Computational aspects of finite p-groups
Parts | and |l

Heiko Dietrich

School of Mathematics
Monash University, Australia

15th December 2020
Zoomville Melbourne-Chongging

(” MONASH
‘w University

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Motivation Hello! Why p-groups? i Resources

Welcome! And a bit about ‘-myself,'..

University of Braunschweig (2000-2009)
- one of the four GAP centres b
PhD (on p-groups with maximal class)

University of Auckland (2009-2011)
- work with Magma

+ further research on p-groups

University of Trento (2011-2013)
more work with GAP

Monash University (2013-)

+ working in computational
algebra (Associate Professor)

Heiko Dietrich (heiko.dietrich@nonash.edu) Computational aspects of finite p-groups z

http://users.monash.edu/~heikod/icts2016

Motivation Hello! Why p-groups? Outline Resources

Welcome! | 3

In this lecture series we discuss
Computational Aspects of Finite p-Groups.
A finite p-group is a group whose order is a positive power of the prime p.

Along the way: how to compute with (certain) finitely presented groups.

Convention
Throughout, p is a prime; unless stated otherwise, all groups and sets are finite.

Material
Slides and recordings uploaded at users.monash.edu/~heikod/cpg2020

Assumed knowledge
Some basic group theory... @

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

users.monash.edu/~heikod/cpg2020

Motivation Why p-groups? Outline Resources
~, — .

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Z ille Melb Ct i

Motivation Hello! Why p-groups? Outline Resources

There’s an abundant supplysef p-grodps

ord. | # ord. | # ord. | # ord. | # ord. | #
1 il 14 2 24 5 40 14 53 1
2 1 15 1 28 4 41 1 54 5
& 1 16 14 29 1 42 6 55 2
4 2 17 1 30 4] 1 56 13
5 | 1 18 | 5 310 a4 | 4 5782
6 | 2 19501 PR 4502 58 | 2
7 1 20 5 33 1 46 s 59 1
8 5 21 2 34 2 47 1 60 13
9 2 22 2 35 i 48 52 61 1
10 2 23 il 36 14 49 2 62 2
L Pl 24 | 15 37 "4l 5 | 5 63 | 4
12 5 25 » 38 s 51 1 64 267
13 1 26 > 39 & 52 2) 1;
there are p2"*/27+0(*"*) oroups of order p

proved and improved by Higman (1960), Sims (1965), Newman & Seeley (2007)

conjecture: “almost all" groups are p-groups (2-groups)
e.g. there are 49910529484 groups of order < 2000, and 99% of them are 2-groups

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Motivation Hello! Why p-groups? Outline Resources

Important aspects of p-groups

Some comments on p-groups

Folklore conjecture: “almost all groups are p-groups”

Sylow Theorem: every group has p-groups as subgroups

Nilpotent groups: direct products of p-groups (different primes)
Solvable groups: iterated extensions of p-groups (different primes)
“Counterpart” to theory of finite simple groups

Challenge: classify p-groups...

Many “reductions” to p-groups exist: Restricted Burnside Problem,
cohomology, Schur multiplier, p-local subgroups, ...

p-groups are fascinating — and accessible to computations! So let's do it...

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Motivation Hello! Why p-groups? Outline Resources

Outline of this lecture series

The draft outline is at follows:

L

2

motivation

pcC presentations * cother
p-quotient algorithm » cowere
p-group generation > Gotere
classification by order »co e
isomorphisms » co there
automorphisms > cothere
coclass theory »cother

other quotient algorithms » cothere

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Motivation Resources

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection
s =

Part |

pc presentations e

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Z ille Melb Ct i

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection

Computing with groups

Main theme: How to compute with (p)-groups?

Related to the question: How to describe a group for a compufer?

1. Permutation groups: By Cayley’'s Thm, every finite group'i's isomorphic to a
permutation group that can be specified concisely by generators, eg

D4 e <(]—7 23 354)7 (17 2)(‘?”4»

Computers can usually work efficiently with such descriptions.

If G is a subgroup of a permutation group, then powerful
algorithms exist to investigate questions such as

- What is the order of G?
Is g € Sym(n) an element of G?
- What is the structure of G?

