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Motivation Hello! Why p-groups? Outline Resources

Welcome! And a bit about myself...

http://users.monash.edu/~heikod/icts2016

University of Braunschweig (2000-2009)

one of the four GAP centres

PhD (on p-groups with maximal class)

University of Auckland (2009-2011)

work with Magma

further research on p-groups

University of Trento (2011-2013)

more work with GAP

Monash University (2013–)

working in computational
algebra (Associate Professor)
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Motivation Hello! Why p-groups? Outline Resources

Welcome!

In this lecture series we discuss

Computational Aspects of Finite p-Groups.

A finite p-group is a group whose order is a positive power of the prime p.

Along the way: how to compute with (certain) finitely presented groups.

Convention

Throughout, p is a prime; unless stated otherwise, all groups and sets are finite.

Material

Slides and recordings uploaded at users.monash.edu/~heikod/cpg2020

Assumed knowledge

Some basic group theory...
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Motivation Hello! Why p-groups? Outline Resources

Why p-groups?
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Motivation Hello! Why p-groups? Outline Resources

There’s an abundant supply of p-groups

ord. #
1 1
2 1
3 1
4 2
5 1
6 2
7 1
8 5
9 2

10 2
11 1
12 5
13 1

ord. #
14 2
15 1
16 14
17 1
18 5
19 1
20 5
21 2
22 2
23 1
24 15
25 2
26 2

ord. #
27 5
28 4
29 1
30 4
31 1
32 51
33 1
34 2
35 1
36 14
37 1
38 2
39 2

ord. #
40 14
41 1
42 6
43 1
44 4
45 2
46 2
47 1
48 52
49 2
50 5
51 1
52 5

ord. #
53 1
54 15
55 2
56 13
57 2
58 2
59 1
60 13
61 1
62 2
63 4
64 267
65 1

there are p2n
3/27+O(n5/3) groups of order pn

proved and improved by Higman (1960), Sims (1965), Newman & Seeley (2007)

conjecture: “almost all” groups are p-groups (2-groups)
e.g. there are 49910529484 groups of order ≤ 2000, and 99% of them are 2-groups
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Motivation Hello! Why p-groups? Outline Resources

Important aspects of p-groups

Some comments on p-groups

Folklore conjecture: “almost all groups are p-groups”

Sylow Theorem: every group has p-groups as subgroups

Nilpotent groups: direct products of p-groups (different primes)

Solvable groups: iterated extensions of p-groups (different primes)

“Counterpart” to theory of finite simple groups

Challenge: classify p-groups...

Many “reductions” to p-groups exist: Restricted Burnside Problem,
cohomology, Schur multiplier, p-local subgroups, . . .

p-groups are fascinating – and accessible to computations! So let’s do it...
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Motivation Hello! Why p-groups? Outline Resources

Outline of this lecture series

The draft outline is at follows:

1 motivation
2 pc presentations Go there

3 p-quotient algorithm Go there

4 p-group generation Go there

5 classification by order Go there

6 isomorphisms Go there

7 automorphisms Go there

8 coclass theory Go there

9 other quotient algorithms Go there
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Motivation Hello! Why p-groups? Outline Resources

Generic resource

Handbook of computational group theory
D. Holt, B. Eick, E. A. O’Brien
Chapman & Hall/CRC, 2005
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Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection WPCP’s

Part I

pc presentations
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Computing with groups

Main theme: How to compute with (p)-groups?

Related to the question: How to describe a group for a computer?

1. Permutation groups: By Cayley’s Thm, every finite group is isomorphic to a
permutation group that can be specified concisely by generators, eg

D4 = 〈(1, 2, 3, 4), (1, 2)(3, 4)〉.

Computers can usually work efficiently with such descriptions.

If G is a subgroup of a permutation group, then powerful
algorithms exist to investigate questions such as

What is the order of G?

Is g ∈ Sym(n) an element of G?

What is the structure of G?

. . .
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Computing with groups

Convenient ways to describe a group for a computer:

2. Matrix groups: A group can also be described by its action on a linear
structure, such as vector spaces; this leads to matrix groups and representations.
For example, take G = 〈X〉 ≤ GL8(7) generated by

X =




2 5 5 0 1 5 5 4
4 3 0 2 5 3 5 3
6 1 0 5 4 4 1 1
5 2 2 3 5 3 2 4
2 2 6 1 2 3 1 0
6 2 4 4 4 2 0 5
3 2 5 1 3 5 3 5
2 1 6 3 5 4 1 6

 ,


4 3 2 0 6 0 3 2
4 2 0 2 3 5 0 2
0 4 2 4 3 2 4 1
1 0 5 6 3 2 6 1
5 5 1 6 6 3 6 2
4 3 1 0 2 6 5 1
4 1 6 6 5 5 1 4
4 6 5 2 5 6 5 0


 .

There are challenges, e.g. G has size
≈ 3.4·1053, but there has been great
progress in the Matrix Group Recog-
nition Project.
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Computing with groups

Convenient ways to describe a group for a computer:

3. Group presentations: A group can be defined by abstract generators and a
set of relators/relations, for example,

G = 〈r,m | r4,m2,

relation︷ ︸︸ ︷
rm = r3〉 = 〈r,m | r4,m2,

relator︷ ︸︸ ︷
m−1rmr−3〉.

giving rise to the formal concept of group presentations.

What can we say about G?

Well... rm = r3 means rm = mr3, so:

G = {mirj | i = 0, 1 and j = 0, 1, 2, 3},
so G has at most 8 elements;

D8 = 〈r,m〉 with r = (1, 2, 3, 4) and
m = (1, 3) satisfies the relations of G;
one can show that G ∼= D8.
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Group presentations

Finitely presented groups

Let F be the free group on a set X 6= ∅; let R be a set of words in X tX−1. If
R = RF is the normal closure of R in F , then

G = F/R

is the group defined by the presentation {X | R} with generators X and
relators R; we also write G = 〈X | R〉 and call 〈X | R〉 a presentation for G.

