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Abstract
This package provides functions for computing with various aspects of the theory of real simple Lie algebras.
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Chapter 1

Introduction

CoReLG (Computing with Real Lie Groups) is a GAP package for computing with (semi-)simple
real Lie algebras. Various capabilities of the package have to do with the action of the adjoint group
of a real Lie algebra (such as the nilpotent orbits, and non-conjugate Cartan subalgebras). CoReLG is
also the acronym of the EU funded Marie Curie project carried out by the first author of the package
at the University of Trento.

The simple real Lie algebras have been classified, and this classification is the main theoretical
tool that we use, as it determines the objects that we work with. In Section 1.1 we give a brief account
of this classification. We refer to the standard works in the literature (e.g., [Kna02]) for an in-depth
discussion. The algorithms of this package are described in [DG13] and [DFG13].

We remark that the package still is under development, and its functionality is continuously ex-
tended. The package SLA, [Gra12], is required.

1.1 The simple real Lie algebras

Let gc denote a complex simple Lie algebra. Then there are two types of simple real Lie algebras
associated to gc: the realification of gc (this means that gc is viewed as an algebra over R, of dimension
2dimgc), and the real forms g of gc (this means that g⊗RC is isomorphic to gc). It is straightforward
to construct the realification of gc; so in the rest of this section we concentrate on the real forms of gc.

A Lie algebra is said to be compact if its Killing form is negative definite. The complex Lie
algebra gc has a unique (up to isomorphism) compact real form u. In the sequel we fix the compact
form u. Then gc = u+ ıu, where ı is the complex unit; so we get an antilinear map τ : gc → gc by
τ(x+ ıy) = x− ıy, where x,y ∈ u. This is called the conjugation of gc with respect to u.

Now let θ be an automorphism of gc of order 2, commuting with τ . Then θ stabilises u, so the
latter is the direct sum of the ±1-eigenspaces of θ , say u= u1⊕u−1. Set k= u1 and p= iu−1. Then
g= g(θ) = k⊕p is a real form of gc. Regarding this construction we remark the following:

• g= k⊕p is called a Cartan decomposition. It is unique up to inner automorphisms of g.

• The map θ is a Cartan involution; it is the identity on k and acts as multiplication by −1 on p)

• k is compact, and it is a maximal compact subalgebra of g.

• Two real forms are isomorphic if and only if the corresponding Cartan involutions are conjugate
in the automorphism group of gc.
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• The automorphism θ is described by two pieces of data: a list of signs (s1, . . . ,sr) of length
equal to the rank r of g, and a permutation π of 1, . . . ,r, leaving the list of signs invariant. Let
α1, . . . ,αr denote the simple roots of gc with corresponding canonical generators xi,yi,hi. Then
θ(xi) = sixπ(i), θ(yi) = siyπ(i), θ(hi) = hπ(i).

1.2 Cartan subalgebras and more

Let g be a real form of the complex Lie algebra gc, with Cartan decomposition g = k⊕ p. A Cartan
subalgebra h of g is standard (with respect to this Cartan decomposition) if h = (h∩ k)⊕ (h∩p), or,
equivalently, when h is stable under the Cartan involution θ .

It is a fact that every Cartan subalgebra of g is conjugate by an inner automorphism to a standard
one ([Kna02], Proposition 6.59). Moreover, there is a finite number of non-conjugate (by inner auto-
morphisms) Cartan subalgebras of g ([Kna02], Proposition 6.64). A standard Cartan subalgebra h is
said to be maximally compact if the dimension of h∩ k is maximal (among all standard Cartan sub-
algebras). It is called maximally non-compact if the dimension of h∩p is maximal. We have that all
maximally compact Cartan subalgebras are conjugate via the inner automorphism group. The same
holds for all maximally non-compact Cartan subalgebras ([Kna02], Proposition 6.61).

