Two domination parameters in graphs

Guangjun Xu

Department of Mathematics and Statistics
The University of Melbourne

March 17, 2009

Joint work with Liying Kang, Erfang Shan and Min Zhao
Outline

1. Domination in graphs

Xu

Two domination parameters in graphs
Outline

1. Domination in graphs

2. Power domination

Xu Two domination parameters in graphs
Outline

1. Domination in graphs
2. Power domination
3. Rainbow domination
Definition

- A subset $S \subseteq V$ is a *dominating set* of a graph $G = (V, E)$ if every vertex in $V - S$ has at least one neighbor in S.

Other definitions:

- $N[S] = V$;
- For every vertex $v \in V - S$, $d(v, S) \leq 1$;
- For every vertex $v \in V$, $|N[v] \cap S| \geq 1$;

The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G.

Xu

Two domination parameters in graphs
A subset $S \subseteq V$ is a **dominating set** of a graph $G = (V, E)$ if every vertex in $V - S$ has at least one neighbor in S. Other definitions:

(a) $N[S] = V$;
Definition

A subset $S \subseteq V$ is a *dominating set* of a graph $G = (V, E)$ if every vertex in $V - S$ has at least one neighbor in S.

Other definitions:
(a) $N[S] = V$;
(b) For every vertex $v \in V - S$, $d(v, S) \leq 1$;

The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G. \[\text{Xu} \] Two domination parameters in graphs
A subset $S \subseteq V$ is a **dominating set** of a graph $G = (V, E)$ if every vertex in $V - S$ has at least one neighbor in S.

Other definitions:

(a) $N[S] = V$;
(b) For every vertex $v \in V - S$, $d(v, S) \leq 1$;
(c) For every vertex $v \in V$, $|N[v] \cap S| \geq 1$;

.......

The domination number $\gamma(G)$ of G is the minimum cardinality of a dominating set of G.

Xu Two domination parameters in graphs
A subset $S \subseteq V$ is a **dominating set** of a graph $G = (V, E)$ if every vertex in $V - S$ has at least one neighbor in S.

Other definitions:

(a) $N[S] = V$;

(b) For every vertex $v \in V - S$, $d(v, S) \leq 1$;

(c) For every vertex $v \in V$, $|N[v] \cap S| \geq 1$;

......

The **domination number** $\gamma(G)$ of G is the minimum cardinality of a dominating set of G.

Xu Two domination parameters in graphs
Theorem. **DOMINATING SET** is NP-complete for bipartite graphs, split graphs (\subseteq chordal graph), arbitrary grids.
Known results

- **Theorem.** *DOMINATING SET* is NP-complete for bipartite graphs, split graphs (\subset chordal graph), arbitrary grids.

- **Theorem.** (Ore 1962) If a graph G of order n has no isolated vertices, then $\gamma(G) \leq n/2$.

Domination variants

- Harary and Haynes defined the *conditional domination number* $\gamma(G : P)$: the smallest cardinality of a dominating set $S \subseteq V$ such that the subgraph $\langle S \rangle$ induced by S satisfies some *graph property* P.
Harary and Haynes defined the *conditional domination number* $\gamma(G : P)$: the smallest cardinality of a dominating set $S \subseteq V$ such that the subgraph $\langle S \rangle$ induced by S satisfies some graph property P.

E.g,

$P1. \langle S \rangle$ has no edges \implies independent dominating set;
Harary and Haynes defined the *conditional domination number* $\gamma(G : P)$: the smallest cardinality of a dominating set $S \subseteq V$ such that the subgraph $\langle S \rangle$ induced by S satisfies some graph property P.

E.g,
- $P1.$ \(\langle S \rangle\) has no edges \implies independent dominating set;
- $P2.$ \(\langle S \rangle\) has no isolated vertices \implies total dominating set;
Domination variants

- Harary and Haynes defined the *conditional domination number* $\gamma(G : P)$: the smallest cardinality of a dominating set $S \subseteq V$ such that the subgraph $\langle S \rangle$ induced by S satisfies some graph property P.