Informally, 〈X | R〉 is the “largest” group generated by X that satisfies R.

Such a description seems natural and is very concise. However, there are some
fundamental problems when computing with finitely presented groups:

What is size of G? Is G finite? Is G trivial?

Given a word w in the generators, is w = 1 in G?

What is G? . . .
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Finitely presented groups

As mentioned before, it is in general very difficult to obtain any immediate
information about the structure from a group presentation.

Example

n = 1, . . . , 7: |〈x, y | yxxy, yxyxny2nxn〉| = 1, 336, 1, 120, 1, 24360, 4080.

The group 〈a, b, c | ba = b2, cb = c2, ac = a2〉 is trivial (Higman’50),

but 〈a, b, c, d | ba = b2, cb = c2, dc = d2, ad = a2〉 is infinite.

The Baumslag group 〈a, b | b = [b, ba]〉 has b = 1 in every finite quotient.

Word problem (Dehn 1910): For u, v ∈ 〈S | R〉, decide whether u = v.

Theorem (Novikov 1955, Boone 1959)

There is a finite presentation G = 〈S | R〉 for which there is no algorithm that,
given two words u and v over S, decides whether u = v in G.
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Seems hopeless . . . so what
can one do with finitely pre-
sented groups?
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Homomorphisms: can do!

The following is a fundamental tool when working with fin. pres. groups:

Theorem (von Dyck’s Theorem)

Let G = 〈g1, . . . , gn | R〉 and let H = 〈h1, . . . , hn〉 be a group.
If every relator w(g1, . . . , gn) ∈ R satisfies

w(h1, . . . , hn) = 1 ∈ H,

then there is an epimorphism ϕ : G→ H with each ϕ(gi) = hi.

For a given group H, this can be used to find an epimorphism G→ H.

Example

Let G = 〈g, h | g2, h2, (gh)6〉 and H = Sym3. Is there an epimorphism G→ H?
Are there generators a, b ∈ H that satisfy a2 = b2 = (ab)6 = 1?
Yes, take a = (1, 2) and b = (2, 3).
Now g 7→ a and h 7→ b extends to an epim. G→ H, so H is a quotient of G.

Von Dyck’s result is the crux of quotient algorithms, which attempt to find
an epimorphism G→ H onto some nicer group H.
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Special types of presentations: can do!

Recall the example
G = 〈r,m | r4,m2, rm = r3〉.

We figured out that G = {mirj : i = 0, 1 and j = 0, 1, 2, 3} has |G| ≤ 8, and von
Dyck’s Theorem shows that there is an epimorphism ϕ : G→ D8 with

ϕ(m) = (1, 3) and ϕ(r) = (1, 2, 3, 4).

We can work well with G because it’s presentation has a special form.

Finitely presented groups are very useful:

group presentations are very compact definitions of groups;

many groups from algebraic topology arise in this form;

some efficient methods exist, eg coset enumeration (or quotient algorithms);

many classes of groups can be studied via group presentations.

Let’s discuss how to define p-groups by a useful presention!
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Background: p-groups.... Action!

Orbit-Stabiliser Theorem

If G acts on a set Ω, then |ωG| = |G|/|StabG(ω)| for all ω ∈ Ω.

This can be used to prove the following:

Actions

If a p-group G acts on Ω, then |Ω| ≡ |FixG(Ω)| mod p.

Center

If G is a p-group, then its center Z(G) = {g ∈ G | ∀h ∈ G : gh = g} is non-trivial.
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Background: central series

Center

If G is a p-group, then its center Z(G) = {g ∈ G | ∀h ∈ G : gh = g} is non-trivial.

This leads to the upper central series of a p-group G defined as

1 = ζ0(G) < ζ1(G) < . . . < ζc(G) = G

where ζ0(G) = 1 and each ζi+1(G) is defined by ζi+1(G)/ζi(G) = Z(G/ζi(G));
it is the fastest ascending series with central sections.

Related is the lower central series

G = γ1(G) > γ2(G) > . . . > γc+1(G) = 1

where γ1(G) = G and each γi+1(G) is defined as1 γi+1(G) = [G, γi(G)];
it is the fastest descending series with central sections.

The number c is the same for both series; the (nilpotency) class of G.

1As usual, [A,B] = 〈[a, b] | a ∈ A, b ∈ B〉 where [a, b] = a−1b−1ab = a−1ba
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Example: central series

Example 1

Let G = D16 = 〈r,m〉 with r = (1, 2, 3, 4, 5, 6, 7, 8), m = (1, 3)(4, 8)(5, 7).
Then G has class c = 3; its lower central series is

G > 〈r2〉 > 〈r4〉 > 1

and has sections2 G/γ2(G) ∼= C2 × C2, γ2(G)/γ3(G) = C2, and γ3(G) = C2.
We can refine this series so that all section are isomorphic to C2:

G > 〈r〉 > 〈r2〉 > 〈r4〉 > 1.

In general: every central series of a p-group G can be refined to a composition
series

G = G1 > G2 > . . . > Gn+1 = 1

where each Gi EG and Gi/Gi+1
∼= Cp; thus G is a polycyclic group.

