile is a square then there are $f_j - 1$ ways to tile the $(j-1)$-board.

Case 2. If the first tile is a domino then there are $f_j - 2$ ways to tile the $(j-2)$-board.

Therefore $f_j = f_{j-1} + f_{j-2}$.

\[\begin{array}{cccc}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 \end{array} \]
Proof.

Consider a j-board. Suppose that this can be tiled in f_j ways.

Case 1. If the first tile is a square then there are f_{j-1} ways to tile the remaining $(j - 1)$-board.
Proof.

Consider a j-board. Suppose that this can be tiled in f_j ways.

$\begin{array}{c}
\hline
\vdots \\
\hline
\end{array}$

Case 1. If the first tile is a square then there are f_{j-1} ways to tile the remaining $(j - 1)$-board.

$\begin{array}{c}
\hline
\vdots \\
\hline
\end{array}$

Case 2. If the first tile is a domino then there are f_{j-2} ways to tile the remaining $(j - 2)$-board.

$\begin{array}{c}
\hline
\vdots \\
\hline
\end{array}$
Proof.

Consider a j-board. Suppose that this can be tiled in f_j ways.

Case 1. If the first tile is a square then there are f_{j-1} ways to tile the remaining $(j - 1)$-board.

Case 2. If the first tile is a domino then there are f_{j-2} ways to tile the remaining $(j - 2)$-board.

Therefore $f_j = f_{j-1} + f_{j-2}$.
Sums of squares of Fibonacci numbers

Theorem

\[f_0^2 + f_1^2 + f_2^2 + \cdots + f_n^2 = f_n f_{n+1} \]
Proof.

Question. How many ways can you tile an n-board and an $(n + 1)$-board?
Proof.

Question. How many ways can you tile an n-board and an $(n + 1)$-board?

Answer 1. There are f_n and f_{n+1} tilings of the first and second board, respectively. Therefore there are

$$f_n f_{n+1}$$

tilings of both boards.
Answer 2. Condition on the position \(j \) corresponding to the last *common edge* of each tiling.

To avoid future common edges, there is exactly one way to finish the tiling. Prior to this, the first and second board can each be tiled \(f_j \) ways, so both can be tiled \(f_2^j \) ways. Summing over all possible values of \(j \) gives

\[
\sum_{n \geq 0} f_j^2 \text{ tilings.}
\]
Answer 2. Condition on the position j corresponding to the last *common edge* of each tiling.

To avoid future common edges, there is exactly one way to finish the tiling.
Answer 2. Condition on the position \(j \) corresponding to the last common edge of each tiling.

To avoid future common edges, there is exactly one way to finish the tiling.

Prior to this, the first and second board can each be tiled \(f_j \) ways, so both can be tiled \(f_j^2 \) ways.
Answer 2. Condition on the position j corresponding to the last common edge of each tiling.

To avoid future common edges, there is exactly one way to finish the tiling.

Prior to this, the first and second board can each be tiled f_j ways, so both can be tiled f_j^2 ways.

Summing over all possible values of j gives $\sum_{j=0}^n f_j^2$ tilings.
A geometric model for Fibonacci numbers

Construct a rectangle comprising two adjacent squares of side $F_1 = 1$ and $F_2 = 1$.

\[F_2 \]
\[F_1 \]
A geometric model

For every $j \geq 2$ we construct a square of side F_j on the larger side of the existing rectangle.
For every $j \geq 2$ we construct a square of side F_j on the larger side of the existing rectangle.
A geometric model

For every $j \geq 2$ we construct a square of side F_j on the larger side of the existing rectangle.
For every $j \geq 2$ we construct a square of side F_j on the larger side of the existing rectangle.
A geometric model

For every \(j \geq 2 \) we construct a square of side \(F_j \) on the larger side of the existing rectangle.
A geometric model

The jth square has side F_j where $F_1 = F_2 = 1$ and $F_j = F_{j-1} + F_{j-2}$ for $n \geq 2$.

\[
\begin{align*}
F_1 & \quad F_2 & \quad F_3 & \quad F_4 & \quad F_5 & \quad F_6 & \quad F_7 \\
F_1F_3 & \quad F_5 & \quad F_7
\end{align*}
\]
Theorem

\[F_1^2 + F_2^2 + \cdots + F_n^2 = F_n F_{n+1} \]

Proof.
The total area is equal to the sum of its parts.
Sums of cubes of Fibonacci numbers

Question. Is there a closed formula for the sum of cubes of Fibonacci numbers?
Sums of cubes of Fibonacci numbers

Question. Is there a closed formula for the sum of cubes of Fibonacci numbers?