 E.g,

 - $P1$. $\langle S \rangle$ has no edges \implies independent dominating set;
 - $P2$. $\langle S \rangle$ has no isolated vertices \implies total dominating set;
 - $P3$. $\langle S \rangle$ is connected \implies connected dominating set.
An electrical power system includes a set of buses and a set of lines connecting the buses. A bus is a substation where transmission lines are connected.
An electrical power system includes a set of buses and a set of lines connecting the buses. A bus is a substation where transmission lines are connected.

The state of an electrical power system can be represented by a set of state variables, for example, the voltage magnitude at loads and the machine phase angle at generators.
Background

- An **electrical power system** includes a set of buses and a set of lines connecting the buses. A **bus** is a substation where transmission lines are connected.
- The state of an electrical power system can be represented by a set of state variables, for example, the voltage magnitude at loads and the machine phase angle at generators.
- Monitor the system’s state by putting **Phase Measurement Units (PMUs)** at selected locations in the system.
An electrical power system

A typical electrical power system.

http://www.menard.com/mec_power_system.html
A transmission substation/bus.

http://www.menard.com/mec_power_system.html
PMUs - a key component of electric power grid modernization. The PMUs are the two instruments on top of the cabinet.

http://qdev.boulder.nist.gov/817.03/whatwedo/volt/watt/watt.htm
Observation rules: basic rule

- **Basic rule**: A PMU measures the state variables (voltage, phase angle, etc) for the bus (vertex) at which it is placed and its incident edges and their endvertices.
Basic rule: A PMU measures the state variables (voltage, phase angle, etc) for the bus (vertex) at which it is placed and its incident edges and their endvertices.
Observation rules: rule 1

- **Rule 1**: Any bus (vertex) that is incident to an observed line connected to an observed bus is observed (vertex).

\[V = IR \]
Ohm's Law, the known current in the line, the known voltage at the observed bus, and the known resistance of the line determine the voltage at the bus.
Observation rules: rule 1

Rule 1: Any bus (vertex) that is incident to an observed line connected to an observed bus is observed (vertex).
Observation rules: rule 1

- **Rule 1**: Any bus (vertex) that is incident to an observed line connected to an observed bus is observed (vertex).

Ohm’s Law, $V = IR$: the known current in the line, the known voltage at the observed bus, and the known resistance of the line determine the voltage at the bus.
Observation rules: rule 2

Rule 2: Any line joining two observed buses (vertices) is observed.
Observation rules: rule 2

- **Rule 2**: Any line joining two observed buses (vertices) is observed.
Observation rules: rule 2

- **Rule 2**: Any line joining two observed buses (vertices) is observed.

Ohm’s Law, \(I = \frac{V}{R} \): the known voltage at both observed buses and the known resistance of the line determine the current on the line.
Observation rules: rule 3

- **Rule 3**: If all the lines incident to an observed bus are observed, except one, then all of the lines incident to that bus are observed.

![Diagram](image_url)
Observation rules: rule 3

- **Rule 3**: If all the lines incident to an observed bus are observed, except one, then all of the lines incident to that bus are observed.

Kirchhoff's Law: the net current flowing through a bus (vertex) is zero.
Observation rules: rule 3

Rule 3: If all the lines incident to an observed bus are observed, except one, then all of the lines incident to that bus are observed.

Kirchhoff’s Law: the net current flowing through a bus (vertex) is zero.
Power dominating set: definition

- An electrical power system \rightarrow a graph where the vertices/edges represent the buses/transmission lines, respectively.
A subset S is a \textit{power dominating set (PDS)} of G if every vertex and every edge in G is observed by S according to the following Observation Rules.

- Basic rule: Every edge incident to some vertex of S and every vertex of $N[S]$ are observed;
- R_1: Any vertex that is incident to an observed edge is observed;
- R_2: Any edge joining two observed vertices is observed;
- R_3: If a vertex is incident to a total of $k > 1$ edges and if $k-1$ of these edges are observed, then all k of these edges are observed.