2If n is a positive integer, then Cn denotes a cyclic group of size n.
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Polycyclic groups

Polycyclic group

The group G is polycyclic if it admits a polycyclic series, that is, a subgroup
chain G = G1 ≥ . . . ≥ Gn+1 = 1 in which each Gi+1 EGi and Gi/Gi+1 is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 2

The group G = 〈(2, 4, 3), (1, 3)(2, 4)〉 ∼= Alt(4) is polycyclic with series

G = G1 > G2 > G3 > G4 = 1

where G2 = 〈(1, 3)(2, 4), (1, 2)(3, 4)〉 = V4 E G1

G3 = 〈(1, 2)(3, 4)〉 E G2

Each Gi/Gi+1 is cyclic, so there is gi ∈ Gi \Gi+1 with Gi/Gi+1 = 〈giGi+1〉;
for example, g1 = (2, 4, 3), g2 = (1, 3)(2, 4), g3 = (1, 2)(3, 4).
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Polycyclic Sequence
Polycyclic sequence

Let G = G1 ≥ . . . ≥ Gn+1 = 1 be a polycyclic series.
A related polycyclic sequence X with relative orders R(X) is

X = [g1, . . . , gn] with R(X) = [r1, . . . , rn]

where each gi ∈ Gi \Gi+1 and ri = |giGi+1| = |Gi/Gi+1|.
A polycyclic series is also called pcgs (polycyclic generating set).

Important observation: each Gi = 〈gi, gi+1, . . . , gn〉 and |Gi| = ri · · · rn.

Example 3

Let G = D16 = 〈r,m〉 with r = (1, 2, 3, 4, 5, 6, 7, 8) and m = (1, 3)(4, 8)(5, 7).
Examples of pcgs:

X = [m, r] with R(X) = [2, 8]: G = 〈m, r〉 > 〈r〉 > 1;

X = [m, r, r4] with R(X) = [2, 4, 2]: G = 〈m, r, r4〉 > 〈r, r4〉 > 〈r4〉 > 1;

X = [m, r, r3, r2] with R(X) = [2, 1, 2, 4]; note that 〈r, r3, r2〉 = 〈r3, r2〉.
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Normal Forms

Lemma: Normal Form

Let X = [g1, . . . , gn] be a pcgs for G with R(X) = [r1, . . . , rn].
So G = G1 ≥ . . . ≥ Gn+1 = 1 with each Gi/Gi+1 = 〈giGi+1〉 of order ri.
If g ∈ G, then g = ge11 · · · genn for unique ei ∈ {0, . . . , ri − 1}.

We call g = ge11 · · · genn the normal form with respect to X.

Proof.
Let g ∈ G be given; we use induction on n.

If n = 1, then G = 〈g1〉 ∼= Cr1 and the lemma holds; now let n ≥ 2.

Since G/G2 = 〈g1G2〉 ∼= Cr1 , we can write gG2 = ge11 G2 for a unique
e1 ∈ {0, . . . , r1 − 1}, that is, g′ = g−e11 g ∈ G2.

X ′ = [g2, . . . , gn] is pcgs of G2 with R(X ′) = [r2, . . . , rn], so by induction
g′ = g−e11 g = ge22 · · · genn for unique ei ∈ {0, . . . , ri − 1}.
In conclusion, g = ge11 · · · genn as claimed.
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Example: Normal Forms

Example 4

A pcgs of G = Alt(4) with R(X) = [3, 2, 2] is X = [g1, g2, g3] where

g1 = (1, 2, 3), g2 = (1, 2)(3, 4), g3 = (1, 3)(2, 4).

This yields G = G1 > G2 > G3 > G4 = 1 with each Gi = 〈gi, . . . , g3〉.
Now consider g = (1, 2, 4) ∈ G.

First, we have gG2 = g21G2, so g′ = g−21 g = (1, 4)(2, 3) ∈ G2.

Second, g′G3 = g2G3, so g′′ = g−12 g′ = (1, 3)(2, 4) = g3 ∈ G3.

In conclusion, g = g21g
′ = g21g2g

′′ = g21g2g3.
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Polycyclic group to presentation
Let G be group with pcgs X = [g1, . . . , gn] and R(X) = [r1, . . . , rn];
as before let Gi = 〈gi, . . . , gn〉. There exist a∗,j , b∗,∗,j ∈ {0, 1, . . . , rj − 1} with:

grii = g
ai,i+1

i+1 · · · gai,nn (for all i, since Gi/Gi+1 = 〈giGi+1〉 ∼= Cri)

g
gj
i = g

bi,j,j+1

j+1 · · · gbi,j,nn (for all j < i, since gi ∈ Gj+1 EGj).

A polycyclic presentation (PCP) for G

Let H = 〈x1, . . . , xn | R〉 such R contains exactly the above relations:

xrii = x
ai,i+1

i+1 · · ·xai,nn and x
xj

i = x
bi,j,j+1

j+1 · · ·xbi,j,nn .

Then H ∼= G with pcgs X = [x1, . . . , xn] and R(X) = [r1, . . . , rn].

Proof.
Define ϕ : H → G by xi 7→ gi. The elements g1, . . . , gn satisfy the relations in R,
so ϕ is an epimorphism by von Dyck’s Theorem. By construction, H is
polycyclic with pcgs X and order at most |G|. Thus, ϕ is an isomorphism.
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Polycyclic group to presentation

Example 5

Let G = Alt(4) with pcgs X = [g1, g2, g3] and R(X) = [3, 2, 2] where

g1 = (1, 2, 3), g2 = (1, 2)(3, 4), g3 = (1, 3)(2, 4).

Then g31 = g22 = g23 = 1, gg12 = g2g3, gg13 = g2, gg23 = g3, and so

G ∼= 〈x1, x2, x3 | x31 = x22 = x23 = 1, xx1
2 = x2x3, x

x1
3 = x2, x

x2
3 = x3〉.

