

Computational aspects of finite p -groups

Parts I and II

Heiko Dietrich

School of Mathematics
Monash University, Australia

15th December 2020
Zoomville Melbourne-Chongqing

Welcome! And a bit about myself...

University of Braunschweig (2000-2009)

- one of the four GAP centres
- PhD (on p -groups with maximal class)

University of Auckland (2009-2011)

- work with Magma
- further research on p -groups

University of Trento (2011-2013)

- more work with GAP

Monash University (2013–)

- working in computational algebra (Associate Professor)

Welcome!

In this lecture series we discuss

Computational Aspects of Finite p -Groups.

A *finite p -group* is a group whose order is a positive power of the prime p .

Along the way: how to compute with (certain) finitely presented groups.

Convention

Throughout, p is a prime; unless stated otherwise, all groups and sets are finite.

Material

Slides and recordings uploaded at users.monash.edu/~heikod/cpg2020

Assumed knowledge

Some basic group theory...

Why p -groups?

There's an abundant supply of p -groups

ord.	#	ord.	#	ord.	#	ord.	#	ord.	#
1	1	14	2	27	5	40	14	53	1
2	1	15	1	28	4	41	1	54	15
3	1	16	14	29	1	42	6	55	2
4	2	17	1	30	4	43	1	56	13
5	1	18	5	31	1	44	4	57	2
6	2	19	1	32	51	45	2	58	2
7	1	20	5	33	1	46	2	59	1
8	5	21	2	34	2	47	1	60	13
9	2	22	2	35	1	48	52	61	1
10	2	23	1	36	14	49	2	62	2
11	1	24	15	37	1	50	5	63	4
12	5	25	2	38	2	51	1	64	267
13	1	26	2	39	2	52	5	65	1

- there are $p^{2n^3/27+O(n^{5/3})}$ groups of order p^n
proved and improved by Higman (1960), Sims (1965), Newman & Seeley (2007)
- conjecture: “almost all” groups are p -groups (2-groups)
e.g. there are 49910529484 groups of order ≤ 2000 , and 99% of them are 2-groups

Important aspects of p -groups

Some comments on p -groups

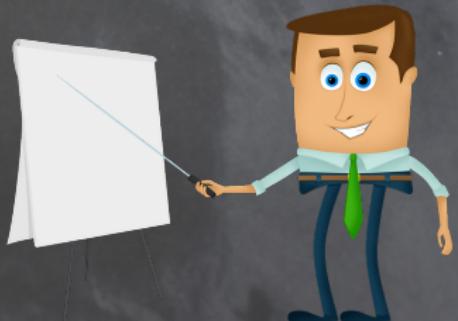
- Folklore conjecture: “almost all groups are p -groups”
- Sylow Theorem: every group has p -groups as subgroups
- Nilpotent groups: direct products of p -groups (different primes)
- Solvable groups: iterated extensions of p -groups (different primes)
- “Counterpart” to theory of finite simple groups
- Challenge: classify p -groups...
- Many “reductions” to p -groups exist: Restricted Burnside Problem, cohomology, Schur multiplier, p -local subgroups, . . .

p -groups are fascinating – and accessible to computations! So let's do it...

Outline of this lecture series

The draft outline is as follows:

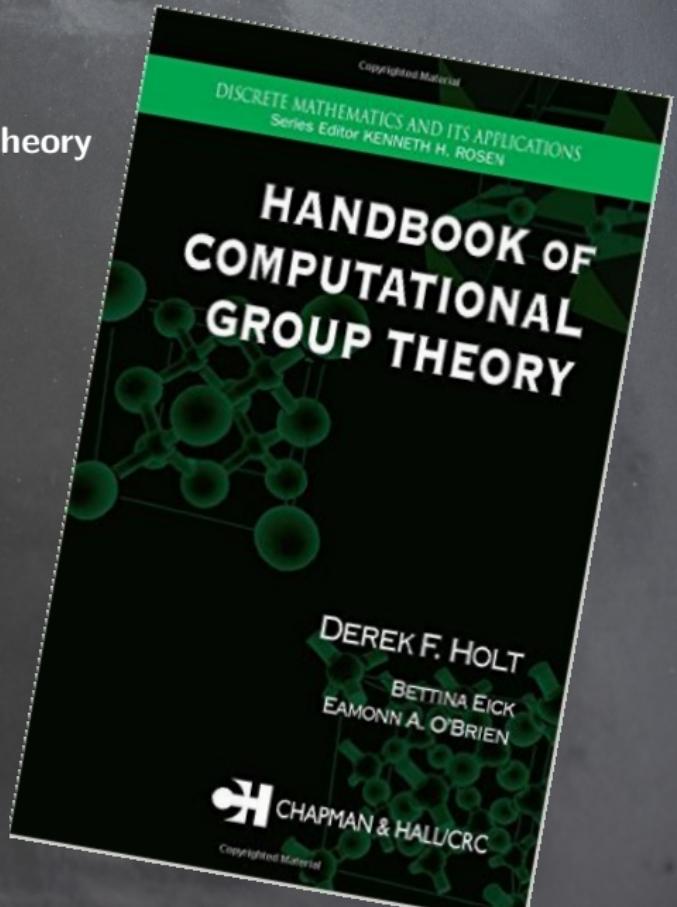
- 1 motivation
- 2 pc presentations [▶ Go there](#)
- 3 p -quotient algorithm [▶ Go there](#)
- 4 p -group generation [▶ Go there](#)
- 5 classification by order [▶ Go there](#)
- 6 isomorphisms [▶ Go there](#)
- 7 automorphisms [▶ Go there](#)
- 8 coclass theory [▶ Go there](#)
- 9 other quotient algorithms [▶ Go there](#)



Generic resource

Handbook of computational group theory

D. Holt, B. Eick, E. A. O'Brien
Chapman & Hall/CRC, 2005



Part I

pc presentations

Computing with groups

Main theme: How to compute with (p) -groups?

Related to the question: How to describe a group for a computer?

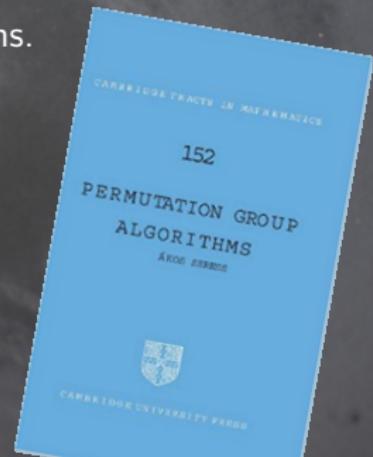
1. Permutation groups: By Cayley's Thm, every finite group is isomorphic to a permutation group that can be specified concisely by generators, eg

$$D_4 = \langle (1, 2, 3, 4), (1, 2)(3, 4) \rangle.$$

Computers can usually work efficiently with such descriptions.

If G is a subgroup of a permutation group, then powerful algorithms exist to investigate questions such as

- What is the order of G ?
- Is $g \in \text{Sym}(n)$ an element of G ?
- What is the structure of G ?
- ...



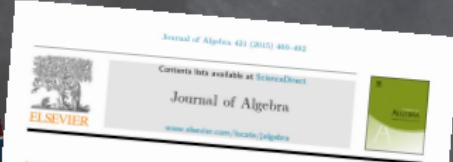
Computing with groups

Convenient ways to describe a group for a computer:

2. Matrix groups: A group can also be described by its action on a linear structure, such as vector spaces; this leads to matrix groups and representations. For example, take $G = \langle X \rangle \leq \mathrm{GL}_8(7)$ generated by

$$X = \left\{ \begin{pmatrix} 2 & 5 & 5 & 0 & 1 & 5 & 5 & 4 \\ 4 & 3 & 0 & 2 & 5 & 3 & 5 & 3 \\ 6 & 1 & 0 & 5 & 4 & 4 & 1 & 1 \\ 5 & 2 & 2 & 3 & 5 & 3 & 2 & 4 \\ 2 & 2 & 6 & 1 & 2 & 3 & 1 & 0 \\ 6 & 2 & 4 & 4 & 4 & 2 & 0 & 5 \\ 3 & 2 & 5 & 1 & 3 & 5 & 3 & 5 \\ 2 & 1 & 6 & 3 & 5 & 4 & 1 & 6 \end{pmatrix}, \begin{pmatrix} 4 & 3 & 2 & 0 & 6 & 0 & 3 & 2 \\ 4 & 2 & 0 & 2 & 3 & 5 & 0 & 2 \\ 0 & 4 & 2 & 4 & 3 & 2 & 4 & 1 \\ 1 & 0 & 5 & 6 & 3 & 2 & 6 & 1 \\ 5 & 5 & 1 & 6 & 6 & 3 & 6 & 2 \\ 4 & 3 & 1 & 0 & 2 & 6 & 5 & 1 \\ 4 & 1 & 6 & 6 & 5 & 5 & 1 & 4 \\ 4 & 6 & 5 & 2 & 5 & 6 & 5 & 0 \end{pmatrix} \right\}.$$

There are challenges, e.g. G has size $\approx 3.4 \cdot 10^{53}$, but there has been great progress in the *Matrix Group Recognition Project*.



