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Latin squares

A Latin square of order n is an n × n matrix in which each of n
symbols occurs exactly once in each row and once in each column.

e.g.

1 2 3 4
2 4 1 3
3 1 4 2
4 3 2 1

is a Latin square of order 4.

The Cayley table of a finite (quasi-)group is a Latin square.



Autotopisms and Automorphisms

Let Sn be the symmetric group on n letters.
There is a natural action of Sn × Sn × Sn on Latin squares,

where
(α, β, γ) applies

α to permute the rows
β to permute the columns
γ to permute the symbols.

...The stabiliser of a Latin square is its autotopism group.

atp(n) is the subset of Sn ×Sn ×Sn consisting of all maps that are
an autotopism of some Latin square of order n.

aut(n) is the subset of Sn consisting of all α such that
(α, α, α) ∈ atp(n). (Such α are automorphisms).

Whether (α, β, γ) is in atp(n) depends only on

I The multiset {α, β, γ}.
I The cycle structure of α, β, γ.
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Number of possible cycle structures

n 3 diff 2 diff #aut(n) #atp(n)

1 1 1
2 1 1 2
3 1 3 4
4 5 4 9
5 1 5 6
6 1 11 6 18
7 1 9 10
8 25 12 37
9 10 13 23

10 1 23 14 38
11 1 18 19
12 7 113 26 146
13 1 24 25
14 1 37 24 62
15 1 34 39 74
16 151 50 201
17 1 38 39



Stones’ questions

Q1. If (α, β, γ) ∈ atp(n) for some prime n,

but α, β, γ don’t all
have the same cycle structure, must one of them be the identity?

The answer is yes for n 6 23.

Q2. If θ ∈ atp(n) then is the order of θ at most n?

Horoševskĭı [1974] proved the answer is yes for groups.

Conjecture: For almost all α ∈ Sn there are no β, γ ∈ Sn such
that (α, β, γ) ∈ atp(n).
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McKay, Meynert and Myrvold 2007

Theorem: Let L be a Latin square of order n and let (α, β, γ) be
a nontrivial autotopism of L. Then either

(a) α, β and γ have the same cycle structure with at least 1 and
at most

⌊
1
2n

⌋
fixed points, or

(b) one of α, β or γ has at least 1 fixed point and the other two
permutations have the same cycle structure with no fixed
points, or

(c) α, β and γ have no fixed points.

Corollary: Suppose Q is a quasigroup of order n and that
α ∈ aut(Q) with α 6= ε.

1. If α has a cycle of length c > n/2, then ord(α) = c .

2. If pa is a prime power divisor of ord(α) then ψ(α, pa) > 1
2n.

(Here ψ(α, k) is #points that appear in cycles of α for which the
cycle length is divisible by k .)
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The result

Theorem: Suppose Q is a quasigroup of order n. Then

1. ord(α) 6 n2/4 for all α ∈ aut(Q).

2. ord(θ) 6 n4/16 for all θ ∈ atp(Q).

3. ord(φ) 6 3n4/16 for all φ ∈ par(Q).

Corollary: A random permutation is not an automorphism of a
quasigroup, Steiner triple system, or 1-factorisation of Kn;
nor is it a component of an autotopism, autoparatopism or
triceratopism of a latin square.
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Prime orders

Theorem: Suppose Q is a quasigroup of order n and that
θ = (α, β, γ) is an autotopism of Q. If k is a prime power divisor
of ord(θ) and k does not divide n then

ψ(α, k) = ψ(β, k) = ψ(γ, k) > 1
2n.

This is a strong restriction. For prime n 6 29 it only leaves

n = 23, (62, 3, 2, 16) and 2× (6, 33, 24).
n = 29, (62, 3, 24, 16) and 2× (6, 33, 27).
n = 29, (63, 3, 2, 16) and 2× (62, 33, 24).

But is it possible for prime order to have three different cycle
structures?
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Triceratopisms

An autotopism consisting of 3 permutations with different cycle
structures is a triceratopism.
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Some simple cases

Autotopisms where one component is the identity ε:
Theorem: (α, β, ε) ∈ atp(n) iff both α and β consist of n/d
cycles of length d , for some divisor d of n.

Automorphisms with all nontrivial cycles of the same length:
Theorem: Suppose α ∈ Sn has precisely m nontrivial cycles,
each of length d .
If α has at least one fixed point, then α ∈ aut(n) iff n 6 2md .
If α has no fixed points, then α ∈ aut(n) iff d is odd or m is even.

Corollary: Suppose 2a is the largest power of 2 dividing n, where
a > 1. Suppose each cycle in α, β and γ has length divisible by 2a.
Then (α, β, γ) 6∈ atp(n).
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lcm conditions

Let (α, β, γ) be an autotopism of a Latin square L. If i belongs to
an a-cycle of α and j belongs to a b-cycle of β, then Lij belongs to
a c-cycle of γ, where

lcm(a, b) = lcm(b, c) = lcm(a, c) = lcm(a, b, c).

Let Λ be a fixed integer, and let RΛ, CΛ and SΛ be the sets of all
rows, columns and symbols in cycles whose length divides Λ.

Theorem: If at least two of RΛ, CΛ and SΛ are nonempty, then
|RΛ| = |CΛ| = |SΛ| and there is a Latin subsquare M on the rows
RΛ, columns CΛ and symbols SΛ. Moreover, M admits an
autotopism that is a restriction of the original autotopism.
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