Theorem

Every pcgs determines a unique polycyclic presentation;
every polycyclic group can be defined by a polycyclic presentation.
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Pc presentation to group

Polycyclic presentation (pcp)

A presentation 〈x1, . . . , xn | R〉 is a polycyclic presentation with power
exponents s1, . . . , sn ∈ N if the only relations in R are

xsii = x
ai,i+1

i+1 · · ·xai,nn (all i, each ai,k ∈ {0, . . . , sk − 1)

x
xj

i = x
bi,j,j+1

j+1 · · ·xbi,j,nn (all j < i, each bi,j,k ∈ {0, . . . , sk − 1).

We write Pc〈x1, . . . , xn | R〉 and omit trivial commutator relations x
xj

i = xi.
The group defined by a pc-presentation is a pc-group.

Theorem

If G = Pc〈x1 . . . , xn | R〉 with power exps [s1, . . . , sn], then X = [x1, . . . , xn] is a
pcgs of G. If g ∈ G, then g = xe11 · · ·xenn for some ei ∈ {0, . . . , si − 1}.

Careful: (xiGi)
si = 1 only implies that ri = |Gi/Gi+1| divides si, not ri = si;

so it can happen that
R(X) = [r1, . . . , rn]︸ ︷︷ ︸

rel. orders

6= [s1, . . . , sn]︸ ︷︷ ︸
power exp.

.
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Consistent pc presentations
Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 6

Let G = Pc〈x1, x2, x3 | x31 = x3, x
2
2 = x3, x

5
3 = 1, xx1

2 = x2x3〉; this is a
pc-group with pcgs X = [x1, x2, x3] and power exponents S = [3, 2, 5].

We show R(X) = [3, 2, 1], so |G| = 6:

First, note that x102 = x53 = 1, so |x2| | 10.

Second, xx1
2 = x2x3 = x32 so x272 = x

(x3
1)

2 = xx3
2 = x

(x2
2)

2 = x2, and thus |x2| | 26.

This implies that 5 - |x2|, and so x3 = x22 and x53 = 1 force x3 = 1 in G.

Note that x01x
0
2x

0
3 = 1 = x01x

0
2x

1
3 are two normal forms (wrt power exponents).

Consistent pc presentation

A pc-presentation with power exponents S is consistent if and only if every group
element has a unique normal form with respect to S; otherwise it is inconsistent.

How to check consistency?  use collection and consistency checks!
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Collection
Let G = Pc〈x1, . . . , xn | R〉 with power exponents S = [s1, . . . , sn].

Consider a reduced word w = xe1i1 · · ·x
er
ir

, that is, each ij 6= ij+1;
we can assume ej ∈ N, otherwise eliminate using power relations.

Collection

Let w = xe1i1 · · ·x
er
ir

as above and use the previous notation:

the word w is collected if w is the normal form wrt S,
that is, i1 < . . . < ir and each ej ∈ {0, . . . , sij − 1};
if w is not collected, then it has a minimal non-normal subword of w, that
is, a subword u of the form

u = x
ej
ij
xij+1

with ij > ij+1, eg u = x23x1

or
u = x

sij
ij

eg u = x52 with s2 = 5.

Collection is a method to obtain collected words.
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Collection algorithm

Let G = Pc〈x1, . . . , xn | R〉 with power exponents S = [s1, . . . , sn].

Consider a reduced word w = xe1i1 · · ·x
er
ir

, that is, each ij 6= ij+1;
we can assume ej ∈ N, otherwise eliminate using power relations.

Collection algorithm
Input: polycyclic presentation Pc〈x1, . . . , xn | R〉 and word w in X
Output: a collected word representing w

Repeat the following until w has no minimal non-normal subword:

choose minimal non-normal subword u = x
sij
ij

or u = x
ej
ij
xij+1

;

if u = x
sij
ij

, then replace u by a suitable word in xij+1, . . . , xn;

if u = x
ej
ij
xij+1

, then replace u by xij+1
u′ with u′ word in xij+1, . . . , xn.

Theorem

The collection algorithm terminates.
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Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to
determine which of the subwords is replaced (making the process well-defined).

Collection to the left: move all occurrences of x1 to the beginning of the
word; next, move all occurrences of x2 left until adjacent to the x1’s, etc.

Collection from the right: the minimal non-normal subword nearest to the
end of a word is selected.

Collection from the left: the minimal non-normal subword nearest to the
beginning of a word is selected.
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Example: collection

Consider the group

D16
∼= Pc〈x1, x2, x3, x4 | x21 = 1, x22 = x3x4, x23 = x4, x24 = 1,

xx1
2 = x2x3, xx1

3 = x3x4〉.

Aim: collect the word x3x2x1.
Since power exponents are all “2”, we only use generator indices:

”to the left” “from the right” ”from the left”

321 = 3123

= 13423

= 13243

= 12343

= 12334

= 1244

= 12

321 = 3123

= 13423

= 13243

= 13234

= 12334

= 1244

= 12

321 = 231

= 2134

= 12334

= 1244

= 12

(Newman & Niemeyer 2014)
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Consistency checks
Theorem 7: consistency checks

Pc〈x1, . . . , xn | R〉 with power exps [s1, . . . , sn] is consistent if and only if the
normal forms of the following pairs of words coincide

xk(xjxi) and (xkxj)xi for 1 ≤ i < j < k ≤ n,

(x
sj
j )xi and x

sj−1
j (xjxi) for 1 ≤ i < j ≤ n,

xj(x
si
i ) and (xjxi)x

si−1
i for 1 ≤ i < j ≤ n,

xj(x
sj
j ) and (x

sj
j )xj for 1 ≤ j ≤ n,

where the subwords in brackets are to be collected first.