The \textit{power domination number} $\gamma_p(G)$ of G is the minimum cardinality of a power dominating set of G.

Xu

Two domination parameters in graphs
A subset S is a \textit{power dominating set (PDS)} of G if every vertex and every edge in G is observed by S according to the following Observation Rules.

\textbf{Basic rule:} Every edge incident to some vertex of S and every vertex of $N[S]$ are observed;
A subset S is a **power dominating set (PDS)** of G if every vertex and every edge in G is observed by S according to the following Observation Rules.

Basic rule: Every edge incident to some vertex of S and every vertex of $N[S]$ are observed;

R1: Any vertex that is incident to an observed edge is observed;

R2: Any edge joining two observed vertices is observed;

R3: If a vertex is incident to a total of $k > 1$ edges and if $k - 1$ of these edges are observed, then all k of these edges are observed.

The **power domination number** $\gamma_p(G)$ of G is the minimum cardinality of a power dominating set of G.
A subset S is a *power dominating set (PDS)* of G if every vertex and every edge in G is observed by S according to the following Observation Rules.

Basic rule: Every edge incident to some vertex of S and every vertex of $N[S]$ are observed;

$R1$: Any vertex that is incident to an observed edge is observed;

$R2$: Any edge joining two observed vertices is observed;
A subset S is a *power dominating set (PDS)* of G if every vertex and every edge in G is observed by S according to the following Observation Rules.

Basic rule: Every edge incident to some vertex of S and every vertex of $N[S]$ are observed;

R1: Any vertex that is incident to an observed edge is observed;

R2: Any edge joining two observed vertices is observed;

R3: If a vertex is incident to a total of $k > 1$ edges and if $k - 1$ of these edges are observed, then all k of these edges are observed.
Power dominating set: definition

- A subset S is a power dominating set (PDS) of G if every vertex and every edge in G is observed by S according to the following Observation Rules.
 - **Basic rule**: Every edge incident to some vertex of S and every vertex of $N[S]$ are observed;
 - **R1**: Any vertex that is incident to an observed edge is observed;
 - **R2**: Any edge joining two observed vertices is observed;
 - **R3**: If a vertex is incident to a total of $k > 1$ edges and if $k - 1$ of these edges are observed, then all k of these edges are observed.

- The power domination number $\gamma_p(G)$ of G is the minimum cardinality of a power dominating set of G.

Known results

- **Observation 1** (Haynes et al., 2002). For any graph G, $1 \leq \gamma_p(G) \leq \gamma(G)$.

- **Theorem 3**. *POWER DOMINATING SET* is NP-complete in bipartite, split (\subseteq chordal), circle, and planar graphs.

- **Theorem 4** (Haynes et al., 2002). *POWER DOMINATING SET* is linear time solvable for trees.

- **Theorem 5** (Haynes et al., 2002). For any tree T of order $n \geq 3$, $\gamma_p(G) \leq n/3$ with equality if and only if T is the corona T' \circ \overline{K}_2, where T' is any tree.
Known results

- **Observation 1** (Haynes et al., 2002). For any graph G, $1 \leq \gamma_p(G) \leq \gamma(G)$.

- **Observation 2** (Haynes et al., 2002). For the graph G where $G \in \{K_n, C_n, P_n, K_{2,n}\}$, $\gamma_p(G) = 1$.
Known results

- **Observation 1** (Haynes et al., 2002). For any graph G, $1 \leq \gamma_p(G) \leq \gamma(G)$.

- **Observation 2** (Haynes et al., 2002). For the graph G where $G \in \{K_n, C_n, P_n, K_{2,n}\}$, $\gamma_p(G) = 1$.

- **Theorem 3.** POWER DOMINATING SET is NP-complete in bipartite, split (⊆ chordal), circle, and planar graphs.

- **Theorem 4** (Haynes et al., 2002). POWER DOMINATING SET is linear time solvable for trees.

