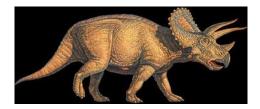
Triceratopisms of Latin Squares

Ian Wanless



Joint work with Brendan McKay and Xiande Zhang

A *Latin square* of order n is an $n \times n$ matrix in which each of n symbols occurs exactly once in each row and once in each column.

e.g.
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ 3 & 1 & 4 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
 is a Latin square of order 4.

The Cayley table of a finite (quasi-)group is a Latin square.

Let S_n be the symmetric group on *n* letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares,

Let S_n be the symmetric group on n letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares, where (α, β, γ) applies

- $\boldsymbol{\alpha}$ to permute the rows
- β to permute the columns
- γ to permute the symbols.

Let S_n be the symmetric group on n letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares, where (α, β, γ) applies

- $\boldsymbol{\alpha}$ to permute the rows
- β to permute the columns
- γ to permute the symbols.

... The stabiliser of a Latin square is its *autotopism group*.

Let S_n be the symmetric group on n letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares, where (α, β, γ) applies

- $\boldsymbol{\alpha}$ to permute the rows
- β to permute the columns
- γ to permute the symbols.

... The stabiliser of a Latin square is its autotopism group.

atp(n) is the subset of $S_n \times S_n \times S_n$ consisting of all maps that are an autotopism of some Latin square of order *n*.

Let S_n be the symmetric group on n letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares, where (α, β, γ) applies

- $\boldsymbol{\alpha}$ to permute the rows
- β to permute the columns
- γ to permute the symbols.

... The stabiliser of a Latin square is its autotopism group.

atp(n) is the subset of $S_n \times S_n \times S_n$ consisting of all maps that are an autotopism of some Latin square of order *n*.

aut(*n*) is the subset of S_n consisting of all α such that $(\alpha, \alpha, \alpha) \in \operatorname{atp}(n)$. (Such α are *automorphisms*).

Let S_n be the symmetric group on n letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares, where (α, β, γ) applies

- $\boldsymbol{\alpha}$ to permute the rows
- β to permute the columns
- γ to permute the symbols.

... The stabiliser of a Latin square is its autotopism group.

atp(n) is the subset of $S_n \times S_n \times S_n$ consisting of all maps that are an autotopism of some Latin square of order *n*.

aut(*n*) is the subset of S_n consisting of all α such that $(\alpha, \alpha, \alpha) \in atp(n)$. (Such α are *automorphisms*).

Whether (α, β, γ) is in atp(n) depends only on

• The multiset $\{\alpha, \beta, \gamma\}$.

Let S_n be the symmetric group on n letters. There is a natural action of $S_n \times S_n \times S_n$ on Latin squares, where (α, β, γ) applies

- $\boldsymbol{\alpha}$ to permute the rows
- β to permute the columns
- γ to permute the symbols.

... The stabiliser of a Latin square is its autotopism group.

 $\operatorname{atp}(n)$ is the subset of $\mathcal{S}_n \times \mathcal{S}_n \times \mathcal{S}_n$ consisting of all maps that are an autotopism of some Latin square of order *n*.

aut(*n*) is the subset of S_n consisting of all α such that $(\alpha, \alpha, \alpha) \in \operatorname{atp}(n)$. (Such α are *automorphisms*).

Whether (α, β, γ) is in $\operatorname{atp}(n)$ depends only on

- The multiset $\{\alpha, \beta, \gamma\}$.
- The cycle structure of α, β, γ .

Number of possible cycle structures

n	3 diff	2 diff	#aut(<i>n</i>)	#atp(<i>n</i>)
1			1	1
2		1	1	2
2 3		1	3	4
4		5	4	9
5		1	5	6
6	1	11	6	18
7		1	9	10
8		25	12	37
9		10	13	23
10	1	23	14	38
11		1	18	19
12	7	113	26	146
13		1	24	25
14	1	37	24	62
15	1	34	39	74
16		151	50	201
17		1	38	39

Q1. If $(\alpha, \beta, \gamma) \in atp(n)$ for some prime n,

Q1. If $(\alpha, \beta, \gamma) \in atp(n)$ for some prime *n*, but α, β, γ don't all have the same cycle structure, must one of them be the identity?