Example 8

If G = Pc〈x1, x2, x3 | x31 = x3, x
2
2 = x3, x

5
3 = 1, xx1

2 = x2x3〉, then

(x22)x1 = x3x1 = x1x3 and x2(x2x1) = x2x1x2x3 = x1x
2
2x

2
3 = x1x

3
3.

Since x1x3 = x1x
3
3 are both normal forms, the presentation is not consistent.

Indeed, we deduce that x3 = 1 in G.
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Weighted power-commutator presentation

So far we have seen that every p-group can be defined via a consistent polycyclic
presentation.

However, the algorithms we discuss later require a special type of polycyclic
presentations, namely, so-called weighted power-commutator presentations.
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Weighted power-commutator presentation

A weighted power-commutator presentation (wpcp) of a d-generator group G
of order pn is G = Pc〈x1, . . . , xn | R〉 such that {x1, . . . , xd} is a minimal
generating set G and the relations are

xpj =
∏n

k=j+1
x
α(j,k)
k (1 ≤ j ≤ n, 0 ≤ α(j, k) < p)

[xj , xi] =
∏n

k=j+1
x
β(i,j,k)
k (1 ≤ i < j ≤ n, 0 ≤ β(i, j, k) < p)

note that every Gi = 〈xi, . . . , xn〉 is normal in G.

We also require that each xk ∈ {xd+1, . . . , xn} is the right side of some relation;
choose one of these as the definition of xk. The associated weight function is

ω(xk) =


1 (1 ≤ k ≤ d)

ω(xi) + 1 (xk = xpi def.)

ω(xj) + ω(xi) (xk = [xj , xi] def.)
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Weighted power-commutator presentation

Example 9

Consider

G = Pc〈 x1, . . . , x5 | x21 = x4, x
2
2 = x3, x

2
3 = x5, x

2
4 = x5, x

2
5 = 1

[x2, x1] = x3, [x3, x1] = x5 〉.

Here {x1, x2} is a minimal generating set of G, and we choose:

x3 has definition [x2, x1] and weight 2;

x4 has definition x21 and weight 2;

x5 has definition [x3, x1] and weight 3.
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Weighted power-commutator presentation

Why are (w)pcps useful?

consistent pcps allow us to solve the word problem for the group:
given two words, compute their normal forms, and compare them

the additional structure of wpcp’s allows more efficient algorithms:
for example: consistency checks, p-group generation (later)

a wpcp exhibits a normal series G > G1 > . . . > Gn = 1:
many algorithms work down this series and use induction: first solve problem
for G/Gk, and then extend to solve the problem for G/Gk+1, and so
eventually for G = G/Gn.

every finite solvable group is an iterated extension of elementary abelian
subgroups, so wpcps can be used more generally.

... how to compute wpcp’s?  p-quotient algorithm (Part II)
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Conclusion Part I

Things we have discussed in the first lecture:

polycyclic groups, sequences, and series

polycyclic generating sets (pcgs) and relative orders

polycyclic presentations (pcp), power exponents, and consistency

normal forms and collection

consistency checks

weighted polycyclic presentations (wpcp)
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5 minute break...

Entertainment for the break . . .

Look at the group

G = 〈g1, g2, g3 | g41 = g3, g42 = g3, g43 = 1, gg12 = g2, gg13 = g23 , gg23 = g3〉.

Show that |G| ≤ 43.

Show that this pcpc is not consistent.

Find a consistent polycyclic presentation for G.

Solution

The exponents of this presentation are (4, 4, 4) and the normalised words in
the generators are {ge11 g

e2
2 g

e3
3 | 0 ≤ e1, e2, e3 ≤ 3}, so we have |G| ≤ 43.

We have (g3g1)g31 = g1g
2
3g

3
1 = g1g3g1g

2
3g

2
1 = g21g

4
3g

2
1 = g41 = g3 and

g3(g41) = g23 in G, so g3 = g23 and g3 = 1 in G.

Using that g3 = 1, we have that G = 〈g1, g2 | g41 , g42 , g
g1
2 = g2〉; obviously,

this presentation is consistent and describes a group isomorphic to C4 × C4.
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Note quite Magma... but GAP

Look at the group

G = 〈g1, g2, g3 | g41 = g3, g42 = g3, g43 = 1, gg12 = g2, gg13 = g23 , gg23 = g3〉
= Pc〈g1, g2, g3 | g41 = g3, g42 = g3, g43 = 1, gg13 = g23〉
= Pc〈g1, g2 | g41 , g42〉.
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Note quite Magma... but GAP

Look at the group

G = 〈g1, g2, g3 | g41 = g3, g42 = g3, g43 = 1, gg12 = g2, gg13 = g23 , gg23 = g3〉
= Pc〈g1, g2, g3 | g41 = g3, g42 = g3, g43 = 1, gg13 = g23〉
= Pc〈g1, g2 | g41 , g42〉.
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Part II

p-quotient algorithm
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Recall from Part I

weighted polycyclic presentation (wpcp):

all relative orders p

induced polycyclic series is chief series

relations are partitioned into definitions and non-definitions

Example

Consider

G = Pc〈 x1, . . . , x5 | x21 = x4, x
2
2 = x3, x

2
3 = x5, x

2
4 = x5, x

2
5 = 1

[x2, x1] = x3, [x3, x1] = x5 〉.

Here {x1, x2} is a minimal generating set, and we choose [x2, x1] = x3 and
x21 = x4 and [x3, x1] = x5 as definitions for x3, x4, and x5, respectively.

We now discuss: how to compute a wpcp?
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Lower exponent-p series

Lower exponent p-series

The lower exponent-p series of a p-group G is

G = P0(G) > P1(G) > . . . > Pc(G) = 1

where each Pi+1(G) = [G,Pi(G)]Pi(G)p; the p-class of G is c.