Heiko Dietrich (heiko.dietrich@nonash.edu) Computational aspects of finite p-groups

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection WPCP’s

Convenient ways to describe a group for a computer:

2. Matrix groups: A group can also be described by its action on a linear
structure, such as vector spaces; this leads to matrix groups and representations.

For example, take G = (X) < GLg(7) generated by

25501554 43206032

13025353 42023502

61054411 04243241

Sl 52235324 10563261

= 22612310 |>| 55166362

62444205 43102651

32513535 41665514

21635416 46525650

There are challenges, e.g. G has size
~ 3.4-10°3, but there has been great
progress in the Matrix Group Recog-

nition Project. M MOXRS

E

ety
{cal Sock

n Ma m.« mat

America!

amber 702

sical Groups

Kantor

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups

Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection WPCP’s

Computing with groups
Convenient ways to describe a group for a computer:

3. Group presentations: A group can be defined by abstract generators and a
set of relators/relations, for example,
relation relator

G=(r,m|rtm? ™ =3 = (r,m |r 0 m rinr .

giving rise to the formal concept of group presentations.

What can we say about G? ;;;;M"'““"’m-m

Well... r™ = r3 means rm = mr3, so: W]mp’.%ﬂﬂo"

e m'r? |i=0,1and §=10,1,2,3}, P%ﬁso%’"'gnw
so G has at most 8 elements; 'ps

Dg = (r,m) with r = (1,2, 3,4) and
m = (1, 3) satisfies the relations of G;
one can show that G = Dsg.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection

Group presentations

Finitely presented groups
Let F be the free group on a set X # (); let R be a set of words in X LI X 1. If
R = RY is the normal closure of R in F, then

G=F/R

is the group defined by the presentation {X | R} with generators X and
relators R; we also write G = (X | R) and call (X | R) a presentation for G.

Informally, (X | R) is the “largest” group generated by X that satisfies R.

Such a description seems natural and is very concise. However, there are some
fundamental problems when computing with finitely presented groups:

- What is size of G? Is G finite? Is G trivial?
Given a word w in the generators, is w =1 in G?
- What is G? ...

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups

Finitely presented groups

As mentioned before, it is in general very difficult to obtain any lmmedlate
information about the structure from a group presentation.

Example
cn="1,...,7: [{x,y | y=z¥, yryzTy2t o™ | — 1536 IR A S
« The group {a,b,c | b% = b?,c® = c2,a® = a?) is trivial (Higman'50),
blit (a,b,c,d | b* =b%,¢" = ¢, deNde 7% BERIN=,
+ The Baumslag group (a,b | b = [b,b]) has b =1 in every finite quotient.

Word problem (Dehn 1910): For u,v € (S | R), decide whether u = v.

Theorem (Novikov 1955, Boone 1959)

There is a finite presentation G = (S | R) for which there is no algorithm that,
given two words u and v over S, decides whether u = v in G.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups

ILLINOIS JOURNAL OF MATHEMATICS
Volume 30, Number 2, Summer 1986

A SIMPLE PRESENTATION OF A GROUP
WITH UNSOLVABLE WORD PROBLEM

BY
DONALD J. COLLINS

In memoriam— William W. Boone

In my experience, many topologists suffer acute anxiety when it or
them that some fundamental group they are working with may havr
able word problem. One form of therapy I have known to be empl
say that groups with unsolvable word problems are monstrous, ¢
objects and that no-one could ever write one down in his lifetime
of this note is to deny even this succour by giving, in a modest amr
and in complete detail, a group presentation with unsolvable wor-
will be apparent, such an example exists, implicitly, in the lite
article simply makes the example explicit.

Seems hopeless ... so what
can one do with finitely pre-
sented groups?

Heiko Dietrich (heiko.dietrichenc . Computational aspects of finite p-groups

Collection

Zoomville Melbourne-Chonggir

Polycyclic Presentations Presentations Central Series Polycyclic Groups

Homomorphisms: can do!