- **Theorem 5** (Haynes et al., 2002). For any tree T of order $n \geq 3$, $\gamma_p(G) \leq \frac{n}{3}$ with equality if and only if T is the corona $T' \circ \bar{K}_2$, where T' is any tree.

- **Xu** Two domination parameters in graphs
Known results

- **Observation 1** (Haynes et al., 2002). For any graph G, $1 \leq \gamma_p(G) \leq \gamma(G)$.
- **Observation 2** (Haynes et al., 2002). For the graph G where $G \in \{K_n, C_n, P_n, K_{2,n}\}$, $\gamma_p(G) = 1$.
- **Theorem 3**. POWER DOMINATING SET is NP-complete in bipartite, split (\subseteq chordal), circle, and planar graphs.
- **Theorem 4** (Haynes et al., 2002). POWER DOMINATING SET is linear time solvable for trees.
Known results

- **Observation 1** (Haynes et al., 2002). For any graph G, $1 \leq \gamma_p(G) \leq \gamma(G)$.

- **Observation 2** (Haynes et al., 2002). For the graph G where $G \in \{K_n, C_n, P_n, K_{2,n}\}$, $\gamma_p(G) = 1$.

- **Theorem 3**. POWER DOMINATING SET is NP-complete in bipartite, split (\subseteq chordal), circle, and planar graphs.

- **Theorem 4** (Haynes et al., 2002). POWER DOMINATING SET is linear time solvable for trees.

- **Theorem 5** (Haynes et al., 2002). For any tree T of order $n \geq 3$, $\gamma_p(G) \leq n/3$ with equality if and only if T is the corona $T' \circ K_2$, where T' is any tree.
Block graphs

- A maximal connected subgraph without a cut-vertex of a graph is called a block.
Block graphs

- A maximal connected subgraph without a cut-vertex of a graph is called a block.
- G is called a block graph if every block of G is a complete graph.
A maximal connected subgraph without a cut-vertex of a graph is called a block.

G is called a block graph if every block of G is a complete graph.

Trees are block graphs (i.e., trees \subseteq block graphs).
A block graph G with five blocks $BK_1 = G[\{a, b, d\}]$, $BK_2 = G[\{c, e\}]$, $BK_3 = G[\{d, e\}]$, $BK_4 = G[\{d, g, h\}]$ and $BK_5 = G[\{e, f, i, j\}]$.
Let G be a block graph with h blocks $BK_1, ..., BK_h$ and p cut-vertices $v_1, ..., v_p$.
Let G be a block graph with h blocks $BK_1,...,BK_h$ and p
cut-vertices $v_1,...,v_p$.

The \textit{refined cut-tree} $T^B(V^B, E^B)$ of G is defined as
$V^B = \{B_1,...,B_h, v_1,...,v_p\}$, where each $B_i := \{v \in BK_i \mid v$
is not a cut-vertex$\}$ is called a \textit{block-vertex} of T^B, and
$E^B = \{(B_i, v_j) \mid v_j \in BK_i, 1 \leq i \leq h, 1 \leq j \leq p\}$.
Let G be a block graph with h blocks BK_1, \ldots, BK_h and p cut-vertices v_1, \ldots, v_p.

The **refined cut-tree** $T^B(V^B, E^B)$ of G is defined as $V^B = \{B_1, \ldots, B_h, v_1, \ldots, v_p\}$, where each $B_i := \{v \in BK_i \mid v$ is not a cut-vertex\}$ is called a **block-vertex** of T^B, and $E^B = \{(B_i, v_j) \mid v_j \in BK_i, 1 \leq i \leq h, 1 \leq j \leq p\}$.

The refined cut-tree of a block graph can be constructed in linear time.
Refined cut-tree: an example

A block graph G and its one refined cut-tree, where $B_1 = \{a, b\}$, $B_2 = \{c\}$, $B_3 = \emptyset$, $B_4 = \{g, h\}$ and $B_5 = \{f, i, j\}$.