Important properties

each Pi(G) is characteristic in G;

P1(G) = [G,G]Gp = Φ(G), and G/P1(G) ∼= Cdp with d = rank(G);

each section Pi(G)/Pi+1(G) is G-central and elementary abelian;

if G has p-class c, then its nilpotency class is at most c;

if θ is a homomorphism, then θ(Pi(G)) = Pi(θ(G));

G/N has p-class c if and only if Pc(G) ≤ N ;

weights: any wpcp on {a1, . . . , an} satisfies ai ∈ Pω(ai)−1(G) \ Pω(ai)(G).
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Lower exponent-p series

Example 10

Consider

G = D16 = Pc〈a1, a2, a3, a4 | a21 = 1, a22 = a3a4, a
2
3 = a4, a

2
4 = 1,

[a2, a1] = a3, [a3, a1] = a4〉.

Here we can read off:

P0(G) = G

P1(G) = [G,G]G2 = 〈a3, a4〉
P2(G) = [G,P1(G)]P1(G)2 = 〈a4〉
P3(G) = [G,P2(G)]P2(G)2 = 1

So G has 2-class 3.
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Computing a wpcp of a p-group
p-quotient algorithm3

Input: a p-group G = F/R = 〈x1, . . . , xn | R〉
Output: a wpcp of G

Top-level outline:

1 compute wpcp of G/P1(G) and epimorphism G→ G/P1(G), then iterate:

2 given wpcp of G/Pk(G) and epimorphism G→ G/Pk(G),
compute wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G);

For the second step, we use the so-called p-cover of G/Pk(G).

More general:

A “p-quotient algorithm” computes a consistent wpcp of the largest p-class k
quotient (if it exists) of any finitely presented group.

This quotient algorithm exemplifies the strategy of many other “quotient
algorithms” for finitely presented groups.

3Historically: MacDonald (1974), Havas & Newman (1980), Newman & O’Brien (1996)
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Computing a wpcp of G/P1(G)
Note that G/P1(G) is elementary abelian.

Computing wpcp of G/P1(G)

Input: a p-group G = F/R = 〈x1, . . . , xn | R〉
Output: a wpcp of G/P1(G) and epimorphism θ : G→ G/P1(G)

Approach:

1 abelianise relations, take exponents modulo p, write these in matrix M

2 compute solution space of M over GF(p)

Then:

dimension d of solution space is rank of G, that is, G/P1(G) ∼= Cdp

generating set of G/P1(G) lifts to subset of given generators;

set G/P1(G) = Pc〈a1, . . . , ad | ap1, . . . , a
p
d〉 and define θ by

θ(xi) = ai for i = 1, . . . , d;

images of θ(xj) with j > d are determined accordingly.
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Computing a wpcp of G/P1(G)

Example 11

G = 〈x1, . . . , x6 | x106 , x1x2x3, x2x3x4, . . . , x4x5x6, x5x6x1, x1x6x2〉 and p = 2

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix,
use row-echelonisation, and determine that solution space has dimension 2: 1 1 1 0 0 0

0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1

  
 1 0 0 0 1 1

0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 ;

Modulo P1(G), this shows that x1 = x5x6, x2 = x5, x3 = x6, x4 = x5x6, and
Burnside’s Basis Theorem implies that G = 〈x5, x6〉. Lastly, set

G/P1(G) = Pc〈a1, a2 | a21 = a22 = 1〉,

and define θ : G→ G/P1(G) via x5 7→ a1 and x6 7→ a2.
This determines θ(x1) = a1a2, θ(x2) = a1, θ(x3) = a2, and θ(x4) = a1a2.
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Compute wpcp for G/Pk+1(G) from that of G/Pk(G)
Given:

wpcp of d-generator p-group G/Pk(G) and epimorphism θ : G→ G/Pk(G)

Want:

wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

In the following:

H = G/Pk(G) and K = G/Pk+1(G) and Z = Pk(G)/Pk+1(G)

note that Z is elementary abelian, K-central, and K/Z ∼= H

Approach: Construct a covering H∗ of H such that every d-generator p-group L
with L/M ∼= H and M ≤ L central elementary abelian, is a quotient of H∗.

Thus, the next steps are:

1 define p-cover H∗ and determine a pcp of H∗;

2 make this presentation consistent;

3 construct K as quotient of H∗ by enforcing defining relations of G.
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p-covering group: definition

Theorem 12: p-covering group

Let H be a d-generator p-group; there is a d-generator p-group H∗ with:

H∗/M ∼= H for some central elementary abelian M EH∗;

if L is a d-generator p-group with L/Y ∼= H for some central elementary
abelian Y ≤ L, then L is a quotient of H∗.

The group H∗ is unique up to isomorphism.

Proof.
Let H = F/S with F free of rank d. Define H∗ = F/S∗ with S∗ = [S, F ]Sp.

Now M = S/S∗ is central elem.-ab. p-group, so H∗ is (finite) d-gen. p-group.

Let L be as in the theorem, and let ψ : L→ H with kernel Y .
Let θ : F → H with kernel S. By Gaschütz, θ factors through L, that is,

θ : F
ϕ→ L

ψ→ H, and so ϕ(S) ≤ kerψ = Y . This implies that ϕ(S∗) = 1.
In conclusion, ϕ induces surjective map from H∗ = F/S∗ onto L.

If H∗ and H̃∗ are two such covers, then each is an image of the other.
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p-covering group: presentation

Given: a wpcp Pc〈a1, . . . , am | S〉 for H = G/Pk(G) ∼= F/S

Given:

and epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

Want: a wpcp for H∗ ∼= F/S∗ where S∗ = [S, F ]Sp

Recall: each of ad+1, . . . , am occurs as right hand side of one relation in S;
write S = Sdef ∪ Snondef with Snondef = {s1, . . . , sq}.