The following is a fundamental tool when Worki\ng with fin. pres. groups:

Theorem (von Dyck’s Theorem)
Let G=(g1,.-.,9n | R) and let H = (hq, ..., hy) be a group.
If every relator w(gs,...,gn) € R satisfies

w(hi,... hn) =1€ H,

then there is an epimorphism ¢: G — H with each ¢(g;) = h;.

For a given group H, this can be used to find an epimorphism G — H.
Example

Let G = (g,h | g% h?% (gh)®) and H = Syms. Is there an epimorphism G — H?
Are there generators a,b € H that satisfy a? = b*> = (ab) = 17

Yes, take a = (1,2) and b = (2, 3).

Now g — a and h +— b extends to an epim. G — H, so H is a quotient of G.

Von Dyck’s result is the crux of quotient algorithms, which attempt to find
an epimorphism G — H onto some nicer group H.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series

Polycyclic Groups

Special types of presentations: can do!

Recall the example
G="{r,m|r,m ¥ =

We figured out that G = {mir7 :i=0,1 and j = 0,1,2,3} has |G| < 8, and von

Dyck’s Theorem shows that there is an epimorphism ¢: G — Dg with
o(m)=(1,3) and o(r)=(1,2,3,4).

We can work well with G because it's presentation has a special form.

Finitely presented groups are very useful:

+ group presentations are very compact definitions of groups;
many groups from algebraic topology arise in this form;
- some efficient methods exist, eg coset enumeration (or quotient algorithms);

many classes of groups can be studied via group presentations.

Let’s discuss how to define p-groups by a useful presention!

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Collection

Background: p-groups.... A@;ion!

Orbit-Stabiliser Theorem
If G acts on a set , then |w®| = |G|/|Stabg(w)]| for all w € Q.

This can be used to prove the following:

Actions
If a p-group G acts on (2, then |Q] = |Fixg(€2)| mod p.

Center
If G is a p-group, then its center Z(G) = {g € G | Vh € G: g" = g} is non-trivial.

Heiko Dietrich (heiko.dietrich@nonash.edu) Computational aspects of finite p-groups z

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection

Background: central series

Center
If G is a p-group, then its center Z(G) = {g € G | Vh € G: g" = g} is non-trivial.

This leads to the upper central series of a p-group G defined as

= Co(G) < Cl(G) EEd s << CC(G) ¢
where (o(G) = 1 and each (;11(G) is defined by (;+1(G)/G(G) = Z(G/G(G));
it is the fastest ascending series with central sections.

Related is the lower central series

G =m(G)>"(C) =g T
where v1(G) = G and each 7;41(G) is defined as! v;11(G) = [G,%(G)];
it is the fastest descending series with central sections.

The number ¢ is the same for both series; the (nilpotency) class of G.

LAs usual, [A, B] = {[a,b] | a € A,b € B) where [a,b] = a"'b"lab=a=1b®

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection

Example: central series

Example 1
Let G = D16 = (r,m) with r = (1,2,3,4,5,6,7,8), m = (1, 3)(4, 8)(5, 7).
Then G has class ¢ = 3; its lower central series is

G= (2

and has sections? G/72(G) = Cz x C2, 72(G)/v3(G) = Cs, and 73(G) = Co.
We can refine this series so that all section are isomorphic to Cs:

G > (r)> o e

In general: every central series of a p-group G can be refined to a composition
series

G=G1>G2>...>Gn+1=1
where each G; < G and G;/G,4+1 = Cp; thus G is a polycyclic group.

2If n is a positive integer, then C,, denotes a cyclic group of size n.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups

Polycyclic groups

Polycyclic group
The group G is polycyclic if it admits a polycyclic series, that is, a subgroup
chain G =Gy > ... > Gpy1 = 1 in which each G411 < G; and G;/G,41 is cyclic.

Polycyclic groups: solvable groups whose subgroups are finitely generated.

Example 2
The group G = ((2,4,3), (1,3)(2,4)) = Alt(4) is polycyclic with series

G=G1>Gy>G3>G,=1

where Gy = <(173)(274)7(172)(374)> =V, 4Gy
Cy = <(172)(374)> < Gs

Each G;/G;+1 is cyclic, so there is g; € G; \ Giy1 with G;/Giy1 = (9:Git1);
for example, g1 = (2,4,3), g2 = (1,3)(2,4), g3 = (1,2)(3,4).