Answer. Yes, by Binet’s formula for the nth Fibonacci number there has to be. However, the answer is not expressible as the product of Fibonacci numbers.
Sums of cubes of Fibonacci numbers

Question. Are there combinatorial or geometric methods for determining the sum of cubes of Fibonacci numbers?
Question. Are there combinatorial or geometric methods for determining the sum of cubes of Fibonacci numbers?

Answer. Yes and yes.
Sums of cubes of Fibonacci numbers

Theorem

$$\sum_{j=1}^{n} F_j^3 = \frac{F_{n+1}F_{n+2}^2 + (-1)^n F_n - 2F_n^3}{2}$$

Proof.
A preliminary result

For the geometric proof we require one preliminary result,

$$\sum_{j=1}^{n} F_j^2 F_{j+1} = \frac{1}{2} F_n F_{n+1} F_{n+2}.$$
The centroid of a composite shape

\[\bar{x} = \frac{\sum_{j=1}^{n} A_j x_j}{A} \quad \text{and} \quad \bar{y} = \frac{\sum_{j=1}^{n} A_j y_j}{A} \]
A Fibonacci tiling

Example

\[F_j \quad F_{j+1} \]

\[F_{j-1} \]
A Fibonacci tiling

Example

1.

\[F_{j+2}^2 = 4F_j F_{j+1} + F_{j-1}^2 \]
The centroid of the tiling

Example

\[F_j - F_{j-1} + 2F_{j+1} - F_{j+2} = 2F_{j+2} \]
The centroid of the tiling

Example

\[2F_{j+1}^2 F_j + 4F_j F_{j+1} F_{j+2} = F_{j+2}^3 - F_{j-1}^3 \]
Theorem

$$\sum_{j=1}^{n} F_j F_{j+1} F_{j+2} = \frac{F_j^3 + F_{j+1}^3 + F_{j+2}^3 - F_{j-1} F_j F_{j+1} - 2}{4}.$$
Another Fibonacci tiling

Example

\[
F_j + 1 = F_j F_{j+1} + F_j F_{j+1}
\]
Another Fibonacci tiling

Example

\[F_{j+2}^2 = 2F_j F_{j+1} + F_j^2 + F_{j+1}^2 \]
The centroid of the tiling

Example

\[F_j^3 + 3F_j F_{j+1} F_{j+2} = F_{j+2}^3 - F_{j+1}^3 \]
Theorem

\[
\sum_{j=1}^{n} F_j^3 = \frac{3F_{j+1}^2 F_j - F_{j+1}^3 - F_j^3 + 1}{2}.
\]
Sums of cubes

Starting point:

\[T_n = 1 + 2 + \cdots + n = \frac{1}{2}n(n + 1) \]
Sums of cubes
Sums of cubes

\[x_j \]

\[T_{j-1} \quad \frac{1}{x_j} \quad T_{j} \]
Sums of cubes

\[\frac{1}{2} j^2 \]
Sums of cubes

\[\sum_{j=1}^{n} j^3 = \left(\sum_{j=1}^{n} j \right)^2 \]
A generalisation

The same trick works more generally. Suppose our starting point is

$$\sum_{j=1}^{n} F_j^2 F_{j+1} = \frac{1}{2} F_n F_{n+1} F_{n+2}.$$
\[F_1^2 F_2 F_2^2 F_3 F_3^2 F_4 \ldots F_n^2 F_{n+1} \]

\[\frac{1}{4} F_n F_{n+1} F_{n+2} \]

\[\frac{1}{2} F_n F_{n+1} F_{n+2} \]
\[F_j^2 F_{j+1} \]

Diagram showing:
- \(S_{j-1} \)
- A point \(x_j \)
- \(S_j \)
\[\sum_{j=1}^{n} F_j^3 F_{j+1}^3 = \frac{1}{4} F_n^2 F_{n+1}^2 F_{n+2} \]
\[
\sum_{j=1}^{n} F_j^3 F_{j+1}^3 = \left(\sum_{j=1}^{n} F_j^2 F_{j+1} \right)^2
\]
Apply the method again

\[\sum_{j=1}^{n} F_j^5 F_{j+1}^5 F_{2j+1} = \frac{1}{8} F_n^4 F_{n+1}^4 F_{n+2}^4 \]