Q1. If $(\alpha, \beta, \gamma) \in atp(n)$ for some prime *n*, but α, β, γ don't all have the same cycle structure, must one of them be the identity?

The answer is yes for $n \leq 23$.

Q1. If $(\alpha, \beta, \gamma) \in atp(n)$ for some prime *n*, but α, β, γ don't all have the same cycle structure, must one of them be the identity?

The answer is yes for $n \leq 23$.

Q2. If $\theta \in atp(n)$ then is the order of θ at most n?

Q1. If $(\alpha, \beta, \gamma) \in atp(n)$ for some prime *n*, but α, β, γ don't all have the same cycle structure, must one of them be the identity?

The answer is yes for $n \leq 23$.

Q2. If $\theta \in atp(n)$ then is the order of θ at most n?

Horoševskii [1974] proved the answer is yes for groups.

Q1. If $(\alpha, \beta, \gamma) \in atp(n)$ for some prime *n*, but α, β, γ don't all have the same cycle structure, must one of them be the identity?

The answer is yes for $n \leq 23$.

Q2. If $\theta \in \operatorname{atp}(n)$ then is the order of θ at most n?

Horoševskii [1974] proved the answer is yes for groups.

Conjecture: For almost all $\alpha \in S_n$ there are no $\beta, \gamma \in S_n$ such that $(\alpha, \beta, \gamma) \in atp(n)$.

McKay, Meynert and Myrvold 2007

Theorem: Let *L* be a Latin square of order *n* and let (α, β, γ) be a nontrivial autotopism of *L*. Then either

- (a) α , β and γ have the same cycle structure with at least 1 and at most $\lfloor \frac{1}{2}n \rfloor$ fixed points, or
- (b) one of α , β or γ has at least 1 fixed point and the other two permutations have the same cycle structure with no fixed points, or
- (c) α , β and γ have no fixed points.

McKay, Meynert and Myrvold 2007

Theorem: Let *L* be a Latin square of order *n* and let (α, β, γ) be a nontrivial autotopism of *L*. Then either

- (a) α , β and γ have the same cycle structure with at least 1 and at most $\lfloor \frac{1}{2}n \rfloor$ fixed points, or
- (b) one of α , β or γ has at least 1 fixed point and the other two permutations have the same cycle structure with no fixed points, or
- (c) α , β and γ have no fixed points.

Corollary: Suppose *Q* is a quasigroup of order *n* and that $\alpha \in \operatorname{aut}(Q)$ with $\alpha \neq \varepsilon$.

- 1. If α has a cycle of length c > n/2, then $\operatorname{ord}(\alpha) = c$.
- 2. If p^a is a prime power divisor of $\operatorname{ord}(\alpha)$ then $\psi(\alpha, p^a) \ge \frac{1}{2}n$.

(Here $\psi(\alpha, k)$ is #points that appear in cycles of α for which the cycle length is divisible by k.)

Theorem: Suppose Q is a quasigroup of order n. Then 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.
- 3. $\operatorname{ord}(\phi) \leq 3n^4/16$ for all $\phi \in \operatorname{par}(Q)$.

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.
- 3. $\operatorname{ord}(\phi) \leq 3n^4/16$ for all $\phi \in \operatorname{par}(Q)$.

Corollary: A random permutation is not an automorphism of a quasigroup,

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.
- 3. $\operatorname{ord}(\phi) \leq 3n^4/16$ for all $\phi \in \operatorname{par}(Q)$.

Corollary: A random permutation is not an automorphism of a quasigroup, Steiner triple system,

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.
- 3. $\operatorname{ord}(\phi) \leq 3n^4/16$ for all $\phi \in \operatorname{par}(Q)$.

Corollary: A random permutation is not an automorphism of a quasigroup, Steiner triple system, or 1-factorisation of K_n ;

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.
- 3. $\operatorname{ord}(\phi) \leq 3n^4/16$ for all $\phi \in \operatorname{par}(Q)$.