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Polycyclic Presentations

Presentations Central Series Polycyclic Groups

Polycyclic Sequence
Polycyclic sequence

Let G=G1 > ... > Gy4+1 = 1 be a polycyclic series.
A related polycyclic sequence X with relative orders R(X) is

= g onntrsll Wit IR0 = 7y oo o 7]
where each g; € G; \ Giy1 and 7y = |9;Git1| = |Gi/Git1l|.

A polycyclic series is also called pcgs (polycyclic generating set).

Important observation: each G; = (gi, git1,.--,9n) and |G| = r; -« 1p.

Example 3

Let G = D16 = (r,m) with r = (1,2,3,4,5,6,7,8) and m = (1, 3)(4,8)(5, 7).
Examples of pcgs:

« X = [m,r] with R(X) = [2,8]: G = (m,r /ey ol
0 T =N r4] with R(X) = [2,4,2]: G'= (m, vl h >Nt NG
ey, 3, r?] withe2(X) =42, 1,2, 4 note thaiialia Sas i=8 T

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Polycyclic Presentations Presentations Central Series Polycyclic Groups

Normal Forms

Lemma: Normal Form

Let X = [g1,...,9n] be a pcgs for G with R(X) = [r1,...,7y].
SoG=G;>...>Gpy1 =1 with each G;/G; 11 = (g;Gi41) of order r;.
If g € G, then g = ¢{* - - - g~ for unique ¢; € {0,...,r; — 1}.

We call g = ¢g7* - - - g¢» the normal form with respect to X.
g gl 9n

Let g € G be given; we use induction on 7.
If n =1, then G = (g1) = C;, and the lemma holds; now let n > 2.

« Since G/G2 = (1G2) = C,.,, we can write ¢G5 = g7' G5 for a unique
e1 €{0,...,r1 — 1}, that'is, ¢’ = g; “'g € Ga.

« X' =lgg,...,gn] is pcgs of Gy with R(X') = [ra, ..., Tn], so by induction
g =g, g =g52---g° for unique e; € {0,...,7; —L}.

In conclusion, g = g{* - - - g&» as claimed.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups 4

Polycyclic Presentations

Presentations Central Series Polycyclic Groups

e

Example: Normal Forms

SET][R

A pcgs of G = Alt(4) with R(X) = [3,2,2] is X = [g1, g2, g3] where
h = (1u273)7 I = (172)(374)7 g = (173)(274)

This yields G = G; > Gy > G5 > G4 = 1 with each G; = (g5, ..., g3).

Now consider g = (1,2,4) € G.

First, we have gGo = g3Ga, so ¢’ = g7 29 = (1,4)(2,3) € Gb.

Second, ¢’'G3 = g2G3, 50 ¢ = g;'¢' = (1,3)(2,4) = g3 € Gs.

In conclusion, g = g%gl = 9%929” = 9%9293-

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Polycyclic Presentations Presentations Central Series Polycyclic Groups

Polycyclic group to presentation

Let G be group with pcgs X = [g1,...,9n] and R(X) = [r1, =", Pn)i
as before let G; = (g;, ..., gn). There exist @y j,bs«j € {0,1,...,7; — 1} with:

9 SR (for all i, since G;/Giy1 = (9:Gita) = Cr,)
Rl g?fl’jl‘”l e gee (for all j < i, since g; € Gj11 < Gj).

A polycyclic presentation (PCP) for G
Let H = (z1,...,2, | R) such R contains exactly the above relations:

Tl O P i g
xt =1 it and z;7 =z U™ .

Then H = G with pcgs X = [x1,...,2,] and R(X) = [r1,...,75].

Define p: H — G by x; — g;. The elements g, ..., g, satisfy the relations in R,
so is an epimorphism by von Dyck’s Theorem. By construction, H is
polycyclic with pcgs X and order at most |G|. Thus, ¢ is an isomorphism.