Effective black-box constructive recognition of classical groups¹

Heiko Dietrich², C.R. Leedham-Green³, E.A. O'Brien^{1,4}

² School of Mathematical Sciences, Monash University, Melbourne, VIC 3800, Australia
³ School of Mathematics Sciences, Queen Mary, University of London, London E1 4NS, United Kingdom
⁴ Department of Mathematics, Private Bag 92009, Auckland, University of Auckland, New Zealand

ABSTRACT

Article history
 Received 30 April 2014
 Available online 13 September 2014
 Communicated by William M. Kantor

Keywords
 Classical groups
 Constructive recognition
 Group theory

We describe a black-box Las Vegas algorithm to construct standard generators for classical groups defined over finite fields. We assume that the field has size at least 4 and that entries to solve certain problems are available. Subject to these assumptions, the algorithm runs in polynomial time. A practical implementation of our algorithm is distributed with the computer algebra system Magma.

Computing with groups

Convenient ways to describe a group for a computer:

3. Group presentations: A group can be defined by abstract generators and a set of relators/relations, for example,

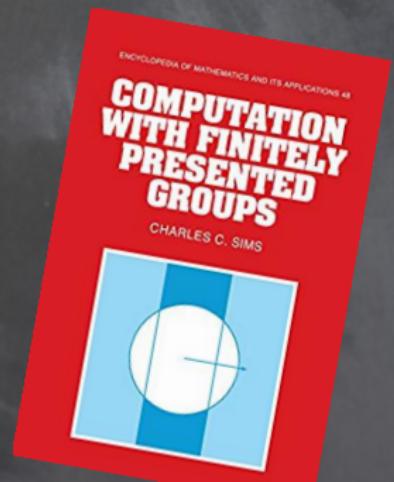
$$G = \langle r, m \mid r^4, m^2, \overbrace{r^m = r^3}^{\text{relation}} \rangle = \langle r, m \mid r^4, m^2, \overbrace{m^{-1}rmr^{-3}}^{\text{relator}} \rangle.$$

giving rise to the formal concept of group presentations.

What can we say about G ?

Well... $r^m = r^3$ means $rm = mr^3$, so:

- $G = \{m^i r^j \mid i = 0, 1 \text{ and } j = 0, 1, 2, 3\}$, so G has at most 8 elements;
- $D_8 = \langle r, m \rangle$ with $r = (1, 2, 3, 4)$ and $m = (1, 3)$ satisfies the relations of G ; one can show that $G \cong D_8$.



Group presentations

Finitely presented groups

Let F be the free group on a set $X \neq \emptyset$; let \mathcal{R} be a set of words in $X \sqcup X^{-1}$. If $R = \mathcal{R}^F$ is the normal closure of \mathcal{R} in F , then

$$G = F/R$$

is the group defined by the **presentation** $\{X \mid \mathcal{R}\}$ with **generators** X and **relators** \mathcal{R} ; we also write $G = \langle X \mid \mathcal{R} \rangle$ and call $\langle X \mid \mathcal{R} \rangle$ a presentation for G .

Informally, $\langle X \mid \mathcal{R} \rangle$ is the “largest” group generated by X that satisfies R .

Such a description seems natural and is very concise. However, there are some fundamental problems when computing with finitely presented groups:

- What is size of G ? Is G finite? Is G trivial?
- Given a word w in the generators, is $w = 1$ in G ?
- What is G ? ...

Finitely presented groups

As mentioned before, it is in general very difficult to obtain any immediate information about the structure from a group presentation.

Example

- $n = 1, \dots, 7$: $|\langle x, y \mid y^x x^y, yxyx^n y^{2n} x^n \rangle| = 1, 336, 1, 120, 1, 24360, 4080$.
- The group $\langle a, b, c \mid b^a = b^2, c^b = c^2, a^c = a^2 \rangle$ is trivial (Higman'50), but $\langle a, b, c, d \mid b^a = b^2, c^b = c^2, d^c = d^2, a^d = a^2 \rangle$ is infinite.
- The Baumslag group $\langle a, b \mid b = [b, b^a] \rangle$ has $b = 1$ in every finite quotient.

Word problem (Dehn 1910): For $u, v \in \langle S \mid \mathcal{R} \rangle$, decide whether $u = v$.

Theorem (Novikov 1955, Boone 1959)

There is a finite presentation $G = \langle S \mid \mathcal{R} \rangle$ for which there is no algorithm that, given two words u and v over S , decides whether $u = v$ in G .

ILLINOIS JOURNAL OF MATHEMATICS
Volume 30, Number 2, Summer 1986

A SIMPLE PRESENTATION OF A GROUP WITH UNSOLVABLE WORD PROBLEM

BY

DONALD J. COLLINS

In memoriam—William W. Boone

In my experience, many topologists suffer acute anxiety when it occurs to them that some fundamental group they are working with may have an unsolvable word problem. One form of therapy I have known to be employed is to say that groups with unsolvable word problems are monstrous, c₁ objects and that no-one could ever write one down in his lifetime. The purpose of this note is to deny even this succour by giving, in a modest and in complete detail, a group presentation with unsolvable word problem. It will be apparent, such an example exists, implicitly, in the literature, but this article simply makes the example explicit.

Seems hopeless . . . so what can one do with finitely presented groups?

Generators:

Relations:

$a, b, c, d, e, p, q, r, t, k$.

$$\begin{aligned}
 p^{10}a &= ap, p^{10}b = bp, p^{10}c = cp, p^{10}d = dp, p^{10}e = ep, \\
 qa &= aq^{10}, qb = bq^{10}, qc = cq^{10}, qd = dq^{10}, qe = eq^{10}, \\
 ra &= ar, rb = br, rc = cr, rd = dr, re = er, \\
 pacqr &= rpcaq, \\
 p^3bcq^3r &= rp^3cbq^3, \\
 p^5ceq^5r &= rp^5ecaq^5, \\
 p^7cdcq^7r &= p^7cdceq^7, \\
 p^8caaaq^8r &= rp^8aaaq^8, \\
 p^9daaaq^9r &= rp^9aaaq^9, \\
 pt &= tp, qt = tq, \\
 k(aaa)^{-1}t(aaa) &= k(aaa)^{-1}t(aaa)
 \end{aligned}$$

Homomorphisms: can do!

The following is a **fundamental tool** when working with fin. pres. groups:

Theorem (von Dyck's Theorem)

Let $G = \langle g_1, \dots, g_n \mid \mathcal{R} \rangle$ and let $H = \langle h_1, \dots, h_n \rangle$ be a group.
If every relator $w(g_1, \dots, g_n) \in \mathcal{R}$ satisfies

$$w(h_1, \dots, h_n) = 1 \in H,$$

then there is an epimorphism $\varphi: G \rightarrow H$ with each $\varphi(g_i) = h_i$.

For a given group H , this can be used to find an epimorphism $G \rightarrow H$.

Example

Let $G = \langle g, h \mid g^2, h^2, (gh)^6 \rangle$ and $H = \text{Sym}_3$. Is there an epimorphism $G \rightarrow H$?

Are there generators $a, b \in H$ that satisfy $a^2 = b^2 = (ab)^6 = 1$?

Yes, take $a = (1, 2)$ and $b = (2, 3)$.

Now $g \mapsto a$ and $h \mapsto b$ extends to an epim. $G \rightarrow H$, so H is a quotient of G .

Von Dyck's result is the crux of quotient algorithms, which attempt to find an epimorphism $G \rightarrow H$ onto some *nicer* group H .

Special types of presentations: can do!

Recall the example

$$G = \langle r, m \mid r^4, m^2, r^m = r^3 \rangle.$$

We figured out that $G = \{m^i r^j : i = 0, 1 \text{ and } j = 0, 1, 2, 3\}$ has $|G| \leq 8$, and von Dyck's Theorem shows that there is an epimorphism $\varphi: G \rightarrow D_8$ with

$$\varphi(m) = (1, 3) \quad \text{and} \quad \varphi(r) = (1, 2, 3, 4).$$

We can work well with G because it's presentation has a *special form*.