Corollary: A random permutation is not an automorphism of a quasigroup, Steiner triple system, or 1-factorisation of K_n ; nor is it a component of an autotopism,

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.
- 3. $\operatorname{ord}(\phi) \leq 3n^4/16$ for all $\phi \in \operatorname{par}(Q)$.

Corollary: A random permutation is not an automorphism of a quasigroup, Steiner triple system, or 1-factorisation of K_n ; nor is it a component of an autotopism, autoparatopism or

- 1. $\operatorname{ord}(\alpha) \leq n^2/4$ for all $\alpha \in \operatorname{aut}(Q)$.
- 2. $\operatorname{ord}(\theta) \leq n^4/16$ for all $\theta \in \operatorname{atp}(Q)$.
- 3. $\operatorname{ord}(\phi) \leq 3n^4/16$ for all $\phi \in \operatorname{par}(Q)$.

Corollary: A random permutation is not an automorphism of a quasigroup, Steiner triple system, or 1-factorisation of K_n ; nor is it a component of an autotopism, autoparatopism or triceratopism of a latin square.

Prime orders

Theorem: Suppose Q is a quasigroup of order n and that $\theta = (\alpha, \beta, \gamma)$ is an autotopism of Q. If k is a prime power divisor of $\operatorname{ord}(\theta)$ and k does not divide n then

$$\psi(\alpha, k) = \psi(\beta, k) = \psi(\gamma, k) \ge \frac{1}{2}n.$$

Prime orders

Theorem: Suppose Q is a quasigroup of order n and that $\theta = (\alpha, \beta, \gamma)$ is an autotopism of Q. If k is a prime power divisor of $\operatorname{ord}(\theta)$ and k does not divide n then

$$\psi(\alpha, k) = \psi(\beta, k) = \psi(\gamma, k) \ge \frac{1}{2}n.$$

This is a strong restriction. For prime $n \leq 29$ it only leaves

$$\begin{array}{l} n=23, \quad (6^2,3,2,1^6) \text{ and } 2\times (6,3^3,2^4).\\ n=29, \quad (6^2,3,2^4,1^6) \text{ and } 2\times (6,3^3,2^7).\\ n=29, \quad (6^3,3,2,1^6) \text{ and } 2\times (6^2,3^3,2^4). \end{array}$$

Prime orders

Theorem: Suppose Q is a quasigroup of order n and that $\theta = (\alpha, \beta, \gamma)$ is an autotopism of Q. If k is a prime power divisor of $\operatorname{ord}(\theta)$ and k does not divide n then

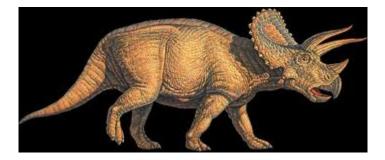
$$\psi(\alpha, k) = \psi(\beta, k) = \psi(\gamma, k) \ge \frac{1}{2}n.$$

This is a strong restriction. For prime $n \leq 29$ it only leaves

$$n = 23$$
, $(6^2, 3, 2, 1^6)$ and $2 \times (6, 3^3, 2^4)$.
 $n = 29$, $(6^2, 3, 2^4, 1^6)$ and $2 \times (6, 3^3, 2^7)$.
 $n = 29$, $(6^3, 3, 2, 1^6)$ and $2 \times (6^2, 3^3, 2^4)$.

But is it possible for prime order to have three different cycle structures?

An autotopism consisting of 3 permutations with different cycle structures is a *triceratopism*.



D. S. Stones, P. Vojtěchovský and I. M. Wanless, Cycle structure of autotopisms of quasigroups and Latin squares, *J. Combin. Des.*, 2012.

R. M. Falcón,

Cycle structures of autotopisms of the Latin squares of order up to 11, *Ars Combin.*, to appear.

B. L. Kerby and J. D. H. Smith, Quasigroup automorphisms and the Norton-Stein complex, *Proc. Amer. Math. Soc.* **138** (2010), 3079–3088.

B. D. McKay, A. Meynert and W. Myrvold, Small Latin squares, quasigroups and loops, *J. Combin. Des.*, **15** (2007), 98–119.