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Polycyclic Presentations Presentations Central Series

Polycyclic group to presentation

Example 5
Let G = Alt(4) with pcgs X = [g1, 92, 93] and R(X) = [3, 2, 2] where

g1 =(1,2,3), g2 =(1,2)(3, 4 g =EE s
Thenig? = g2 = g2 =1, g5 = gogs7 gin— a0G S NOEME TR

3 2 2 i3 iz Ay
(C SREA g || ao] = aiy = a — I, @5" = diyisy, dik" = diy ds> = 5.

Theorem

Every pcgs determines a unique polycyclic presentation;
every polycyclic group can be defined by a polycyclic presentation.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection

Pc presentation to group

Polycyclic presentation (pcp)

A presentation (x1,...,x, | R) is a polycyclic presentation with power
exponents s, ..., s, € N if the only relations in R are

53k dia @i, it1 @0 ;
Dit= p U (all 1, each a; & €0, NG N)
z; bi,j,i+1 05, . .
z;' = w4 e all § < eachib N REE T

We write Pc(z1,...,z, | R) and omit trivial commutator relations z;’ = x;.
The group defined by a pc-presentation is a pc-group.

Theorem
If G =Pc(zy...,z, | R) with power exps [s1,...,Sy], then X = [x1,...,2,] is a
pcgs of G. If g € G, then g = z{* - - - 2% for some e; € {0,...,s; — 1}.

Careful: (z;G;)* =1 only implies that r; = |G;/G;1| divides s;, not r; = s;;
so it can happen that
R(X) = [7”1,...,7"”] # [81,...,Sn].

rel. orders power exp.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Central Series

Polycyclic Presentations Presentations Polycyclic Gi

Consistent pc presentations

Note: Only power exponents (not relative orders) are visible in pc presentations.

Example 6

Let G = Pc(zy, 72,73 | 25 = 23, 25 — a5 & =G =
pc-group with pcgs X = [x1, 25, 23] and power exponents S = [3,2,5].
We show R(X) = [3,2,1], so |G| = 6:

10

EBlisiniote that 230 = x3 =1 o’ |z ISl

3 2
xr xr
Second, 23! = maw3 = 23 s0 227 = a{" = 2%3= 2{"2) = 2, and thus |zs| | 26.

This implies that 51 |z2|, and so z3 = 23 and 23 = 1 force 73 = 1 in G.

Note that 202929 = 1 = 29232} are two normal forms (wrt power exponents).

Consistent pc presentation
A pc-presentation with power exponents S is consistent if and only if every group
element has a unique normal form with respect to S; otherwise it is inconsistent.

How to check consistency? ~- use collection and consistency checks!

Nelb. Cch

Heiko Dietrich (heiko.dietrich@nonash.edu) Computational aspects of finite p-groups z

Polycyclic Presentations Presentations

Central Series Polycyclic Groups

Collection
Let G = Pc(zq,...,x, | R) with power exponents S = [s1,. .., Sp].

Consider a reduced word w =zt - - - 5", that is, each i; # i;11;
LBy : S

we can assume e; € N, otherwise eliminate using power relations.

Collection

Let w = x{' ---z;" as above and use the previous notation:

the word w is collected if w is the normal form wrt S,
ghat is, 41 < ... < 4 andieach e RERIITEEICERERITE

if w is not collected, then it has a minimal non-normal subword of w, that
is, a subword u of the form
F e L . i)
= xij Li;pq WwiIth 2 V41, g U = T3X1
or
g o0 pr R B
Wist iy, eg u = x5 with s5 = 5.

Collection is a method to obtain collected words.

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups

Collection algorithm

Let G = Pc(z1,...,x, | R) with power exponents S = [s1,. .., Sp].

Consider a reduced word w = " - - - 7", that is, each i; # i;41;
it ir
we can assume e; € N, otherwise eliminate using power relations.

Collection algorithm
Input: polycyclic presentation Pc(xy,..., 2, | R) and word w in X
Output: a collected word representing w

Repeat the following until w has no minimal non-normal subword:

.. Si; €;j
choose minimal non-normal subword u = x; * or u = x; i, ,;
if u= z;.°, then replace u by a suitable word in @;, 11,...,%x;

: n ; D i / ; j
if u= Ty Tijpns then replace u by z;, v with u’ word in z;,41,...,Zn.