A subspace of p is said to be a Cartan subspace if it consists of commuting elements. If h is a
maximally non-compact standard Cartan subalgebra, then c = h∩ p is a Cartan subspace. The other
Cartan subalgebras (i.e., representatives of the conjugacy classes of the Cartan subalgebras under the
inner automorphism group) can be constructed such that their intersection with p is contained in c.

Every standard Cartan subalgebra h of g yields a corresponding root system Φ of gc. Let α ∈ Φ,
then a short argument shows that α ◦θ (where α ◦θ(h) = α(θ(h)) for h ∈ h) is also a root (i.e., lies
in Φ). This way we get an automorphism of order 2 of the root system Φ.

Now let h be a maximally compact standard Cartan subalgebra of g, with root system Φ. Then it
can be shown that there is a basis of simple roots ∆ ⊂ Φ which is θ -stable. Write ∆ = {α1, . . . ,αr},
and let xi,yi,hi be a corresponding set of canonical generators. Then there is a sequence of signs
(s1, . . . ,sr) and a permutation π of 1, . . . ,r such that θ(xi) = sixπ(i). Now we encode this information
in the Dynkin diagram of Φ. If si = −1 then we paint the node corresponding to αi black. Also, if
π(i) = j 6= i then the nodes corresponding to αi, α j are connected by an arrow. The resulting diagram
is called a Vogan diagram of g. It determines the real form g up to isomorphism. The signs si are not
uniquely determined. However, it is possible to make a “canonical” choice for the signs so that the
Vogan diagram is uniquely determined.

Now let h be a maximally non-compact standard Cartan subalgebra of g, with root system Φ.
Then, in general, there is no basis of simple roots which is stable under θ . However we can still
define a diagram, in the following way. Let c = h∩ p be the Cartan subspace contained in h. Let
Φc = {α ∈ Φ | α ◦ θ = α} = {α ∈ Φ | α(c) = 0} be the set of compact roots . Then there is a
choice of positive roots Φ+ such that α ◦ θ ∈ Φ− for all non-compact positive roots α ∈ Φ+. Let
∆ denote the basis of simple roots corresponding to Φ+. A theorem due to Satake says that there is
a bijection τ : ∆→ ∆ such that τ(α) = α if α ∈ Φc, and for non-compact α ∈ ∆ we have α ◦ θ =
−τ(α)−∑γ∈∆c cα,γγ , where ∆c = ∆∩Φc and the cα,γ are non-negative integers. Now we take the
Dynkin diagram corresponding to ∆, where the nodes corresponding to the compact roots are painted
black, and the nodes corresponding to a pair α,τ(α), if they are unequal, are joined by arrows. The
resulting diagram is called the Satake diagram of g. It determines the real form g up to isomorphism.
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1.3 Nilpotent orbits

By Gc, G we denote the adjoint groups of gc and g respectively. The nilpotent Gc-orbits in gc have
been classified by so-called weighted Dynkin diagrams. A nilpotent Gc-orbit in gc may have no
intersection with the real form g. On the other hand, when it does have an intersection, then this may
split into several G-orbits.

Let e be an element of a nilpotent G-orbit in g. By the Jacobson-Morozov theorem, e lies in an
sl2-triple (e,h, f ); here this means that [h,e] = 2e, [h, f ] = −2 f , and [e, f ] = h. The triple is called a
real Cayley triple if θ(e) = − f , θ( f ) = −e and θ(h) = −h, where θ is the Cartan involution of g.
Every nilpotent orbit has a representative lying in a real Cayley triple.

1.4 On base fields

In order to define a Lie algebra by a multiplication table over the reals, it usually suffices to take a
subfield of the real field as base field. However, the algorithms contained in this package very often
need a Chevalley basis of the Lie algebra at hand, which is defined only over the complex field.
Computations with such a Chevalley basis take place behind the scenes, and the result is again defined
over the reals. However, the computations would not be possible if the Lie algebra is just defined over
(a subfield of) the reals. For this reason, we require that the base field contains the imaginary unit
E(4) .