Finitely presented groups are very useful:

- group presentations are very compact definitions of groups;
- many groups from algebraic topology arise in this form;
- some efficient methods exist, eg coset enumeration (or quotient algorithms);
- many classes of groups can be studied via group presentations.

Let's discuss how to define p -groups by a useful presentation!

Background: p -groups.... Action!

Orbit-Stabiliser Theorem

If G acts on a set Ω , then $|\omega^G| = |G|/|\text{Stab}_G(\omega)|$ for all $\omega \in \Omega$.

This can be used to prove the following:

Actions

If a p -group G acts on Ω , then $|\Omega| \equiv |\text{Fix}_G(\Omega)| \pmod{p}$.

Center

If G is a p -group, then its center $Z(G) = \{g \in G \mid \forall h \in G: g^h = g\}$ is non-trivial.

Background: central series

Center

If G is a p -group, then its center $Z(G) = \{g \in G \mid \forall h \in G: g^h = g\}$ is non-trivial.

This leads to the **upper central series** of a p -group G defined as

$$1 = \zeta_0(G) < \zeta_1(G) < \dots < \zeta_c(G) = G$$

where $\zeta_0(G) = 1$ and each $\zeta_{i+1}(G)$ is defined by $\zeta_{i+1}(G)/\zeta_i(G) = Z(G/\zeta_i(G))$; it is the fastest ascending series with central sections.

Related is the **lower central series**

$$G = \gamma_1(G) > \gamma_2(G) > \dots > \gamma_{c+1}(G) = 1$$

where $\gamma_1(G) = G$ and each $\gamma_{i+1}(G)$ is defined as¹ $\gamma_{i+1}(G) = [G, \gamma_i(G)]$; it is the fastest descending series with central sections.

The number c is the same for both series; the **(nilpotency) class** of G .

¹As usual, $[A, B] = \langle [a, b] \mid a \in A, b \in B \rangle$ where $[a, b] = a^{-1}b^{-1}ab = a^{-1}ba$

Example: central series

Example 1

Let $G = D_{16} = \langle r, m \rangle$ with $r = (1, 2, 3, 4, 5, 6, 7, 8)$, $m = (1, 3)(4, 8)(5, 7)$. Then G has class $c = 3$; its lower central series is

$$G > \langle r^2 \rangle > \langle r^4 \rangle > 1$$

and has sections² $G/\gamma_2(G) \cong C_2 \times C_2$, $\gamma_2(G)/\gamma_3(G) = C_2$, and $\gamma_3(G) = C_2$. We can refine this series so that all section are isomorphic to C_2 :

$$G > \langle r \rangle > \langle r^2 \rangle > \langle r^4 \rangle > 1.$$

In general: every central series of a p -group G can be refined to a **composition series**

$$G = G_1 > G_2 > \dots > G_{n+1} = 1$$

where each $G_i \trianglelefteq G$ and $G_i/G_{i+1} \cong C_p$; thus G is a **polycyclic group**.

²If n is a positive integer, then C_n denotes a cyclic group of size n .

Polycyclic groups

Polycyclic group

The group G is **polycyclic** if it admits a **polycyclic series**, that is, a subgroup chain $G = G_1 \geq \dots \geq G_{n+1} = 1$ in which each $G_{i+1} \trianglelefteq G_i$ and G_i/G_{i+1} is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 2

The group $G = \langle (2, 4, 3), (1, 3)(2, 4) \rangle \cong \text{Alt}(4)$ is polycyclic with series

$$G = G_1 > G_2 > G_3 > G_4 = 1$$

where

$$\begin{aligned} G_2 &= \langle (1, 3)(2, 4), (1, 2)(3, 4) \rangle = V_4 \trianglelefteq G_1 \\ G_3 &= \langle (1, 2)(3, 4) \rangle \trianglelefteq G_2 \end{aligned}$$

Each G_i/G_{i+1} is cyclic, so there is $g_i \in G_i \setminus G_{i+1}$ with $G_i/G_{i+1} = \langle g_i G_{i+1} \rangle$; for example, $g_1 = (2, 4, 3)$, $g_2 = (1, 3)(2, 4)$, $g_3 = (1, 2)(3, 4)$.

Polycyclic Sequence

Polycyclic sequence

Let $G = G_1 \geq \dots \geq G_{n+1} = 1$ be a polycyclic series.

A related **polycyclic sequence** X with **relative orders** $R(X)$ is

$$X = [g_1, \dots, g_n] \quad \text{with} \quad R(X) = [r_1, \dots, r_n]$$

where each $g_i \in G_i \setminus G_{i+1}$ and $r_i = |g_i G_{i+1}| = |G_i/G_{i+1}|$.

A polycyclic series is also called **pcgs** (polycyclic generating set).

Important observation: each $G_i = \langle g_i, g_{i+1}, \dots, g_n \rangle$ and $|G_i| = r_i \cdots r_n$.

Example 3

Let $G = D_{16} = \langle r, m \rangle$ with $r = (1, 2, 3, 4, 5, 6, 7, 8)$ and $m = (1, 3)(4, 8)(5, 7)$.

Examples of pcgs:

- $X = [m, r]$ with $R(X) = [2, 8]$: $G = \langle m, r \rangle > \langle r \rangle > 1$;
- $X = [m, r, r^4]$ with $R(X) = [2, 4, 2]$: $G = \langle m, r, r^4 \rangle > \langle r, r^4 \rangle > \langle r^4 \rangle > 1$;
- $X = [m, r, r^3, r^2]$ with $R(X) = [2, 1, 2, 4]$; note that $\langle r, r^3, r^2 \rangle = \langle r^3, r^2 \rangle$.

Normal Forms

Lemma: Normal Form

Let $X = [g_1, \dots, g_n]$ be a pcgs for G with $R(X) = [r_1, \dots, r_n]$.

So $G = G_1 \geq \dots \geq G_{n+1} = 1$ with each $G_i/G_{i+1} = \langle g_i G_{i+1} \rangle$ of order r_i .

If $g \in G$, then $g = g_1^{e_1} \cdots g_n^{e_n}$ for unique $e_i \in \{0, \dots, r_i - 1\}$.

We call $g = g_1^{e_1} \cdots g_n^{e_n}$ the **normal form** with respect to X .

Proof.

Let $g \in G$ be given; we use induction on n .

- If $n = 1$, then $G = \langle g_1 \rangle \cong C_{r_1}$ and the lemma holds; now let $n \geq 2$.
- Since $G/G_2 = \langle g_1 G_2 \rangle \cong C_{r_1}$, we can write $gG_2 = g_1^{e_1} G_2$ for a unique $e_1 \in \{0, \dots, r_1 - 1\}$, that is, $g' = g_1^{-e_1} g \in G_2$.
- $X' = [g_2, \dots, g_n]$ is pcgs of G_2 with $R(X') = [r_2, \dots, r_n]$, so by induction $g' = g_1^{-e_1} g = g_2^{e_2} \cdots g_n^{e_n}$ for unique $e_i \in \{0, \dots, r_i - 1\}$.
- In conclusion, $g = g_1^{e_1} \cdots g_n^{e_n}$ as claimed.

Example: Normal Forms

Example 4

A pcgs of $G = \text{Alt}(4)$ with $R(X) = [3, 2, 2]$ is $X = [g_1, g_2, g_3]$ where

$$g_1 = (1, 2, 3), \quad g_2 = (1, 2)(3, 4), \quad g_3 = (1, 3)(2, 4).$$

This yields $G = G_1 > G_2 > G_3 > G_4 = 1$ with each $G_i = \langle g_i, \dots, g_3 \rangle$.

Now consider $g = (1, 2, 4) \in G$.

First, we have $gG_2 = g_1^2 G_2$, so $g' = g_1^{-2} g = (1, 4)(2, 3) \in G_2$.

Second, $g'G_3 = g_2 G_3$, so $g'' = g_2^{-1} g' = (1, 3)(2, 4) = g_3 \in G_3$.

In conclusion, $g = g_1^2 g' = g_1^2 g_2 g'' = g_1^2 g_2 g_3$.