Theorem
The collection algorithm terminates.

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection WPCP’s

Collection algorithm

If w contains more than one minimal non-normal subword, a rule is used to
determine which of the subwords is replaced (making the process well-defined).

Collection to the left: move all occurrences of z; to the beginning of the
word; next, move all occurrences of x5 left until adjacent to the z;'s, etc.

Collection from the right: the minimal non-normal subword nearest to the
end of a word is selected.

Collection from the left: the minimal non-normal subword nearest to the
beginning of a word is selected.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection WPCP’s
Example: collection
Consider the group

2 2 2 2
D1 = Pelxy, oo, 23,24 2f =1, 25 — @aoa e — R R

L] e Ly s
Tot = mors i

Aim: collect the word xz3zox1.
Since power exponents are all “2", we only use generator indices:

"to the left” “from the right" "from the left”
BARES 3123 321 I S22 31,
= 13423 = 13423 =, 2134
3243 13243 = g
D313 = 133 — A
= 12334 — 38 —)
s 244 = 2l
== 12 = il (Newman & Niemeyer 2014)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations

Central Series

Consistency checks
Theorem 7: consistency checks
Pc(zq,...,z, | R) with power exps [s1, ..., s,] is consistent if and only if the
normal forms of the following pairs of words coincide
zp(xjz;) and (.’Ek;l'j)xi for 188 <yl kisSin
(acjj):cl and :c (xj:cl) for1 <i<j<n,
zj(x;") and (xjxl)xsl_l for1 <i<j<n,
xj()and(o for 1 < j <m,

where the subwords in brackets are to be collected first.
Example 8
il 3 B 9 _ 5 _ w
If G = Pc{z1,x2, 23 | 25 = ©3, 5 = ©3, 3 = 1, 25! = Za23), then
Py o = E 5 2 3
(@5)z1 = 321 = 123 and Z2(T221) = TaTiTaTsi= T1T505 —L1TsE

Since w173 = z123 are both normal forms, the presentation is not consistent.

Indeed, we deduce that z3 = 1 in G.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melb

Polycyclic Presentations Presentations Central Series Polycyclic Groups

Weighted power-commutator present'at‘i;on

So far we have seen that every p-group can be defined via a consistent polycyclic
presentation.

However, the algorithms we discuss later require a special type of polycyclic
presentations, namely, so-called weighted power-commutator presentations.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations

Central Series Polycyclic Groups Collection

Weighted power-commutator presentation

A weighted power-commutator presentation (wpcp) of a d-generator group G
of order p™ is G = Pc(x1,..., 2y, | R) such that {z1,...,24} is a minimal
generating set G and the relations are

o 2 (3,k) g oo 9
=T, 5 (1<j<n, 0<al,k) <p)
L i B(4,5,k) ; 3 @0
ETRE | N (L<i<j<n, 0< By, p)
note that every G; = (z;,...,2y) is normal in G.
We also require that each x, € {x441,...,2,} is the right side of some relation;

choose one of these as the definition of x;. The associated weight function is

1 1<k<d)
w(zk) = wz;) +1 (z, =% dely
w(zj) +w(x:) (zr = [z, 2] def.)
Heiko Dietrich (heiko.dietrich@monash.edu)

Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series

Polycyclic Groups Collection

Weighted power-commutat:

Example 9
Consider

2 2 2 5 2
(E M alaacatds || 45 = din % = vy, di = i, d = i, dp = 1l
[z2, 21] = 23, [73,21] =25).
Here {x1, x5} is a minimal generating set of GG, and we choose:

« x3 has definition [x2,z1] and weight 2;
x4 has definition 22 and weight 2;

x5 has definition [z3, 1] and weight 3.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Z ille Melb Ct

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection

Weighted power-commutator presentation

Why are (w)pcps useful?

consistent pcps allow us to solve the word problem for the group:
given two words, compute their normal forms, and compare them

the additional structure of wpcp's allows more efficient algorithms:
for example: consistency checks, p-group generation (later)

a wpcp exhibits a normal series G > G; > ... > G, = 1:

many algorithms work down this series and use induction: first solve problem
for G/Gy, and then extend to solve the problem for G/Gj1, and so
eventually for G = G/G,,.

every finite solvable group is an iterated extension of elementary abelian
subgroups, so wpcps can be used more generally.