Two domination parameters in graphs
A block graph G and its one refined cut-tree, where $B_1 = \{a, b\}$, $B_2 = \{c\}$, $B_3 = \emptyset$, $B_4 = \{g, h\}$ and $B_5 = \{f, i, j\}$.
Lemma. Let G be a block graph, then there exists a minimum power dominating set in which every vertex is a cut-vertex of G.
Algorithm: part one

Algorithm. Find a minimum PDS of G.

Input: A connected block graph G of order $n \geq 3$.

Output: A minimum PDS of G.

Construct a refined cut-tree $T^B(V^B, E^B)$ of G with vertex set \{v_1, v_2, \ldots, v_n\}, and the root is a cut-vertex v_n (in G). For every vertex v_j that lies in the odd levels H_1, H_3, \ldots, H_k, relabel v_j as v_j^B (the superscript B of v_j^B indicates that it is a block-vertex and v_i^B corresponds to B_i one by one).

Initialization: $S := \emptyset$; for every vertex $v \in V^B$, mark v with white and set $\text{bound}(v) := 0$.
for \(i := k - 1 \) down to 0 by step-length 2 do
 for every \(v_j \in H_i \) do
 if there exists a gray vertex \(v_a^B \in N(v_j) \cap H_{i+1} \) or a white vertex \(v_b^B \in N(v_j) \cap H_{i+1} \) so that \(B_b = \emptyset \) and all vertices of \(N(v_b^B) \cap H_{i+2} \) are gray and there exists at least one vertex \(v \in N(v_b^B) \cap H_{i+2} \) with \(\text{bound}(v) = 0 \) then
 mark \(v_j \) with gray;
 for every white \(v_z^B \in N(v_j) \cap H_{i+1} \) do
 if \(N(v_z^B) \cap H_{i+2} \) contains at least one gray vertex \(v \) with \(\text{bound}(v) = 0 \) then
 \{if \(|B_z| = 0 \) and \(N(v_z^B) \cap H_{i+2} \) contains at most one white vertex or \(|B_z| = 1 \) and \(N(v_z^B) \cap H_{i+2} \) contains no white vertex then mark \(v_z^B \) with gray\};
 if \(|B_z| = 0 \) and every vertex \(v \in N(v_z^B) \cap H_{i+2} \) is gray and \(\text{bound}(v) = 1 \) then
 mark \(v_z^B \) with gray;
 end for
 end if
if $i \geq 0$ then

\[
\{ W := \{ v^B \mid v^B \in N(v_j) \cap H_{i+1} \text{ and } v^B \text{ is white} \}; \\
C^v_j := \{ u \mid u \in N(W) \cap H_{i+2} \text{ and } u \text{ is white} \}; \\
B^v_{Wj} := \bigcup_{\text{forall } v^B_m \in W} B_{m} \};
\]

if $v_j \neq v_n$ then

\{ if $|B^v_{Wj} \cup C^v_j| \geq 2$ then

\{ mark v_j with black and all white vertices in $N(v_j)$ with gray; \\
$S := S \cup \{ v_j \}$;

if $|B^v_{Wj} \cup C^v_j| = 1$ and v_j is gray then set $\text{bound}(v_j) := 1$ \}

if $v_j = v_n$ then

\{ if $|B^v_{Wj} \cup C^v_j| \geq 2$ or v_j is white then

\{ mark v_j with black and all white vertices in $N(v_j)$ with gray; \\
$S := S \cup \{ v_j \}$\};

end for

end for

output S.

Xu Two domination parameters in graphs
Algorithm: an example

(a) Domination in graphs
(b) Power domination
(c) Rainbow domination

Algorithm: an example

Xu

Two domination parameters in graphs
Theorem

PDS can be solved in linear time for block graphs.
For any block graph G with order $n \geq 3$, $\gamma_p(G) \leq n/3$ with equality if and only if G is obtained from G' by attaching to each vertex of G' a copy of K_2 or \overline{K}_2, where G' is any block graph.
(Bresăr, Henning and Rall, 2005) Let $C = \{1, 2, \ldots, k\}$ be a set of k colors, and f be a function that assigns to each vertex a set of colors chosen from C, that is, $f : V(G) \mapsto \mathcal{P}(C)$. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have

$$\bigcup_{u \in N(v)} f(u) = C$$

then f is called a \textit{k-rainbow dominating function} (kRDF) of G. The \textit{weight}, $w(f)$, of a function f is defined as $w(f) = \sum_{v \in V(G)} |f(v)|$.