Polycyclic group to presentation

Let G be group with pcgs $X = [g_1, \dots, g_n]$ and $R(X) = [r_1, \dots, r_n]$; as before let $G_i = \langle g_i, \dots, g_n \rangle$. There exist $a_{*,j}, b_{*,*,j} \in \{0, 1, \dots, r_j - 1\}$ with:

- $g_i^{r_i} = g_{i+1}^{a_{i,i+1}} \cdots g_n^{a_{i,n}}$ (for all i , since $G_i/G_{i+1} = \langle g_i G_{i+1} \rangle \cong C_{r_i}$)
- $g_i^{r_j} = g_{j+1}^{b_{i,j,j+1}} \cdots g_n^{b_{i,j,n}}$ (for all $j < i$, since $g_i \in G_{j+1} \trianglelefteq G_j$).

A polycyclic presentation (PCP) for G

Let $H = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ such \mathcal{R} contains exactly the above relations:

$$x_i^{r_i} = x_{i+1}^{a_{i,i+1}} \cdots x_n^{a_{i,n}} \quad \text{and} \quad x_i^{r_j} = x_{j+1}^{b_{i,j,j+1}} \cdots x_n^{b_{i,j,n}}.$$

Then $H \cong G$ with pcgs $X = [x_1, \dots, x_n]$ and $R(X) = [r_1, \dots, r_n]$.

Proof.

Define $\varphi: H \rightarrow G$ by $x_i \mapsto g_i$. The elements g_1, \dots, g_n satisfy the relations in \mathcal{R} , so φ is an epimorphism by **von Dyck's Theorem**. By construction, H is polycyclic with pcgs X and order at most $|G|$. Thus, φ is an isomorphism.

Polycyclic group to presentation

Example 5

Let $G = \text{Alt}(4)$ with pcgs $X = [g_1, g_2, g_3]$ and $R(X) = [3, 2, 2]$ where

$$g_1 = (1, 2, 3), \quad g_2 = (1, 2)(3, 4), \quad g_3 = (1, 3)(2, 4).$$

Then $g_1^3 = g_2^2 = g_3^2 = 1$, $g_2^{g_1} = g_2g_3$, $g_3^{g_1} = g_2$, $g_3^{g_2} = g_3$, and so

$$G \cong \langle x_1, x_2, x_3 \mid x_1^3 = x_2^2 = x_3^2 = 1, x_2^{x_1} = x_2x_3, x_3^{x_1} = x_2, x_3^{x_2} = x_3 \rangle.$$

Theorem

Every pcgs determines a unique polycyclic presentation;
every polycyclic group can be defined by a polycyclic presentation.

Pc presentation to group

Polycyclic presentation (pcp)

A presentation $\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ is a **polycyclic presentation** with **power exponents** $s_1, \dots, s_n \in \mathbb{N}$ if the only relations in \mathcal{R} are

$$\begin{aligned} x_i^{s_i} &= x_{i+1}^{a_{i,i+1}} \cdots x_n^{a_{i,n}} & (\text{all } i, \text{ each } a_{i,k} \in \{0, \dots, s_k - 1\}) \\ x_i^{x_j} &= x_{j+1}^{b_{i,j,j+1}} \cdots x_n^{b_{i,j,n}} & (\text{all } j < i, \text{ each } b_{i,j,k} \in \{0, \dots, s_k - 1\}). \end{aligned}$$

We write $\text{Pc}\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ and **omit trivial commutator relations** $x_i^{x_j} = x_i$.
The group defined by a pc-presentation is a **pc-group**.

Theorem

If $G = \text{Pc}\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ with power exps $[s_1, \dots, s_n]$, then $X = [x_1, \dots, x_n]$ is a pcgs of G . If $g \in G$, then $g = x_1^{e_1} \cdots x_n^{e_n}$ for some $e_i \in \{0, \dots, s_i - 1\}$.

Careful: $(x_i G_i)^{s_i} = 1$ only implies that $r_i = |G_i/G_{i+1}|$ *divides* s_i , not $r_i = s_i$;
so it can happen that

$$R(X) = \underbrace{[r_1, \dots, r_n]}_{\text{rel. orders}} \neq \underbrace{[s_1, \dots, s_n]}_{\text{power exp.}}.$$

Consistent pc presentations

Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 6

Let $G = \text{Pc}\langle x_1, x_2, x_3 \mid x_1^3 = x_3, x_2^2 = x_3, x_3^5 = 1, x_2^{x_1} = x_2x_3 \rangle$; this is a pc-group with pcgs $X = [x_1, x_2, x_3]$ and power exponents $S = [3, 2, 5]$.

We show $R(X) = [3, 2, 1]$, so $|G| = 6$:

First, note that $x_2^{10} = x_3^5 = 1$, so $|x_2| \mid 10$.

Second, $x_2^{x_1} = x_2x_3 = x_2^3$ so $x_2^{27} = x_2^{(x_1^3)} = x_2^{x_3} = x_2^{(x_2^2)} = x_2$, and thus $|x_2| \mid 26$.

This implies that $5 \nmid |x_2|$, and so $x_3 = x_2^2$ and $x_3^5 = 1$ force $x_3 = 1$ in G .

Note that $x_1^0 x_2^0 x_3^0 = 1 = x_1^0 x_2^0 x_3^1$ are two normal forms (wrt power exponents).

Consistent pc presentation

A pc-presentation with power exponents S is **consistent** if and only if every group element has a unique normal form with respect to S ; otherwise it is **inconsistent**.

How to check consistency? \rightsquigarrow use **collection** and **consistency checks!**

Collection

Let $G = \text{Pc}\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ with power exponents $S = [s_1, \dots, s_n]$.

Consider a reduced word $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$, that is, each $i_j \neq i_{j+1}$; we can assume $e_j \in \mathbb{N}$, otherwise eliminate using power relations.

Collection

Let $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$ as above and use the previous notation:

- the word w is **collected** if w is the normal form wrt S , that is, $i_1 < \dots < i_r$ and each $e_j \in \{0, \dots, s_{i_j} - 1\}$;
- if w is not collected, then it has a **minimal non-normal subword** of w , that is, a subword u of the form

$$u = x_{i_j}^{e_j} x_{i_{j+1}} \quad \text{with } i_j > i_{j+1}, \quad \text{eg } u = x_3^2 x_1$$

or

$$u = x_{i_j}^{s_{i_j}} \quad \text{eg } u = x_2^5 \text{ with } s_2 = 5.$$

Collection is a method to obtain collected words.

Collection algorithm

Let $G = \text{Pc}\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ with power exponents $S = [s_1, \dots, s_n]$.

Consider a reduced word $w = x_{i_1}^{e_1} \cdots x_{i_r}^{e_r}$, that is, each $i_j \neq i_{j+1}$;
we can assume $e_j \in \mathbb{N}$, otherwise eliminate using power relations.

Collection algorithm

Input: polycyclic presentation $\text{Pc}\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ and word w in X

Output: a collected word representing w

Repeat the following until w has no minimal non-normal subword:

- choose minimal non-normal subword $u = x_{i_j}^{s_{i_j}}$ or $u = x_{i_j}^{e_j} x_{i_{j+1}}$;
- if $u = x_{i_j}^{s_{i_j}}$, then replace u by a suitable word in x_{i_j+1}, \dots, x_n ;
- if $u = x_{i_j}^{e_j} x_{i_{j+1}}$, then replace u by $x_{i_{j+1}} u'$ with u' word in x_{i_j+1}, \dots, x_n .

Theorem

The collection algorithm terminates.

Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to determine which of the subwords is replaced (making the process well-defined).

- **Collection to the left:** move all occurrences of x_1 to the beginning of the word; next, move all occurrences of x_2 left until adjacent to the x_1 's, etc.
- **Collection from the right:** the minimal non-normal subword nearest to the end of a word is selected.
- **Collection from the left:** the minimal non-normal subword nearest to the beginning of a word is selected.

Example: collection

Consider the group

$$D_{16} \cong \text{Pc}\langle x_1, x_2, x_3, x_4 \mid x_1^2 = 1, x_2^2 = x_3x_4, x_3^2 = x_4, x_4^2 = 1, x_2^{x_1} = x_2x_3, x_3^{x_1} = x_3x_4 \rangle.$$

Aim: collect the word $x_3x_2x_1$.