Furthermore, in many algorithms it is necessary to take square roots of elements of the base field.
So the ideal base field would contain the imaginary unit, as well as being closed under taking square
roots. However, such a field is difficult to construct and to work with on a computer. For this reason
we have provided the field SqrtField (see Chapter 2), containing the square roots of all rational
numbers. Although it is possible to try most functions of the package using the base field CF(4) , for
example, it is likely that many computations will result in an error, because of the lack of square roots
in that field. Many more computations are possible over SqrtField , but also in that case, of course,
a computation may result in an error because we cannot construct a particular square root. Also,
computations over SqrtField tend to be significantly slower than over, say, CF(4) ; see the next
example. But that is a price we have to pay (at least, in order to be able to do some computations).

Example
gap> L:=RealFormById("E",8,2);

<Lie algebra of dimension 248 over SqrtField>

gap> allCSA := CartanSubalgebras(L);;time;

67224

gap> L:=RealFormById("E",8,2,CF(4));

<Lie algebra of dimension 248 over GaussianRationals>

gap> allCSA := CartanSubalgebras(L);;time;

7301

# We remark that both computations are exactly the same;

# the difference in timing is caused by the fact that

# arithmetic over SqrtField is slower.



Chapter 2

The field SqrtField

2.1 Definition of the field

The field Q
√
(ı) with Q

√
=Q({√p | p a prime}) and ı =

√
−1 ∈C is realised as SqrtField . A few

functions print some information on what they are doing to the info class InfoSqrtField ; this can
be turned off by setting SetInfoLevel( InfoSqrtField, 0 ); .

2.1.1 SqrtFieldIsGaussRat

. SqrtFieldIsGaussRat(q) (function)

Here q is an element of SqrtField ; this function returns true if and only if q is the product of
One(SqrtField) and a Gaussian rational.

Example
gap> F := SqrtField;

SqrtField

gap> IsField( F ); LeftActingDomain( F ); Size( F ); Characteristic( F );

true

GaussianRationals

infinity

0

gap> one := One( F );

1

gap> 2 in F; 2*one in F; 2*E(4)*one in F;

false

true

true

gap> a := 2/3*E(4)*one;;

gap> a in SqrtField; a in GaussianRationals; SqrtFieldIsGaussRat( a );

true

false

true

7
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2.2 Construction of elements

Every f in SqrtField can be uniquely written as f = ∑
m
j=1 ri

√
k j for Gaussian rationals ri ∈ Q(ı)

and pairwise distinct squarefree positive integers k1, . . . ,km. Thus, f can be described efficiently by
its coefficient vector [[r1,k1], . . . , [r j,k j]].

2.2.1 Sqroot

. Sqroot(q) (function)

Here q is a rational number and Sqroot(q) is the element
√

q as an element of SqrtField . If
q = (−1)εa/b with coprime integers a,b ≥ 0 and ε ∈ {0,1}, then Sqroot(q) is represented as the
element E(4) ε*b*Sqroot(ab) of SqrtField .

2.2.2 SqrtFieldEltCoefficients

. SqrtFieldEltCoefficients(f) (function)

If f is an element in SqrtField , then SqrtFieldEltCoefficients(f) returns its coefficient
vector [[r1,k1], . . . , [rm,km]] as described above, that is, r1, . . . ,rm ∈ Q(ı) and k1, . . . ,km are pairwise
distinct positive squarefree integers such that f = ∑

m
j=1 r j

√
k j.

2.2.3 SqrtFieldEltByCoefficients

. SqrtFieldEltByCoefficients(l) (function)

If l is a list [[r1,k1], . . . , [rm,km]] with Gaussian rationals r j and rationals k j, then
SqrtFieldEltByCoeffiients(l) returns the element ∑

m
j=1 r j

√
k j as an element of SqrtField .