Rainbow domination: definition

Xu Two domination parameters in graphs
(Bresšar, Henning and Rall, 2005) Let $C = \{1, 2, \ldots, k\}$ be a set of k colors, and f be a function that assigns to each vertex a set of colors chosen from C, that is, $f : V(G) \rightarrow \mathcal{P}(C)$. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have
\[
\bigcup_{u \in N(v)} f(u) = C
\]
then f is called a k-rainbow dominating function (kRDF) of G. The weight, $w(f)$, of a function f is defined as
\[
w(f) = \sum_{v \in V(G)} |f(v)|.
\]
The minimum weight, denote by $\gamma_{rk}(G)$, of a kRDF is called the k-rainbow domination number of G.\[\]
Rainbow domination: definition

(Breslar, Henning and Rall, 2005) Let $C = \{1, 2, ..., k\}$ be a set of k colors, and f be a function that assigns to each vertex a set of colors chosen from C, that is, $f : V(G) \mapsto \mathcal{P}(C)$. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have

$$\bigcup_{u \in N(v)} f(u) = C$$

then f is called a k-rainbow dominating function (kRDF) of G. The weight, $w(f)$, of a function f is defined as $w(f) = \sum_{v \in V(G)} |f(v)|$.

- The minimum weight, denote by $\gamma_{rk}(G)$, of a kRDF is called the k-rainbow domination number of G.
- If $k = 1$, ordinary domination.
Known results

- **Observation 1** (Bresar, Henning and Rall, 2005). For $k \geq 1$ and any graph G, $\gamma_{rk}(G) = \gamma(G \Box K_k)$.
Known results

- **Observation 1** (Bresar, Henning and Rall, 2005). For $k \geq 1$ and any graph G, $\gamma_{rk}(G) = \gamma(G \Box K_k)$.

- **Observation 2** (Bresar, Henning and Rall, 2007). For a path P_n and a cycle C_n with $n \geq 3$, $\gamma_{r2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1$, $\gamma_{r2}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{4} \right\rfloor$.
Known results

- **Observation 1** (Bresăr, Henning and Rall, 2005). For \(k \geq 1 \) and any graph \(G \), \(\gamma_{rk}(G) = \gamma(G \Box K_k) \).

- **Observation 2** (Bresăr, Henning and Rall, 2007). For a path \(P_n \) and a cycle \(C_n \) with \(n \geq 3 \),
 \[
 \gamma_{r2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1,
 \gamma_{r2}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{4} \right\rfloor.
 \]

- **Theorem 3**. (Bresăr, Henning and Rall, 2007) 2-RAINBOW DOMINATING FUNCTION is NP-complete for chordal graphs and bipartite graphs.

Xu

Two domination parameters in graphs
(Watkins, 1969) For each n and k ($n > 2k$), the *generalized Petersen graph* $P(n, k)$ is a graph with vertex set \[
\{u_i, v_i : i = 0, 1, 2, \ldots, n - 1\}\] and edge set \[
\{u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i = 0, 1, 2, \ldots, n - 1\};\] subscripts are taken modulo n.

Theorem (Bresˇ ar, Henning and Rall, 2007). For the generalized Petersen graph $P(n, k)$,
$$
\lceil \frac{4}{5} n \rceil \leq \gamma_{r2}(P(n, k)) \leq n.
$$
(Watkins, 1969) For each \(n \) and \(k \) (\(n > 2k \)), the \textit{generalized Petersen graph} \(P(n, k) \) is a graph with vertex set
\(\{u_i, v_i : i = 0, 1, 2, \ldots, n - 1\} \) and edge set
\(\{u_i u_{i+1}, u_i v_i, v_i v_{i+k} : i = 0, 1, 2, \ldots, n - 1\} \); subscripts are
taken modulo \(n \).