Since power exponents are all “2”, we only use generator indices:

“to the left”

$$\begin{aligned} \underline{321} &= \underline{31}23 \\ &= 13\underline{4}23 \\ &= 13\underline{2}43 \\ &= 1234\underline{3} \\ &= 123\underline{3}4 \\ &= 12\underline{3}34 \\ &= 124\underline{4} \\ &= 12 \end{aligned}$$

“from the right”

$$\begin{aligned} \underline{321} &= \underline{31}23 \\ &= 134\underline{2}3 \\ &= 132\underline{4}3 \\ &= 1324\underline{3} \\ &= 13234 \\ &= 123\underline{3}4 \\ &= 124\underline{4} \\ &= 12 \end{aligned}$$

“from the left”

$$\begin{aligned} \underline{321} &= 23\underline{1} \\ &= 21\underline{3}4 \\ &= 123\underline{3}4 \\ &= 124\underline{4} \\ &= 1244 \\ &= 12 \end{aligned}$$

(Newman & Niemeyer 2014)

Consistency checks

Theorem 7: consistency checks

$\text{Pc}\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ with power exps $[s_1, \dots, s_n]$ is consistent if and only if the normal forms of the following pairs of words coincide

$$x_k(x_j x_i) \text{ and } (x_k x_j) x_i \quad \text{for } 1 \leq i < j < k \leq n,$$

$$(x_j^{s_j}) x_i \text{ and } x_j^{s_j-1} (x_j x_i) \quad \text{for } 1 \leq i < j \leq n,$$

$$x_j(x_i^{s_i}) \text{ and } (x_j x_i) x_i^{s_i-1} \quad \text{for } 1 \leq i < j \leq n,$$

$$x_j(x_j^{s_j}) \text{ and } (x_j^{s_j}) x_j \quad \text{for } 1 \leq j \leq n,$$

where the subwords in brackets are to be collected first.

Example 8

If $G = \text{Pc}\langle x_1, x_2, x_3 \mid x_1^3 = x_3, x_2^2 = x_3, x_3^5 = 1, x_2^{x_1} = x_2 x_3 \rangle$, then

$$(x_2^2)x_1 = x_3x_1 = x_1x_3 \quad \text{and} \quad x_2(x_2x_1) = x_2x_1x_2x_3 = x_1x_2^2x_3^2 = x_1x_3^3.$$

Since $x_1x_3 = x_1x_3^3$ are both normal forms, the presentation is *not* consistent. Indeed, we deduce that $x_3 = 1$ in G .

Weighted power-commutator presentation

So far we have seen that every p -group can be defined via a consistent polycyclic presentation.

However, the algorithms we discuss later require a special type of polycyclic presentations, namely, so-called **weighted power-commutator presentations**.

Weighted power-commutator presentation

A **weighted power-commutator presentation** (wpcp) of a d -generator group G of order p^n is $G = \text{Pc}\langle x_1, \dots, x_n \mid \mathcal{R} \rangle$ such that $\{x_1, \dots, x_d\}$ is a minimal generating set of G and the relations are

$$x_j^p = \prod_{k=j+1}^n x_k^{\alpha(j,k)} \quad (1 \leq j \leq n, \ 0 \leq \alpha(j,k) < p)$$

$$[x_j, x_i] = \prod_{k=j+1}^n x_k^{\beta(i,j,k)} \quad (1 \leq i < j \leq n, \ 0 \leq \beta(i,j,k) < p)$$

note that every $G_i = \langle x_i, \dots, x_n \rangle$ is normal in G .

We also require that each $x_k \in \{x_{d+1}, \dots, x_n\}$ is the right side of some relation; choose one of these as the **definition** of x_k . The associated **weight function** is

$$\omega(x_k) = \begin{cases} 1 & (1 \leq k \leq d) \\ \omega(x_i) + 1 & (x_k = x_i^p \text{ def.}) \\ \omega(x_j) + \omega(x_i) & (x_k = [x_j, x_i] \text{ def.}) \end{cases}$$

Weighted power-commutator presentation

Example 9

Consider

$$G = \text{Pc}\langle \ x_1, \dots, x_5 \mid x_1^2 = x_4, x_2^2 = x_3, x_3^2 = x_5, x_4^2 = x_5, x_5^2 = 1 \\ [x_2, x_1] = x_3, [x_3, x_1] = x_5 \ \rangle.$$

Here $\{x_1, x_2\}$ is a minimal generating set of G , and we choose:

- x_3 has definition $[x_2, x_1]$ and weight 2;
- x_4 has definition x_1^2 and weight 2;
- x_5 has definition $[x_3, x_1]$ and weight 3.

Weighted power-commutator presentation

Why are (w)pcps useful?

- consistent pcps allow us to solve the *word problem* for the group: given two words, compute their normal forms, and compare them
- the additional structure of wpcp's allows more efficient algorithms: for example: consistency checks, p -group generation (later)
- a wpcp exhibits a *normal* series $G > G_1 > \dots > G_n = 1$: many algorithms work down this series and use induction: first solve problem for G/G_k , and then extend to solve the problem for G/G_{k+1} , and so eventually for $G = G/G_n$.
- every finite solvable group is an iterated extension of elementary abelian subgroups, so wpcps can be used more generally.

... how to compute wpcp's? \rightsquigarrow p -quotient algorithm (Part II)

Conclusion Part I

Things we have discussed in the first lecture:

- polycyclic groups, sequences, and series
- polycyclic generating sets (**pcgs**) and relative orders
- polycyclic presentations (**pcp**), power exponents, and consistency
- normal forms and collection
- consistency checks
- weighted polycyclic presentations (**wpcp**)

5 minute break...

Entertainment for the break ...

Look at the group

$$G = \langle g_1, g_2, g_3 \mid g_1^4 = g_3, \quad g_2^4 = g_3, \quad g_3^4 = 1, \quad g_2^{g_1} = g_2, \quad g_3^{g_1} = g_3^2, \quad g_3^{g_2} = g_3 \rangle.$$

- Show that $|G| \leq 4^3$.
- Show that this pcpc is not consistent.
- Find a consistent polycyclic presentation for G .

Solution

- The exponents of this presentation are $(4, 4, 4)$ and the normalised words in the generators are $\{g_1^{e_1} g_2^{e_2} g_3^{e_3} \mid 0 \leq e_1, e_2, e_3 \leq 3\}$, so we have $|G| \leq 4^3$.
- We have $(g_3 g_1)g_1^3 = g_1 g_3^2 g_1^3 = g_1 g_3 g_1 g_3^2 g_1^2 = g_1^2 g_3^4 g_1^2 = g_1^4 = g_3$ and $g_3(g_1^4) = g_3^2$ in G , so $g_3 = g_3^2$ and $g_3 = 1$ in G .
- Using that $g_3 = 1$, we have that $G = \langle g_1, g_2 \mid g_1^4, g_2^4, g_2^{g_1} = g_2 \rangle$; obviously, this presentation is consistent and describes a group isomorphic to $C_4 \times C_4$.

Note quite Magma... but GAP

Look at the group

$$\begin{aligned}
 G &= \langle g_1, g_2, g_3 \mid g_1^4 = g_3, \quad g_2^4 = g_3, \quad g_3^4 = 1, \quad g_2^{g_1} = g_2, \quad g_3^{g_1} = g_3^2, \quad g_3^{g_2} = g_3 \rangle \\
 &= \text{Pc}\langle g_1, g_2, g_3 \mid g_1^4 = g_3, \quad g_2^4 = g_3, \quad g_3^4 = 1, \quad g_3^{g_1} = g_3^2 \rangle \\
 &= \text{Pc}\langle g_1, g_2 \mid g_1^4, \quad g_2^4 \rangle.
 \end{aligned}$$

```

gap> F:=FreeGroup(["g1","g2","g3"]);
gap> AssignGeneratorVariables(F);
#I  Assigned the global variables [ g1, g2, g3 ]
gap> R:=[g1^4/g3, g2^4/g3, g3^4, Comm(g1,g2), g3^g1/g3^2,g3^g2/g3];
gap> G:=F/R;
<fp group on the generators [ g1, g2, g3 ]>
gap> Size(G);
16
gap> PcGroupFpGroup(G);
Error, the rewriting system must be confluent at /Volumes/daten/gap-4.11.0/lib/r
GroupByRws( col ) at /Volumes/daten/gap-4.11.0/lib/rwspcgrp.gi:1173 called from
PolycyclicFactorGroupByRelators( ElementsFamily( FamilyObj( fgrp ) ), Generators
) at /Volumes/daten/gap-4.11.0/lib/rwspcgrp.gi:1195 called from
PolycyclicFactorGroup( FreeGroupOffPfpGroup( F ), RelatorsOffPfpGroup( F )
) at /Volumes/daten/gap-4.11.0/lib/grppcfp.gi:23 called from
<function "PcGroupFpGroup">(<arguments>)
called from read-eval loop at *stdin*:6
you can 'quit;' to quit to outer loop, or
you can 'return;' to continue
brk> 