Note that here k1, . . . ,km need not to be positive, squarefree, or pairwise distinct.
Example

gap> Sqroot(-(2*3*4)/(11*13)); Sqroot(245/15); Sqroot(16/9);

2/143*E(4)*Sqroot(858)

7/3*Sqroot(3)

4/3

gap> a := 2+Sqroot(7)+Sqroot(99);

2 + Sqroot(7) + 3*Sqroot(11)

gap> SqrtFieldEltCoefficients(a);

[ [ 2, 1 ], [ 1, 7 ], [ 3, 11 ] ]

gap> SqrtFieldEltByCoefficients([[2,9],[1,7],[E(4),13]]);

6 + Sqroot(7) + E(4)*Sqroot(13)

2.2.4 SqrtFieldEltToCyclotomic

. SqrtFieldEltToCyclotomic(f) (function)

If f lies in SqrtField with coefficient vector [[r1,k1], . . . , [rm,km]], then
SqrtFieldEltToCyclotomic(f) returns ∑

m
j=1 r j

√
k j lying in a suitable cyclotomic field CF(n) .

The degree n can easily become too large, hence this function should be used with caution.
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2.2.5 SqrtFieldEltByCyclotomic

. SqrtFieldEltByCyclotomic(c) (function)

If c is an element of Q
√
(ı) represented as an element of a cyclotomic field CF(n) , then

SqrtFieldEltByCyclotomic(c) returns the corresponding element in SqrtField . Our algorithm
for doing this is described in [DG13].

Example
gap> SqrtFieldEltToCyclotomic( Sqroot(2) );

E(8)-E(8)^3

gap> SqrtFieldEltToCyclotomic( Sqroot(2)+E(4)*Sqroot(7) );

E(56)^5+E(56)^8+E(56)^13-E(56)^15+E(56)^16-E(56)^23-E(56)^24+E(56)^29-E(56)^31+

E(56)^32+E(56)^37-E(56)^39-E(56)^40+E(56)^45-E(56)^47-E(56)^48+E(56)^53-E(56)^55

gap> SqrtFieldEltByCyclotomic( E(8)-E(8)^3 );

Sqroot(2)

gap> SqrtFieldEltByCyclotomic( 3*E(4)*Sqrt(11)-2/4*Sqrt(-13/7) );

3*E(4)*Sqroot(11) + (-1/14*E(4))*Sqroot(91)

2.3 Basic operations

All basic field operations are available. The inverse of an element f in SqrtField as follows: We
first compute the minimal polynomial p(X) of f over Q(ı), that is, a non-trivial linear combination
0 = p( f ) = a0 + a1 f + . . .ai−1 f i−1 + f i. Then f−1 = −(a1 + a2 f + . . .+ ai−1 f i−2 + f i−1)/a0. Al-
though the inverse of f can be computed with linear algebra methods only, the degree of the minimal
polynomial of f can become rather large. For example, if f = ∑

m
j=1 ri

√
k j for rational ri and pair-

wise distinct positive squarefree integers k1, . . . ,km, then f is a primitive element of the number field
Q(
√

k1, . . . ,
√

km), see for example Lemma A.5 in [DG13]. For larger degree, the progress of the
computation of the inverse is printed via the InfoClass InfoSqrtField . We remark that the method
Random simply returns a sum of a few terms a

√
b where a,b are random rationals constructed with

Random(Rationals) .
Example

gap> a := Sqroot( 2 ) + 3 * Sqroot( 3/7 ); b := Sqroot( 21 ) - Sqroot( 2 );

Sqroot(2) + 3/7*Sqroot(21)

(-1)*Sqroot(2) + Sqroot(21)

gap> a + b; a * b; a - b;

10/7*Sqroot(21)

7 + 4/7*Sqroot(42)

2*Sqroot(2) + (-4/7)*Sqroot(21)

gap> c := ( a - b )^-2;

91/8 + 7/4*Sqroot(42)

gap> a := Sum( List( [2,3,5,7], x -> Sqroot( x ) ) );

Sqroot(2) + Sqroot(3) + Sqroot(5) + Sqroot(7)

gap> b := a^-1; a*b;

#I InfoSqrtField: (inverses) computed 10 powers

37/43*Sqroot(2) + (-29/43)*Sqroot(3) + (-133/215)*Sqroot(5) +

27/43*Sqroot(7) + 62/215*Sqroot(30) + (-10/43)*Sqroot(42) + (-34/215)*Sqroot(70)