\textbf{Theorem} (Bresăr, Henning and Rall, 2007). For the
generalized Petersen graph \(P(n, k) \),
\[\left\lceil \frac{4n}{5} \right\rceil \leq \gamma_{r2}(P(n, k)) \leq n. \]
Two questions

In 2007, Bresăr et al. proposed the following questions:

Question 1. Is \(\gamma_{r_2}(P(2k + 1, k)) = 2k + 1 \) for all \(k \geq 2 \)?

Question 2. Is \(\gamma_{r_2}(P(n, 3)) = n \) for all \(n \geq 7 \) where \(n \) is not divisible by 3?
Two questions

- In 2007, Bresář et al. proposed the following questions:

 Question 1. Is $\gamma_r(P(2k + 1, k)) = 2k + 1$ for all $k \geq 2$?

 Question 2. Is $\gamma_r(P(n, 3)) = n$ for all $n \geq 7$ where n is not divisible by 3?

- **Theorem** (Tong et al. 2008).

 $$\gamma_r(P(2k+1, k)) = \begin{cases}
 \left\lceil \frac{8k + 4}{5} \right\rceil, & \text{if } n \equiv 1, 4 \pmod{5}; \\
 \left\lceil \frac{8k + 4}{5} \right\rceil + 1, & \text{if } n \equiv 0, 2, 3 \pmod{5}.
 \end{cases}$$
Two questions

- In 2007, Bresar et al. proposed the following questions:

 Question 1. Is $\gamma_r(P(2k+1, k)) = 2k + 1$ for all $k \geq 2$?

 Question 2. Is $\gamma_r(P(n, 3)) = n$ for all $n \geq 7$ where n is not divisible by 3?

- **Theorem** (Tong et al. 2008).

 \[
 \gamma_r(P(2k+1, k)) = \begin{cases}
 \left\lceil \frac{8k+4}{5} \right\rceil, & \text{if } n \equiv 1, 4 \pmod{5}; \\
 \left\lceil \frac{8k+4}{5} \right\rceil + 1, & \text{if } n \equiv 0, 2, 3 \pmod{5}.
 \end{cases}
 \]

- If $k \geq 4$ the answer to Question 1 is negative.
Proposition 1 For $n \geq 13$ and k (n can be divided by 3), we have $\gamma_{r2}(P(n, 3)) \leq n - 1$.
Our results

- **Proposition 1** For \(n \geq 13 \) and \(k \) (\(n \) can be divided by 3), we have \(\gamma_{r2}(P(n, 3)) \leq n - 1 \).

- **Theorem 2** For \(n \geq 13 \), we have

\[
\gamma_{r2}(P(n, 3)) \leq n - \left\lfloor \frac{n}{8} \right\rfloor + \beta,
\]

where \(\beta = 0 \) for \(n \equiv 0, 2, 4, 5, 6, 7, 13, 14, 15 \pmod{16} \) and \(\beta = 1 \) for \(n \equiv 1, 3, 8, 9, 10, 11, 12 \pmod{16} \).
$\gamma_{r2}(P(13, 3)) \leq 12$

A 2RDF of weight 12 of $P(13, 3)$.
\[\gamma_{r2}(P(16, 3)) \leq 14 \]

A 2RDF of weight 14 of \(P(16, 3) \).
Problem

Conjecture. For $n \geq 13$,

$$\gamma_{r2}(P(n,3)) = n - \left\lfloor \frac{n}{8} \right\rfloor + \beta,$$

where $\beta = 0$ for $n \equiv 0, 2, 4, 5, 6, 7, 13, 14, 15 \pmod{16}$ and $\beta = 1$ for $n \equiv 1, 3, 8, 9, 10, 11, 12 \pmod{16}$.
Thank you!