```

Note quite Magma... but GAP

Look at the group

$$\begin{aligned} G &= \langle g_1, g_2, g_3 \mid g_1^4 = g_3, \quad g_2^4 = g_3, \quad g_3^4 = 1, \quad g_2^{g_1} = g_2, \quad g_3^{g_1} = g_3^2, \quad g_3^{g_2} = g_3 \rangle \\ &= \text{Pc}\langle g_1, g_2, g_3 \mid g_1^4 = g_3, \quad g_2^4 = g_3, \quad g_3^4 = 1, \quad g_3^{g_1} = g_3^2 \rangle \\ &= \text{Pc}\langle g_1, g_2 \mid g_1^4, \quad g_2^4 \rangle. \end{aligned}$$

```
gap>
gap> coll:=FromTheLeftCollector(3);;
gap> SetRelativeOrder(coll,1,4);;
gap> SetRelativeOrder(coll,2,4);;
gap> SetRelativeOrder(coll,3,4);;
gap> SetConjugate(coll,3,1,[3,2]);
gap> SetConjugate(coll,3,2,[3,1]);
gap> UpdatePolycyclicCollector(coll);
gap> G:=PcpGroupByCollector(coll);
Inconsistency at 3 1^m
fail
gap>
gap> coll:=FromTheLeftCollector(2);;
gap> SetRelativeOrder(coll,1,4);;
gap> SetRelativeOrder(coll,2,4);;
gap> UpdatePolycyclicCollector(coll);
gap> G:=PcpGroupByCollector(coll);
Pcp-group with orders [ 4, 4 ]
```

Part II

p-quotient algorithm

Recall from Part I

weighted polycyclic presentation (wpcp):

- all relative orders p
- induced polycyclic series is chief series
- relations are partitioned into definitions and non-definitions

Example

Consider

$$G = \text{Pc}\langle x_1, \dots, x_5 \mid x_1^2 = x_4, x_2^2 = x_3, x_3^2 = x_5, x_4^2 = x_5, x_5^2 = 1, [x_2, x_1] = x_3, [x_3, x_1] = x_5 \rangle.$$

Here $\{x_1, x_2\}$ is a minimal generating set, and we choose $[x_2, x_1] = x_3$ and $x_1^2 = x_4$ and $[x_3, x_1] = x_5$ as definitions for x_3 , x_4 , and x_5 , respectively.

We now discuss: how to compute a wpcp?

Lower exponent- p series

Lower exponent p -series

The **lower exponent- p series** of a p -group G is

$$G = P_0(G) > P_1(G) > \dots > P_c(G) = 1$$

where each $P_{i+1}(G) = [G, P_i(G)]P_i(G)^p$; the **p -class** of G is c .

Important properties

- each $P_i(G)$ is characteristic in G ;
- $P_1(G) = [G, G]G^p = \Phi(G)$, and $G/P_1(G) \cong C_p^d$ with $d = \text{rank}(G)$;
- each section $P_i(G)/P_{i+1}(G)$ is G -central and elementary abelian;
- if G has p -class c , then its nilpotency class is at most c ;
- if θ is a homomorphism, then $\theta(P_i(G)) = P_i(\theta(G))$;
- G/N has p -class c if and only if $P_c(G) \leq N$;
- **weights:** any wpcp on $\{a_1, \dots, a_n\}$ satisfies $a_i \in P_{\omega(a_i)-1}(G) \setminus P_{\omega(a_i)}(G)$.

Lower exponent- p series

Example 10

Consider

$$G = D_{16} = \text{Pc}\langle a_1, a_2, a_3, a_4 \mid a_1^2 = 1, a_2^2 = a_3a_4, a_3^2 = a_4, a_4^2 = 1, [a_2, a_1] = a_3, [a_3, a_1] = a_4 \rangle.$$

Here we can read off:

- $P_0(G) = G$
- $P_1(G) = [G, G]G^2 = \langle a_3, a_4 \rangle$
- $P_2(G) = [G, P_1(G)]P_1(G)^2 = \langle a_4 \rangle$
- $P_3(G) = [G, P_2(G)]P_2(G)^2 = 1$

So G has 2-class 3.

Computing a wpcp of a p -group

p -quotient algorithm³

Input: a p -group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$

Output: a wpcp of G

Top-level outline:

- ① compute wpcp of $G/P_1(G)$ and epimorphism $G \rightarrow G/P_1(G)$, then iterate:
- ② given wpcp of $G/P_k(G)$ and epimorphism $G \rightarrow G/P_k(G)$,
compute wpcp of $G/P_{k+1}(G)$ and epimorphism $G \rightarrow G/P_{k+1}(G)$;

For the second step, we use the so-called p -cover of $G/P_k(G)$.

More general:

- A “ p -quotient algorithm” computes a consistent wpcp of the largest p -class k quotient (if it exists) of any finitely presented group.
- This quotient algorithm exemplifies the strategy of many other “quotient algorithms” for finitely presented groups.

³Historically: MacDonald (1974), Havas & Newman (1980), Newman & O'Brien (1996)

Computing a wpcp of $G/P_1(G)$

Note that $G/P_1(G)$ is elementary abelian.

Computing wpcp of $G/P_1(G)$

Input: a p -group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$

Output: a wpcp of $G/P_1(G)$ and epimorphism $\theta: G \rightarrow G/P_1(G)$

Approach:

- 1 abelianise relations, take exponents modulo p , write these in matrix M
- 2 compute solution space of M over $\text{GF}(p)$

Then:

- dimension d of solution space is rank of G , that is, $G/P_1(G) \cong C_p^d$
- generating set of $G/P_1(G)$ lifts to subset of given generators;
set $G/P_1(G) = \text{Pc}\langle a_1, \dots, a_d \mid a_1^p, \dots, a_d^p \rangle$ and define θ by

$$\theta(x_i) = a_i \quad \text{for } i = 1, \dots, d;$$

images of $\theta(x_j)$ with $j > d$ are determined accordingly.

Computing a wpcp of $G/P_1(G)$

Example 11

$G = \langle x_1, \dots, x_6 \mid x_6^{10}, x_1x_2x_3, x_2x_3x_4, \dots, x_4x_5x_6, x_5x_6x_1, x_1x_6x_2 \rangle$ and $p = 2$

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix, use row-echelonisation, and determine that solution space has dimension 2:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix};$$

Modulo $P_1(G)$, this shows that $x_1 = x_5x_6$, $x_2 = x_5$, $x_3 = x_6$, $x_4 = x_5x_6$, and **Burnside's Basis Theorem** implies that $G = \langle x_5, x_6 \rangle$. Lastly, set

$$G/P_1(G) = \text{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle,$$

and define $\theta: G \rightarrow G/P_1(G)$ via $x_5 \mapsto a_1$ and $x_6 \mapsto a_2$.

This determines $\theta(x_1) = a_1a_2$, $\theta(x_2) = a_1$, $\theta(x_3) = a_2$, and $\theta(x_4) = a_1a_2$.

Compute wpcp for $G/P_{k+1}(G)$ from that of $G/P_k(G)$

Given:

- wpcp of d -generator p -group $G/P_k(G)$ and epimorphism $\theta: G \rightarrow G/P_k(G)$

Want:

- wpcp of $G/P_{k+1}(G)$ and epimorphism $G \rightarrow G/P_{k+1}(G)$

In the following:

- $H = G/P_k(G)$ and $K = G/P_{k+1}(G)$ and $Z = P_k(G)/P_{k+1}(G)$
- note that Z is elementary abelian, K -central, and $K/Z \cong H$

Approach: Construct a *covering* H^* of H such that every d -generator p -group L with $L/M \cong H$ and $M \leq L$ central elementary abelian, is a quotient of H^* .

Thus, the next steps are:

- ① define p -cover H^* and determine a pcp of H^* ;
- ② make this presentation consistent;
- ③ construct K as quotient of H^* by enforcing defining relations of G .

p -covering group: definition

Theorem 12: p -covering group

Let H be a d -generator p -group; there is a d -generator p -group H^* with:

- $H^*/M \cong H$ for some central elementary abelian $M \trianglelefteq H^*$;
- if L is a d -generator p -group with $L/Y \cong H$ for some central elementary abelian $Y \leq L$, then L is a quotient of H^* .