+ 22/215*Sqroot(105)

1

gap> ComplexConjugate(Sqroot(17)+Sqroot(-7));

(-E(4))*Sqroot(7) + Sqroot(17)
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gap> Random( SqrtField );

-1 + 1/4*Sqroot(3) + 1/9*Sqroot(6)

Most methods for list, matrices, and polynomials also work over SqrtField .
Example

gap> m:=[[Sqroot(2),Sqroot(3)],[Sqroot(2),Sqroot(5)],[1,0]]*One(SqrootField);

[ [ Sqroot(2), Sqroot(3) ], [ Sqroot(2), Sqroot(5) ], [ 1, 0 ] ]

gap> NullspaceMat(m);

[ [ (-5/4)*Sqroot(2) + (-1/4)*Sqroot(30), 3/4*Sqroot(2) + 1/4*Sqroot(30), 1 ] ]

gap> RankMat(m);

2

gap> m := [[Sqroot(2),Sqroot(3)],[Sqroot(2),Sqroot(5)]];

[ [ Sqroot(2), Sqroot(3) ], [ Sqroot(2), Sqroot(5) ] ]

gap> Determinant( m ); DefaultFieldOfMatrix( m );

(-1)*Sqroot(6) + Sqroot(10)

SqrtField

gap> x := Indeterminate( SqrtField, "x" );; f := x^2+x+1;

x^2+x+1

2.3.1 SqrtFieldMakeRational

. SqrtFieldMakeRational(m) (function)

If m is an element of SqrtField , or a list or a matrix over SqrtField , defined over the Gaussian
rationals, then SqrtFieldMakeRational( m ) returns the corresponding element in Q(ı) or defined
over Q(ı), respectively. This function is used internally, for example, to compute the determinant or
rank of a rational matrix over SqrtField more efficiently. It is also used in the following three
functions.

2.3.2 SqrtFieldPolynomialToRationalPolynomial

. SqrtFieldPolynomialToRationalPolynomial(f) (function)

Here f is a polynomial over SqrtField but with coefficients in the Gaussian rationals. The
function returns the corresponding polynomial defined over the Gaussian rationals.

2.3.3 SqrtFieldRationalPolynomialToSqrtFieldPolynomial

. SqrtFieldRationalPolynomialToSqrtFieldPolynomial(f) (function)

If f is a polynomial over the Gaussian rationals, then the function returns the corresponding
polynomial defined over SqrtField .

2.3.4 Factors

. Factors(f) (operation)

If f is a rational polynomial defined over SqrtField , then the previous two functions are used to
obtain its factorisation over Q.
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Example
gap> F := SqrtField;; one := One( SqrtField );;

gap> x := Indeterminate( F, "x" );; f := x^5 + 4*x^3 + E(4)*one*x;

x^5+4*x^3+E(4)*x

gap> SqrtFieldPolynomialToRationalPolynomial(f);

x_1^5+4*x_1^3+E(4)*x_1

gap> SqrtFieldRationalPolynomialToSqrtFieldPolynomial(last);

x^5+4*x^3+E(4)*x

gap> f := x^2-1;; Factors(f);

[ x-1, x+1 ]

gap> f := x^2+1;; Factors(f);

[ x^2+1 ]



Chapter 3

Real Lie Algebras

3.1 Construction of simple real Lie algebras

A few functions print some information on what they are doing to the info class InfoCorelg .

3.1.1 RealFormsInformation

. RealFormsInformation(type, rank) (function)

This function displays information regarding the simple real Lie algebras that can be constructed
from the complex Lie algebra of type type (which is a string) and rank rank (a positive integer).
Each Lie algebra is given an index which is an integer, and for each index some information is given
on the Lie algebra, such as a commonly used name. In all cases the index 0 refers to the realification
of the complex Lie algebra.