Automorphisms with all nontrivial cycles of the same length: **Theorem:** Suppose $\alpha \in S_n$ has precisely *m* nontrivial cycles, each of length *d*.

Automorphisms with all nontrivial cycles of the same length: **Theorem:** Suppose $\alpha \in S_n$ has precisely *m* nontrivial cycles, each of length *d*.

If α has at least one fixed point, then $\alpha \in \operatorname{aut}(n)$ iff $n \leq 2md$.

Automorphisms with all nontrivial cycles of the same length: **Theorem:** Suppose $\alpha \in S_n$ has precisely *m* nontrivial cycles, each of length *d*.

If α has at least one fixed point, then $\alpha \in aut(n)$ iff $n \leq 2md$. If α has no fixed points, then $\alpha \in aut(n)$ iff d is odd or m is even.

Automorphisms with all nontrivial cycles of the same length: **Theorem:** Suppose $\alpha \in S_n$ has precisely *m* nontrivial cycles, each of length *d*.

If α has at least one fixed point, then $\alpha \in aut(n)$ iff $n \leq 2md$. If α has no fixed points, then $\alpha \in aut(n)$ iff d is odd or m is even.

Corollary: Suppose 2^a is the largest power of 2 dividing *n*, where $a \ge 1$. Suppose each cycle in α , β and γ has length divisible by 2^a . Then $(\alpha, \beta, \gamma) \notin \operatorname{atp}(n)$.

lcm conditions

Let (α, β, γ) be an autotopism of a Latin square *L*. If *i* belongs to an *a*-cycle of α and *j* belongs to a *b*-cycle of β , then L_{ij} belongs to a *c*-cycle of γ , where

 $\operatorname{lcm}(a,b) = \operatorname{lcm}(b,c) = \operatorname{lcm}(a,c) = \operatorname{lcm}(a,b,c).$

$$\operatorname{lcm}(a,b) = \operatorname{lcm}(b,c) = \operatorname{lcm}(a,c) = \operatorname{lcm}(a,b,c).$$

Let Λ be a fixed integer, and let R_{Λ} , C_{Λ} and S_{Λ} be the sets of all rows, columns and symbols in cycles whose length *divides* Λ .

$$\operatorname{lcm}(a,b) = \operatorname{lcm}(b,c) = \operatorname{lcm}(a,c) = \operatorname{lcm}(a,b,c).$$

Let Λ be a fixed integer, and let R_{Λ} , C_{Λ} and S_{Λ} be the sets of all rows, columns and symbols in cycles whose length *divides* Λ .

Theorem: If at least two of R_{Λ} , C_{Λ} and S_{Λ} are nonempty, then

$$\operatorname{lcm}(a,b) = \operatorname{lcm}(b,c) = \operatorname{lcm}(a,c) = \operatorname{lcm}(a,b,c).$$

Let Λ be a fixed integer, and let R_{Λ} , C_{Λ} and S_{Λ} be the sets of all rows, columns and symbols in cycles whose length *divides* Λ .

Theorem: If at least two of R_{Λ} , C_{Λ} and S_{Λ} are nonempty, then $|R_{\Lambda}| = |C_{\Lambda}| = |S_{\Lambda}|$ and there is a Latin subsquare M on the rows R_{Λ} , columns C_{Λ} and symbols S_{Λ} .

$$\operatorname{lcm}(a,b) = \operatorname{lcm}(b,c) = \operatorname{lcm}(a,c) = \operatorname{lcm}(a,b,c).$$

Let Λ be a fixed integer, and let R_{Λ} , C_{Λ} and S_{Λ} be the sets of all rows, columns and symbols in cycles whose length *divides* Λ .

Theorem: If at least two of R_{Λ} , C_{Λ} and S_{Λ} are nonempty, then $|R_{\Lambda}| = |C_{\Lambda}| = |S_{\Lambda}|$ and there is a Latin subsquare M on the rows R_{Λ} , columns C_{Λ} and symbols S_{Λ} . Moreover, M admits an autotopism that is a restriction of the original autotopism.