The group H^* is unique up to isomorphism.

Proof.

Let $H = F/S$ with F free of rank d . Define $H^* = F/S^*$ with $S^* = [S, F]S^p$.

Now $M = S/S^*$ is central elem.-ab. p -group, so H^* is (finite) d -gen. p -group.

Let L be as in the theorem, and let $\psi: L \rightarrow H$ with kernel Y .

Let $\theta: F \rightarrow H$ with kernel S . By Gaschütz, θ factors through L , that is,

$\theta: F \xrightarrow{\varphi} L \xrightarrow{\psi} H$, and so $\varphi(S) \leq \ker \psi = Y$. This implies that $\varphi(S^*) = 1$.

In conclusion, φ induces surjective map from $H^* = F/S^*$ onto L .

If H^* and \tilde{H}^* are two such covers, then each is an image of the other.

p -covering group: presentation

Given: a wpcp $\text{Pc}\langle a_1, \dots, a_m \mid \mathcal{S} \rangle$ for $H = G/P_k(G) \cong F/S$
 and epimorphism $\theta: G \rightarrow H$ with $\theta(x_i) = a_i$ for $i = 1, \dots, d$

Want: a wpcp for $H^* \cong F/S^*$ where $S^* = [S, F]S^p$

Recall: each of a_{d+1}, \dots, a_m occurs as right hand side of one relation in \mathcal{S} ;
 write $\mathcal{S} = \mathcal{S}_{\text{def}} \cup \mathcal{S}_{\text{nondef}}$ with $\mathcal{S}_{\text{nondef}} = \{s_1, \dots, s_q\}$.

Theorem 13

Using the previous notation, $H^* = \text{Pc}\langle a_1, \dots, a_m, b_1, \dots, b_q \mid \mathcal{S}^* \rangle$, where

$$\mathcal{S}^* = \mathcal{S}_{\text{def}} \cup \{s_1 b_1, \dots, s_q b_q\} \cup \{b_1^p, \dots, b_q^p\}.$$

Note: $M = \langle b_1, \dots, b_q \rangle \trianglelefteq H^*$ is elementary abelian, central, and $H^*/M \cong H$.

(see Newman, Nickel, Niemeyer: “Descriptions of groups of prime-power order”, 1998)

In practice: fewer new generators are introduced.

p -covering group: example

Example 14

If $H = \text{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle \cong C_2 \times C_2$, then

$$H^* = \text{Pc}\langle a_1, a_2, b_1, b_2, b_3 \mid a_1^2 = b_1, a_2^2 = b_2, [a_1, a_2] = b_3, b_1^2 = b_2^2 = b_3^2 = 1 \rangle;$$

indeed, $H^* \cong (C_4 \times C_2) : C_4$, thus we have found a consistent wpcp!

Example 15

If $H = \text{Pc}\langle a_1, a_2, a_3 \mid a_1^2 = a_3^2 = 1, a_2^2 = a_3, [a_2, a_1] = a_3 \rangle \cong D_8$, then

$$H^* = \text{Pc}\langle a_1, a_2, a_3, b_1, \dots, b_5 \mid \mathcal{T} \cup \{b_1^2, \dots, b_5^2\} \rangle \quad \text{with}$$

$$\mathcal{T} = \{a_1^2 = b_1, a_2^2 = a_3 b_2, a_3^2 = b_3, [a_2, a_1] = a_3, [a_3, a_1] = b_4, [a_3, a_2] = b_5\};$$

this pcp has power exponents $[2, 2, 2, 2, 2, 2, 2, 2]$.

However, $H^* \cong (C_8 \times C_2) : C_4$, so presentation is **not consistent!**

Next step: make the presentation of H^* consistent.

p-covering group: consistency algorithm

By Theorem 7, the presentation $H^* = \text{Pc}\langle u_1, \dots, u_{m+q} \mid \mathcal{S}^* \rangle$ with $(u_1, \dots, u_{m+q}) = (a_1, \dots, a_m, b_1, \dots, b_q)$ is consistent if and only if

$$u_k(u_j u_i) = (u_k u_j) u_i \quad (1 \leq i < j < k \leq m+q)$$

$$(u_j^p) u_i = u_j^{p-1} (u_j u_i) \text{ and } u_j(u_i^p) = (u_j u_i) u_i^{p-1} \quad (1 \leq i < j \leq m+q)$$

$$u_j(u_j^p) = (u_j^p) u_j \quad (1 \leq j \leq m+q).$$

Consistency Algorithm⁴: find consistent presentation for H^*

- If each pair of words in the above “consistency checks” collects to the same normal word, then the presentation is consistent.
- Otherwise, the quotient of the two different words obtained from one of these conditions is formed and equated to the identity word: this gives a new relation which holds in the group.
- The pcp for H is consistent, so any new relation is an equation in the elementary abelian subgroup M generated by the new generators $\{b_1, \dots, b_q\}$, which implies that one of these generators is redundant.

⁴Historically: Wamsley (1974), Vaughan-Lee (1984)

p-covering group: consistency algorithm

By Theorem 7, the presentation $H^* = \text{Pc}\langle u_1, \dots, u_{m+q} \mid \mathcal{S}^* \rangle$ with $(u_1, \dots, u_{m+q}) = (a_1, \dots, a_m, b_1, \dots, b_q)$ is consistent if and only if

$$u_k(u_j u_i) = (u_k u_j) u_i \quad (1 \leq i < j < k \leq m+q)$$

$$(u_j^p) u_i = u_j^{p-1} (u_j u_i) \text{ and } u_j(u_i^p) = (u_j u_i) u_i^{p-1} \quad (1 \leq i < j \leq m+q)$$

$$u_j(u_j^p) = (u_j^p) u_j \quad (1 \leq j \leq m+q).$$

Example 16

Consider $G = \text{Pc}\langle u_1, u_2, u_3 \mid u_1^2 = u_2, u_2^2 = u_3, u_3^2 = 1, [u_2, u_1] = u_3 \rangle$.

The last test applied to u_1 yields

$$u_1^3 = (u_1^2)u_1 = u_2u_1 = u_1u_2u_3 \quad \text{and} \quad u_1^3 = u_1(u_1^2) = u_1u_2,$$

so $u_3 = 1$ in G , hence $G = \text{Pc}\langle u_1, u_2 \mid u_1^2 = u_2, u_2^2 = 1 \rangle \cong C_4$.

Construct K from cover H^* of H

So what have we got so far...

- p -group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$
- consistent wpcp of $H = G/P_k(G) = \text{Pc}\langle a_1, \dots, a_m \mid \mathcal{S} \rangle$
- epimorphism $\theta: G \rightarrow H$ with $\theta(x_i) = a_i$ for $i = 1, \dots, d$
- consistent wpcp of cover $H^* = \text{Pc}\langle a_1, \dots, a_m, b_1, \dots, b_q \mid \mathcal{S}^* \rangle$;
note that $H^*/M \cong H$ where $M = \langle b_1, \dots, b_q \rangle$

Want:

- consistent wpcp of $K = G/P_{k+1}(G)$ and epimorphism $G \rightarrow G/P_{k+1}(G)$

Know:

- $K/Z \cong H$ where $Z = P_k(G)/P_{k+1}(G)$ is elementary abelian, central
- K is quotient of H^*

Idea:

- construct K as quotient of H^* : add relations enforced by G to \mathcal{S}^*

Construct K from cover H^* of H

So what have we got so far...

- p -group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$
- consistent wpcp of $H = G/P_k(G) = \text{Pc}\langle a_1, \dots, a_m \mid \mathcal{S} \rangle$
- epimorphism $\theta: G \rightarrow H$ with $\theta(x_i) = a_i$ for $i = 1, \dots, d$
- consistent pcp of cover $H^* = \text{Pc}\langle a_1, \dots, a_m, b_1, \dots, b_q \mid \mathcal{S}^* \rangle$;
note that $H^*/M \cong H$ where $M = \langle b_1, \dots, b_q \rangle$

Enforcing relations of G :

- know that $K = G/P_{k+1}(G)$ is quotient of H^*
- lift $\theta: G \rightarrow H$ to $\hat{\theta}: F \rightarrow H^*$ such that $\hat{\theta}(x_i) = a_i$ for $i = 1, \dots, d$
- for every relator $r \in \mathcal{R}$ compute $n_r = \hat{\theta}(r) \in M$;
let L be the subgroup of M generated by all these n_r
- then $H^*/L \rightarrow K$ and $G \rightarrow H^*/L$ (von Dyck!) are surjective;
since K is the largest p -class $k+1$ quotient of G , we deduce $K = H^*/L$

Finally: find consistent wpcp of $K = H^*/L$ and get epimorphism $G \rightarrow K$

Big example: p -quotient algorithm in action

Let $G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$ and $p = 2$.