Example
gap> RealFormsInformation( "A", 4 );

There are 4 simple real forms with complexification A4

1 is of type su(5), compact form

2 - 3 are of type su(p,5-p) with 1 <= p <= 2

4 is of type sl(5,R)

Index '0' returns the realification of A4

gap> RealFormsInformation( "E", 6 );

There are 5 simple real forms with complexification E6

1 is the compact form

2 is EI = E6(6), with k_0 of type sp(4) (C4)

3 is EII = E6(2), with k_0 of type su(6)+su(2) (A5+A1)

4 is EIII = E6(-14), with k_0 of type so(10)+R (D5+R)

5 is EIV = E6(-26), with k_0 of type f_4 (F4)

Index '0' returns the realification of E6

gap> NumberRealForms("D",10);

12

12
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3.1.2 NumberRealForms

. NumberRealForms(type, rank) (function)

This function returns the number of (isomorphism types of) all real forms of the simple complex
Lie algebras of type type and rank rank .

3.1.3 RealFormById

. RealFormById(type, rank, id) (function)

. RealFormById(type, rank, id, F) (function)

Let L be the complex Lie algebra of type type and rank rank . This function constructs the
real form of L with index id (see RealFormsInformation (3.1.1)). By default this Lie algebra is
constructed over the field SqrtField . However, by adding as an optional fourth argument the field F ,
it is possible to construct the Lie algebra output by this function over F . It is required that the complex
unit E(4) is contained in F . If the index ind is 0, then the realification of L is constructed, which,
strictly speaking is not a real form of L.

Example
gap> RealFormById( "A", 4, 2 );

<Lie algebra of dimension 24 over SqrtField>

gap> RealFormById( "A", 4, 2, CF(4) );

<Lie algebra of dimension 24 over GaussianRationals>

3.1.4 AllRealForms

. AllRealForms(type, rank) (function)

This function returns all real forms of the simple complex Lie algebras of type type and rank
rank up to isomorphism. In the same way as with RealFormById (3.1.3) it is possible to add the
base field as an optional third argument.

3.1.5 RealFormParameters

. RealFormParameters(L) (attribute)

For a real Lie algebra L constructed by the function RealFormById (3.1.3), this function returns
a list of the parameters defining L as a real form of its complexification. The first element of the list is
the type of L (given by a string), the second element is its rank, the third and fourth elements are the
list of signs and the permutation defining the Cartan involution (see Section 1.1).

3.1.6 IsRealFormOfInnerType

. IsRealFormOfInnerType(L) (property)

Returns true if and only if the real form L is a defined by an inner involutive automorphism.
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3.1.7 IsRealification

. IsRealification(L) (property)

Returns true if and only if the real form L is the realification of a complex simple Lie algebra.

3.1.8 CartanDecomposition

. CartanDecomposition(L) (attribute)

The Cartan decomposition of L as a record with entries K , P , and CartanInv , such that L =K⊕P
is the Cartan decomposition with corresponding Cartan involution CartanInv , which is defined as a
function on L .

The Lie algebras constructed by RealFormById (3.1.3) have this attribute stored. For other
semisimple real Lie algebras it is computed. However, we do remark that the in the computation
the root system is computed with respect to a Cartan subalgebra. If the program does not succeed in
splitting the Cartan subalgebra over the base field of L , then the computation will not succeed.

Example
gap> L:= RealFormById( "A", 5, 3 );

<Lie algebra of dimension 35 over SqrtField>

gap> H := CartanSubalgebra(L);;

gap> K:= LieCentralizer( L, Subalgebra( L, [Basis( H )[1]] ) );

<Lie algebra of dimension 17 over SqrtField>

gap> DK:= LieDerivedSubalgebra( K );

<Lie algebra of dimension 15 over SqrtField>

gap> CartanDecomposition( DK );

rec( CartanInv := function( v ) ... end,

K := <Lie algebra of dimension 15 over SqrtField>,

P := <vector space over SqrtField, with 0 generators> )

# We see that the semisimple subalgebra DK is compact.

3.1.9 RealStructure

. RealStructure(L) (attribute)