Theorem 13

Using the previous notation, H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉, where

S∗ = Sdef ∪ {s1b1, . . . , sqbq} ∪ {bp1, . . . , bpq}.

Note: M = 〈b1, . . . , bq〉EH∗ is elementary abelian, central, and H∗/M ∼= H.

(see Newman, Nickel, Niemeyer: “Descriptions of groups of prime-power order”, 1998)

In practice: fewer new generators are introduced.
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p-covering group: example
Example 14

If H = Pc〈a1, a2 | a21 = a22 = 1〉 ∼= C2 × C2, then

H∗ = Pc〈a1, a2, b1, b2, b3 | a21 = b1, a
2
2 = b2, [a1, a2] = b3, b

2
1 = b22 = b23 = 1〉;

indeed, H∗ ∼= (C4 × C2) : C4, thus we have found a consistent wpcp!

Example 15

If H = Pc〈a1, a2, a3 | a21 = a23 = 1, a22 = a3, [a2, a1] = a3〉 ∼= D8, then

H∗ = Pc〈a1, a2, a3, b1, . . . , b5 | T ∪ {b21, . . . , b25} 〉 with

T = {a21 = b1, a
2
2 = a3b2, a

2
3 = b3, [a2, a1] = a3, [a3, a1] = b4, [a3, a2] = b5};

this pcp has power exponents [2, 2, 2, 2, 2, 2, 2, 2].

However, H∗ ∼= (C8 × C2) : C4, so presentation is not consistent!

Next step: make the presentation of H∗ consistent.
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p-covering group: consistency algorithm
By Theorem 7, the presentation H∗ = Pc〈u1, . . . , um+q | S∗〉 with
(u1, . . . , um+q) = (a1, . . . , am, b1, . . . , bq) is consistent if and only if

uk(ujui) = (ukuj)ui (1 ≤ i < j < k ≤ m+ q)

(up
j )ui = up−1

j (ujui) and uj(u
p
i ) = (ujui)u

p−1
i (1 ≤ i < j ≤ m+ q)

uj(u
p
j ) = (up

j )uj (1 ≤ j ≤ m+ q).

Consistency Algorithm4: find consistent presentation for H∗

If each pair of words in the above “consistency checks” collects to the same
normal word, then the presentation is consistent.

Otherwise, the quotient of the two different words obtained from one of these
conditions is formed and equated to the identity word: this gives a new
relation which holds in the group.

The pcp for H is consistent, so any new relation is an equation in the
elementary abelian subgroup M generated by the new generators
{b1, . . . , bq}, which implies that one of these generators is redundant.

4Historically: Wamsley (1974), Vaughan-Lee (1984)
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p-covering group: consistency algorithm

By Theorem 7, the presentation H∗ = Pc〈u1, . . . , um+q | S∗〉 with
(u1, . . . , um+q) = (a1, . . . , am, b1, . . . , bq) is consistent if and only if

uk(ujui) = (ukuj)ui (1 ≤ i < j < k ≤ m+ q)

(up
j )ui = up−1

j (ujui) and uj(u
p
i ) = (ujui)u

p−1
i (1 ≤ i < j ≤ m+ q)

uj(u
p
j ) = (up

j )uj (1 ≤ j ≤ m+ q).

Example 16

Consider G = Pc〈u1, u2, u3 | u21 = u2, u
2
2 = u3, u

2
3 = 1, [u2, u1] = u3〉.

The last test applied to u1 yields

u31 = (u21)u1 = u2u1 = u1u2u3 and u31 = u1(u21) = u1u2,

so u3 = 1 in G, hence G = Pc〈u1, u2 | u21 = u2, u
2
2 = 1〉 ∼= C4.
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Construct K from cover H∗ of H

So what have we got so far...

p-group G = F/R = 〈x1, . . . , xn | R〉
consistent wpcp of H = G/Pk(G) = Pc〈a1, . . . , am | S〉
epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

consistent wpcp of cover H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉;
note that H∗/M ∼= H where M = 〈b1, . . . , bq〉

Want:

consistent wpcp of K = G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

Know:

K/Z ∼= H where Z = Pk(G)/Pk+1(G) is elementary abelian, central

K is quotient of H∗

Idea:

construct K as quotient of H∗: add relations enforced by G to S∗
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Construct K from cover H∗ of H
So what have we got so far...

p-group G = F/R = 〈x1, . . . , xn | R〉
consistent wpcp of H = G/Pk(G) = Pc〈a1, . . . , am | S〉
epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

consistent pcp of cover H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉;
note that H∗/M ∼= H where M = 〈b1, . . . , bq〉

Enforcing relations of G:

know that K = G/Pk+1(G) is quotient of H∗

lift θ : G→ H to θ̂ : F → H∗ such that θ̂(xi) = ai for i = 1, . . . , d

for every relator r ∈ R compute nr = θ̂(r) ∈M ;
let L be the subgroup of M generated by all these nr

then H∗/L→ K and G→ H∗/L (von Dyck!) are surjective;
since K is the largest p-class k + 1 quotient of G, we deduce K = H∗/L

Finally: find consistent wpcp of K = H∗/L and get epimorphism G→ K
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Big example: p-quotient algorithm in action
Let G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉 and p = 2.