First round:

- compute $G/P_1(G)$ using abelianisation and row-echelonisation:
obtain $H = G/P_1(G) \cong \text{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$
and epimorphism $\theta: G \rightarrow H$, which is defined by $(x, y) \rightarrow (a_1, a_2)$.
- construct covering of H by adding new generators and tails:
 $H^* = \text{Pc}\langle a_1, \dots, a_5 \mid a_1^2 = a_3, a_2^2 = a_4, [a_2, a_1] = a_5, a_3^2 = a_4^2 = a_5^2 = 1 \rangle$
- the consistency algorithm shows that this presentation is consistent
- evaluate relations of G in H^* :
 - $1 = [[a_2, a_1], a_1] = \hat{\theta}([[y, x], x]) = \hat{\theta}(x^2) = a_1^2 = a_3$ forces $a_3 = 1$
 - $(xyx)^4, x^4, y^4$ impose no conditions
 - $a_1a_3 = \hat{\theta}((yx)^3y) = \hat{\theta}(x) = a_1$ also forces $a_3 = 1$
- construct $G/P_2(G)$ as $H^*/\langle a_3 \rangle$; after renaming a_4, a_5 :

$$G/P_2(G) \cong \text{Pc}\langle a_1, \dots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, a_3^2 = a_4^2 = 1 \rangle$$

and epimorphism $G \rightarrow G/P_2(G)$ defined by $(x, y) \rightarrow (a_1, a_2)$.

Big example: p -quotient algorithm in action

$$G/P_2(G) = \text{Pc}\langle a_1, \dots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, a_3^2 = a_4^2 = 1 \rangle$$

Second round:

- construct covering of $H = G/P_2(G)$ by adding new generators and tails:

$$H^* = \text{Pc}\langle a_1, \dots, a_{12} \mid a_1^2 = a_{12}, a_2^2 = a_4, a_3^2 = a_{11}, a_4^2 = a_{10},$$

$$[a_2, a_1] = a_3, [a_3, a_1] = a_5, [a_3, a_2] = a_6, [a_4, a_1] = a_7,$$

$$[a_4, a_2] = a_8, [a_4, a_3] = a_9, a_5^2 = \dots = a_{12}^2 = 1 \rangle$$
- the consistency algorithm shows only the following inconsistencies:
 - $a_2(a_2a_2) = a_2a_4$ and $(a_2a_2)a_2 = a_4a_2 = a_2a_4a_8 \implies a_8 = 1$
 - $a_2(a_1a_1) = a_2a_{12}$ and $(a_2a_1)a_1 = a_1a_2a_3a_1 = \dots = a_2a_5a_{11}a_{12} \implies a_5a_{11} = 1$
 - $a_2(a_2a_1) = a_1a_2^2a_3^2a_6 = a_1a_4a_6a_{11}$ and $(a_2a_2)a_1 = a_1a_4a_7 \implies a_6a_7a_{11} = 1$
 - $a_3(a_2a_2) = a_3a_4$ and $(a_3a_2)a_2 = a_2a_3a_6a_2 = a_2^2a_3a_6^2 = a_3a_4a_9 \implies a_9 = 1$
- removing redundant gens (and renaming), we obtain the consistent wpcp

$$H^* = \text{Pc}\langle a_1, \dots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, a_5^2 = \dots = a_8^2 = 1$$

$$[a_2, a_1] = a_3, [a_3, a_1] = a_7, [a_3, a_2] = a_5a_7, [a_4, a_1] = a_5 \rangle$$

Big example: p -quotient algorithm in action

Still second round:

- $G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$ and $p = 2$;
- epimorphism $\theta: G \rightarrow H$ onto $H = G/P_2(H)$ defined by $(x, y) \rightarrow (a_1, a_2)$
- $H^* = \text{Pc}\langle a_1, \dots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, a_5^2 = \dots = a_8^2 = 1, [a_2, a_1] = a_3, [a_3, a_1] = a_7, [a_3, a_2] = a_5a_7, [a_4, a_1] = a_5 \rangle$

Evaluate relations of G in H^* :

- $a_7 = [[a_2, a_1], a_1] = \hat{\theta}([[y, x], x]) = \hat{\theta}(x^2) = a_1^2 = a_8$ forces $a_7 = a_8$
- $(xyx)^4$ forces $a_6 = 1$; x^4 and y^4 impose no condition
- $\hat{\theta}((yx)^3y) = \hat{\theta}(x)$ forces $a_7a_8 = 1$

Now construct $G/P_3(G)$ as $H^*/\langle a_7a_8, a_6 \rangle$; after renaming:

$$G/P_3(G) = \text{Pc}\langle a_1, \dots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = 1, a_5^2 = a_6^2 = 1, [a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5a_6, [a_4, a_1] = a_5 \rangle$$

and the epimorphism $G \rightarrow G/P_3(G)$ is defined by $(x, y) \rightarrow (a_1, a_2)$.

Big example: p -quotient algorithm in action

In conclusion:

We started with

$$G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$$

and computed $G/P_3(G)$ as

$$\text{Pc}\langle a_1, \dots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = a_5^2 = a_6^2 = 1, \\ [a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5a_6, [a_4, a_1] = a_5 \rangle$$

with epimorphism $G \rightarrow G/P_3(G)$ defined by $(x, y) \rightarrow (a_1, a_2)$.

One can check that $|G| = |G/P_3(G)| = 2^6$, hence $G \cong G/P_3(G)$.

In particular, we have found a consistent wpcp for G .

In general: if our input group is a finite p -group, then the p -quotient algorithm constructs a consistent wpcp of that group.

Motivation and Application: Burnside problem

Burnside Problems

- **Generalised Burnside Problem** (GBP), 1902:
Is every finitely generated torsion group finite?
- **Burnside Problem** (BP), 1902:
Let $B(d, n)$ be the largest d -generator group with $g^n = 1$ for all $g \in G$.
Is this group finite? If so, what is its order?
- **Restricted Burnside Problem** (RBP), \sim 1940:
What is order of largest finite quotient $R(d, n)$ of $B(d, n)$, if it exists?

- Golod-Šafarevič (1964): answer to GBP is “no”;
(cf. Ol'shanskii's Tarski monster)
- Various authors: $B(d, n)$ is finite for $n = 2, 3, 4, 6$, but in no other cases with $d > 1$ is it known to be finite; is $B(2, 5)$ finite?
- Higman-Hall (1956): reduced (RBP) to prime-power n .
- Zel'manov (1990-91): $R(d, n)$ always exists! (**Fields medal 1994**)

Motivation and Application: Burnside problem

Burnside groups:

- $B(d, n) = \langle x_1, \dots, x_d \mid g^n = 1 \text{ for all words } g \text{ in } x_1, \dots, x_n \rangle$
- $R(d, n)$ largest finite quotient of $B(d, n)$; exists by Zel'manov

Recall: the p -quotient algorithm computes a consistent wpcp of the largest p -class k quotient (if it exists) of any finitely presented group.

Implementations of the p -quotient algorithm have been used to determine the order and compute pcps for various of these groups.

Group	Order	Authors
$B(3, 4)$	2^{69}	Bayes, Kautsky & Wamsley (1974)
$R(2, 5)$	5^{34}	Havas, Wall & Wamsley (1974)
$B(4, 4)$	2^{422}	Alford, Havas & Newman (1975)
$R(3, 5)$	5^{2282}	Vaughan-Lee (1988); Newman & O'Brien (1996)
$B(5, 4)$	2^{2728}	Newman & O'Brien (1996)
$R(2, 7)$	7^{20416}	O'Brien & Vaughan-Lee (2002)

Conclusion Part II

Things we have discussed in the second lecture:

- lower exponent- p series, p -class
- p -quotient algorithm
- p -cover H^* (definition, pcp, consistent pcp)
- application: Burnside problems

..... looking back:

- ① motivation: how to compute with groups, fp-groups, p -groups
- ② pc presentations: consistency, wpcps
- ③ p -quotient algorithm: p -cover, Burnside problems

Slides and recording (online soon):

users.monash.edu/~heikod/cpg2020

Please send me typos, errors, comments, or questions via e-mail:

heiko.dietrich@monash.edu

Thank you!