. RealStructure(L: basis := B) (attribute)

The real structure of the real form L is the (complex) conjugation with respect to L , that is,
the function which maps an element in L to the element constructed as follows: write it as a linear
combination of the basis elements of L and replace each coefficient by its complex conjugate. If
the optional argument basis:=B is given, then B has to be a basis whose span contains L (which is
not checked by the code); in this case the linear combination is done with respect to B . The latter
construction is important when one considers a subalgebra M of a real form L ; here one could either
do Realstructure(M:basis:=Basis(L)) or SetRealStructure(M,RealStructure(L)) .
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3.2 Isomorphisms

3.2.1 IsomorphismOfRealSemisimpleLieAlgebras

. IsomorphismOfRealSemisimpleLieAlgebras(K, L) (function)

Here K , L are two real forms of a semisimple complex Lie algebra. This function returns an
isomorphism if one exists. Otherwise false is returned.

Example
gap> L:=RealFormById("E",6,3);;

gap> H:=CartanSubalgebra(L);;

gap> K:=LieCentralizer(L,Subalgebra(L,Basis(H){[1,2,4]}));;

gap> DK:=LieDerivedSubalgebra(K);

<Lie algebra of dimension 8 over SqrtField>

gap> IdRealForm(DK);

[ "A", 2, 2 ]

gap> M:=RealFormById("A",2,2);

<Lie algebra of dimension 8 over SqrtField>

gap> IsomorphismOfRealSemisimpleLieAlgebras(DK,M);

<Lie algebra isomorphism between Lie algebras of dimension 8 over SqrtField>

3.3 Cartan subalgebras and root systems

3.3.1 MaximallyCompactCartanSubalgebra

. MaximallyCompactCartanSubalgebra(L) (attribute)

Here L is a real semisimple Lie algebra. This function returns a maximally compact Cartan
subalgebra of L .

3.3.2 MaximallyNonCompactCartanSubalgebra

. MaximallyNonCompactCartanSubalgebra(L) (attribute)

Here L is a real semisimple Lie algebra. This function returns a maximally non-compact Cartan
subalgebra of L .

3.3.3 CompactDegreeOfCartanSubalgebra

. CompactDegreeOfCartanSubalgebra(L) (function)

. CompactDegreeOfCartanSubalgebra(L, H) (function)

Here L is a real semisimple Lie algebra. This function returns the compact dimension of the
Cartan subalgebra H . If H is not given, then CartanSubalgebra(L) will be taken. The compact
dimension will be stored in the Cartan subalgebra, so that a new call to this function, with the same
input, will return the compact dimension immediately.
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3.3.4 CartanSubalgebras

. CartanSubalgebras(L) (attribute)

Here L is a real form of a complex semisimple Lie algebra. This function returns a list of Cartan
subalgebras of L . They are representatives of all classes of conjugate (by the adjoint group) Cartan
subalgebras of L .

3.3.5 CartanSubspace

. CartanSubspace(L) (attribute)

Here L is a real semisimple Lie algebra. This function returns a Cartan subspace of L . That is a
maximal abelian subspace of the subspace P given in the CartanDecomposition (3.1.8) of L .

3.3.6 RootsystemOfCartanSubalgebra

. RootsystemOfCartanSubalgebra(L) (operation)

. RootsystemOfCartanSubalgebra(L, H) (operation)

Here L is a semisimple Lie algebra, and H is a Cartan subalgebra. (If H is not given, then
CartanSubalgebra(L) will be taken.) This function returns the root system of L with respect to
H . It is necessary that the eigenvalues of the adjoint maps corresponding to all elements of H lie in the
ground field of L . However, even if they do, it is not guaranteed that this function succeeds, as it may
happen that GAP has no polynomial factorisation algorithm over the ground field.

The root system is stored in H , so that a new call to this function, with the same input, will return
the same root system.

3.3.7 ChevalleyBasis

. ChevalleyBasis(R) (attribute)

Here R is a root system of a semisimple Lie algebra L . This function returns a Chevalley basis of
L , consisting of root vectors of R .