First round:

compute G/P1(G) using abelianisation and row-echelonisation:

obtain H = G/P1(G) ∼= Pc〈a1, a2 | a21 = a22 = 1〉
and epimorphism θ : G→ H, which is defined by (x, y)→ (a1, a2).

construct covering of H by adding new generators and tails:

H∗ = Pc〈a1, . . . , a5 | a21 = a3, a
2
2 = a4, [a2, a1] = a5, a

2
3 = a24 = a25 = 1〉

the consistency algorithm shows that this presentation is consistent

evaluate relations of G in H∗:

1 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a3 forces a3 = 1

(xyx)4, x4, y4 impose no conditions

a1a3 = θ̂((yx)3y) = θ̂(x) = a1 also forces a3 = 1

construct G/P2(G) as H∗/〈a3〉; after renaming a4, a5:

G/P2(G) ∼= Pc〈a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a
2
3 = a24 = 1〉

and epimorphism G→ G/P2(G) defined by (x, y)→ (a1, a2).
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Big example: p-quotient algorithm in action
G/P2(G) = Pc〈a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a

2
3 = a24 = 1〉

Second round:
construct covering of H = G/P2(G) by adding new generators and tails:
H∗ = Pc〈a1, . . . , a12 | a21 = a12, a

2
2 = a4, a

2
3 = a11, a

2
4 = a10,

[a2, a1] = a3, [a3, a1] = a5, [a3, a2] = a6, [a4, a1] = a7,

[a4, a2] = a8, [a4, a3] = a9, a
2
5 = . . . = a212 = 1〉

the consistency algorithm shows only the following inconsistencies:

a2(a2a2) = a2a4 and (a2a2)a2 = a4a2 = a2a4a8 =⇒ a8 = 1a8 = 1a8 = 1

a2(a1a1) = a2a12 and (a2a1)a1 = a1a2a3a1 = . . . = a2a5a11a12 =⇒ a5a11 = 1a5a11 = 1a5a11 = 1

a2(a2a1) = a1a
2
2a

2
3a6 = a1a4a6a11 and (a2a2)a1 = a1a4a7 =⇒ a6a7a11 = 1a6a7a11 = 1a6a7a11 = 1

a3(a2a2) = a3a4 and (a3a2)a2 = a2a3a6a2 = a22a3a
2
6 = a3a4a9 =⇒ a9 = 1a9 = 1a9 = 1

removing redundant gens (and renaming), we obtain the consistent wpcp

H∗ = Pc〈a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5〉
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Big example: p-quotient algorithm in action

Still second round:

G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉 and p = 2;

epimorphism θ : G→ H onto H = G/P2(H) defined by (x, y)→ (a1, a2)

H∗ = Pc〈a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5〉

Evaluate relations of G in H∗:

a7 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a8 forces a7 = a8

(xyx)4 forces a6 = 1; x4 and y4 impose no condition

θ̂((yx)3y) = θ̂(x) forces a7a8 = 1

Now construct G/P3(G) as H∗/〈a7a8, a6〉; after renaming:

G/P3(G) = Pc〈a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = 1, a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5〉

and the epimorphism G→ G/P3(G) is defined by (x, y)→ (a1, a2).
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Big example: p-quotient algorithm in action

In conclusion:

We started with

G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉

and computed G/P3(G) as

Pc〈a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5〉

with epimorphism G→ G/P3(G) defined by (x, y)→ (a1, a2).

One can check that |G| = |G/P3(G)| = 26, hence G ∼= G/P3(G).

In particular, we have found a consistent wpcp for G.

In general: if our input group is a finite p-group, then the p-quotient algorithm
constructs a consistent wpcp of that group.
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Motivation and Application: Burnside problem

Burnside Problems

Generalised Burnside Problem (GBP), 1902:
Is every finitely generated torsion group finite?

Burnside Problem (BP), 1902:
Let B(d, n) be the largest d-generator group with gn = 1 for all g ∈ G.
Is this group finite? If so, what is its order?

Restricted Burnside Problem (RBP), ∼1940:
What is order of largest finite quotient R(d, n) of B(d, n), if it exists?

Golod-Šafarevič (1964): answer to GBP is “no”;
(cf. Ol’shanskii’s Tarski monster)

Various authors: B(d, n) is finite for n = 2, 3, 4, 6, but in no other cases with
d > 1 is it known to be finite; is B(2, 5) finite?

Higman-Hall (1956): reduced (RBP) to prime-power n.

Zel’manov (1990-91): R(d, n) always exists! (Fields medal 1994)
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Motivation and Application: Burnside problem

Burnside groups:

B(d, n) = 〈x1, . . . , xd | gn = 1 for all words g in x1, . . . , xn〉
R(d, n) largest finite quotient of B(d, n); exists by Zel’manov

Recall: the p-quotient algorithm computes a consistent wpcp of the largest
p-class k quotient (if it exists) of any finitely presented group.

Implementations of the p-quotient algorithm have been used to determine the
order and compute pcps for various of these groups.

Group Order Authors

B(3, 4) 269 Bayes, Kautsky & Wamsley (1974)

R(2, 5) 534 Havas, Wall & Wamsley (1974)

B(4, 4) 2422 Alford, Havas & Newman (1975)

R(3, 5) 52282 Vaughan-Lee (1988); Newman & O’Brien (1996)

B(5, 4) 22728 Newman & O’Brien (1996)

R(2, 7) 720416 O’Brien & Vaughan-Lee (2002)
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Conclusion Part II

Things we have discussed in the second lecture:

lower exponent-p series, p-class

p-quotient algorithm

p-cover H∗ (definition, pcp, consistent pcp)

application: Burnside problems
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. . . . . . looking back:

1 motivation: how to compute with groups, fp-groups, p-groups
2 pc presentations: consistency, wpcps
3 p-quotient algorithm: p-cover, Burnside problems

Slides and recording (online soon):
users.monash.edu/~heikod/cpg2020

Please send me typos, errors, comments, or questions via e-mail:
heiko.dietrich@monash.edu

Thank you!
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