Goto Chapter: Top 1 2 3 4 5 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

4 Real Forms
 4.1 Real Forms
 4.2 Isomorphisms

4 Real Forms

(Paolo? ... something on real forms... we also define them over sqrtField or Gaussian rationals... )

4.1 Real Forms

4.1-1 RealFormsOfSimpleLieAlgebra
‣ RealFormsOfSimpleLieAlgebra( type, rank )( function )

This function returns all real forms of the simple complex Lie algebras of type type and rank rank up to isomorphism. The attributes RootSystem and CartanSubalgebra are yet not stored for the real forms.

4.1-2 ParametersOfNonCompactRealForm
‣ ParametersOfNonCompactRealForm( type, rank )( function )

This function returns all lists [type, rank, signs, perm] parametrising the real forms of simple complex Lie algebras of type type and rank rank up to isomorphism.

4.1-3 NonCompactRealFormsOfSimpleLieAlgebra
‣ NonCompactRealFormsOfSimpleLieAlgebra( type, rank )( function )
‣ NonCompactRealFormsOfSimpleLieAlgebra( param )( function )

Returns, up to isomorphism, all real forms of the simple complex Lie algebra of type type and rank rank or, in the second version, the single real form determined by the parameters param as given by ParametersOfNonCompactRealForm. The output is a list of records, each having the following entries: liealg, the real form defined over the Gaussian rationals; liealgSF, the same real form defined over SqrtField; writeToSF, a function mapping a rational element of liealg into liealgSF, and rank and type. The attributes RootSystem, CartanSubalgebra, and CartanDecomposition are stored in each real form.

4.1-4 RealFormParameters
‣ RealFormParameters( L )( attribute )

The parameters defining L, see ParametersOfNonCompactRealForm.

4.1-5 IsCompactForm
‣ IsCompactForm( L )( property )

Returns true if the real form L is a compact real form and has this information stored as a property.

4.1-6 IsRealFormOfInnerType
‣ IsRealFormOfInnerType( L )( property )

Returns true if and only if the real form L is a defined by an inner involutive automorphism.

4.1-7 CartanDecomposition
‣ CartanDecomposition( L )( attribute )

The Cartan decomposition of L as a record with entries K, P, and CartanInv, such that L=K⊕ P is the Cartan decomposition with corresponding Cartan involution CartanInv, which is defined as a function on L.

gap> rf := RealFormsOfSimpleLieAlgebra( "F", 4 );
[ <Lie algebra of dimension 52 over Rationals>, 
<Lie algebra of dimension 52 over Rationals>, 
<Lie algebra of dimension 52 over Rationals> ]
gap> IsCompactForm(rf[1]); IsCompactForm(rf[2]);
true
false
gap> ParametersOfNonCompactRealForm("F",4);
[ [ "F", 4, [ -1, 1, 1, 1 ], () ], [ "F", 4, [ 1, -1, 1, 1 ], () ] ]
gap> L:=NonCompactRealFormsOfSimpleLieAlgebra( [ "F", 4, [ 1, -1, 1, 1 ], () ] );
rec( liealg := <Lie algebra of dimension 52 over GaussianRationals>, 
liealgSF := <Lie algebra of dimension 52 over SqrtField>, 
rank := 4, 
type := "F", 
writeToSF := function( v ) ... end )
gap> LSF := L.liealgSF;
<Lie algebra of dimension 52 over SqrtField>
gap> RealFormParameters(LSF);
[ "F", 4, [ 1, -1, 1, 1 ], () ]
gap> cd := CartanDecomposition(LSF);; K:=cd.K; P:=cd.P; theta:=cd.CartanInv;
<Lie algebra of dimension 24 over SqrtField>
<vector space of dimension 28 over SqrtField>
function( v ) ... end
gap> k:=Random(K);;p:=Random(P);; theta(k+p)=k-p;
true

4.2 Isomorphisms

4.2-1 IsomorphismOfRealFormsInnerType
‣ IsomorphismOfRealFormsInnerType( LL )( function )

Here LL is a list of real forms of the same complex simple Lie algebra, each defined over the Gaussian rationals, with stored attribute CartanDecomposition. For each isomorphism type of Z_2-graded Lie algebra in the list LL it returns a record with the following entries: pos, the position of elements in LL which are all of the same isomorphism type; liealgs, the corresponding lie algebras; isos, a list such that isos[i] is an isomorphism between LL[pos[1]] and LL[pos[i]]. It can also happen that isos[i] is the string "isom but over SqrtField" in which case an isomorphism would have to be defined over SqrtField.

gap> rf := NonCompactRealFormsOfSimpleLieAlgebra("D",4);;
gap> L:=rf[1].liealg;; K:=rf[2].liealg;; M:=rf[3].liealg;; LL:=[L,K,L,M,M,L,K];;
gap> iso:=IsomorphismOfRealFormsInnerType(LL);;
gap> List(iso,x->x.pos);
[ [ 1, 3, 6 ], [ 2, 7 ], [ 4, 5 ] ]
#LL[1],LL[3],LL[6] are isomorphic, 
#LL[2], LL[7] are isomorphic, and 
#LL[4], LL[5] are isomorphic
gap> psi := iso[1].isos[3];;
#isomorphism from iso[1].liealg[1] to iso[1].liealgs[3]
gap> Source(psi)=LL[iso[1].pos[1]] and Source(psi)=iso[1].liealgs[1];
true
gap> Image(psi)=LL[iso[1].pos[3]] and Image(psi)=iso[1].liealgs[3];
true
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 Bib Ind

generated by GAPDoc2HTML