3.4 Diagrams

In this section we document the functionality for computing the Satake and Vogan diagrams of a
real semisimple Lie algebra. In both cases the relevant function computes an object, which, when
printed, does not reveal much information. However, Display with as input such an object, displays
the diagram. Here we use the convention that every node is represented by an integer; nodes that
are painted black are represented by integers in brackets; and the involution (i.e., the arrows in the
diagram) are represented by a permutation of the nodes, printed on a line below the diagram.

3.4.1 VoganDiagram

. VoganDiagram(L) (attribute)
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Here L is a real semisimple Lie algebra. This function returns the Vogan diagram of L .
Example

gap> L:= RealFormById( "E", 6, 3 );;

gap> K:= LieCentralizer( L, Subalgebra( L, Basis( CartanSubalgebra(L) ){[1]} ) );

<Lie algebra of dimension 36 over SqrtField>

gap> DK:= LieDerivedSubalgebra( K );

<Lie algebra of dimension 35 over SqrtField>

gap> vd:= VoganDiagram(DK);

<Vogan diagram in Lie algebra of type A5>

gap> Display( vd );

A5: 1---(2)---3---4---5

Involution: ()

3.4.2 SatakeDiagram

. SatakeDiagram(L) (attribute)

Here L is a real semisimple Lie algebra. This function returns the Satake diagram of L .
Example

gap> L:= RealFormById( "E", 6, 3 );;

gap> K:= LieCentralizer( L, Subalgebra( L, Basis( CartanSubalgebra(L) ){[1]} ) );

<Lie algebra of dimension 36 over SqrtField>

gap> DK:= LieDerivedSubalgebra( K );

<Lie algebra of dimension 35 over SqrtField>

gap> sd:= SatakeDiagram( DK );

<Satake diagram in Lie algebra of type A5>

gap> Display( sd );

A5: 1---2---(3)---4---5

Involution: (1,5)(2,4)

3.5 Nilpotent orbits

CoReLG has a database of the nilpotent orbits of the real forms of the simple Lie algebras of ranks
up to 8. When called the first time in a GAP session, CoReLG will first read the database of nilpotent
orbits.

3.5.1 NilpotentOrbitsOfRealForm

. NilpotentOrbitsOfRealForm(L) (attribute)

Here L is a real form of a complex simple Lie algebra of rank up to 8. This function returns the
list of nilpotent orbits (under the action of the adjoint group) of L . For this function to work, L must
be defined over SqrtField .

Example
gap> L:= RealFormById( "F", 4, 3 );;

gap> no:= NilpotentOrbitsOfRealForm( L );;

#I CoReLG: read database of real triples ... done

gap> no[1];

<nilpotent orbit in Lie algebra>
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3.5.2 RealCayleyTriple

. RealCayleyTriple(o) (attribute)

Here o is a nilpotent orbit constructed by NilpotentOrbitsOfRealForm (3.5.1) of a simple real
Lie algebra. This function returns a real Cayley triple [ f, h, e ] corresponding to the orbit o .
The third element e is a representative of the orbit.

Example
gap> L:= RealFormById( "F", 4, 2 );;

gap> no:= NilpotentOrbitsOfRealForm( L );;

gap> o:= no[10];

<nilpotent orbit in Lie algebra>

gap> t:=RealCayleyTriple(o);;

gap> theta:= CartanDecomposition(L).CartanInv;

function( v ) ... end

gap> theta(t[1]) = -t[3];

true

gap> theta(t[2]) = -t[2];

true

gap> t[3]*t[1] = t[2];

true

3.5.3 WeightedDynkinDiagram

. WeightedDynkinDiagram(o) (attribute)

Here o is a nilpotent orbit constructed by NilpotentOrbitsOfRealForm (3.5.1) of a simple real
Lie algebra. This function returns the weighted Dynkin diagram of the orbit, which identifies its orbit
in the complexification of the real Lie algebra in which o lies.
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