... how to compute wpcp’s? ~~ p-quotient algorithm (Part II)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series Polycyclic Groups Collection

Conclusion Part |

Things we have discussed in the first lecture:

polycyclic groups, sequences, and series

polycyclic generating sets (pcgs) and relative orders

polycyclic presentations (pcp), power exponents, and consistency
normal forms and collection

consistency checks

weighted polycyclic presentations (wpcp)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Polycyclic Presentations Presentations Central Series

Polycyclic Groups Collection

5 minute break...

Entertainment for the break ...
Look at the group

G=(g1,92:93 | gt=03 93=93, g =L g =g N =

Show that |G| < 43.
Show that this pcpc is not consistent.

Find a consistent polycyclic presentation for G.

Solution
The exponents of this presentation are (4,4,4) and the normalised words in
the generators are {g{*g5295° | 0 < eq, €2, e3 < 3}, so we have |G| < 43.

- We have (g3g1)g7 = 919397 = 9193019397 = 979397 = g = g3 and
g93(g1) = 93 in G, s0 g3 = g3 and g3 = 1 in G.

Using that g3 = 1, we have that G = (g1, 92 | 91, 93, 95" = g=2); obviously,
this presentation is consistent and describes a group isomorphic to Cy x Cy.

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Polycyclic Presentations WPCP’s

gap> A551gnGeneratorVar1ab1es(F) H

#I Assigned the global variables [g1, g2, g3]
[g1~4/g3, g2™4/g3, g3~4, Comm(gl,g2), g3"g1/g93"2,93"g2/931;;
F/R;

<fp group on the generators [g1, g2, g3 1>

gap> Size(G);

16

gap> PcGroupFpGroup(G);

Error, the rewriting system must be confluent at /Volumes/daten/gap-4.11.0/lib/
GroupByRws(col) at /Volumes/daten/gap-4.11.0/1ib/rwspcgrp.gi:1173 called from
PolycyclicFactorGroupByRelators(ElementsFamily(FamilyObj(fgrp)), Generators

) at /Volumes/daten/gap-4.11.0/1ib/rwspcgrp.gi:1195 called from
PolycyclicFactorGroup(FreeGroupOfFpGroup(F), RelatorsOfFpGroup(F)
) at /Volumes/daten/gap-4.11.0/1ib/grppcfp.gi:23 called from
<function "PcGroupFpGroup">(<arguments>)
called from read-eval loop at *stdink:6
it;' to quit to outer loop, or
' to continue

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of - Zoomville Melbourne-Chong

Polycyclic Presentations

gap>
gap> coll:=FromTheLeftCollector(3);;
gap> SetRelativeOrder(coll,1,4

gap> SetRelativeOrder(coll,2,4

gap> SetRelativeOrder(coll,3,4

gap> SetConjugate(coll,3, 2]

gap> SetConjugate(coll,3, 2 (BB
gap> UpdatePolycycthollector(cou) H
gap> G:=PcpGroupByCollector(coll);
Incons:.stency at 3 1™m

gap> SetRelativeOrder(coll,1,4

gap> SetRelativeOrder(coll,2,4);;

gap> UpdatePolycycthollector(cou) H
p: cpGroupByCollector(coll);

Pcp-group with orders [4, 4]

Heiko Dietrich (heiko.dietrich@monash.edu)

Computational aspects of

WPCP’s

Zoomville Melbourne-Chong

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem
~; e x

Part ||

p-quotient algorithm

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Z ille Melb Ct i

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Recall from Part |

weighted polycyclic presentation (wpcp):
all relative orders p
induced polycyclic series is chief series

relations are partitioned into definitions and non-definitions

Example
Consider

2 2 2 2 2
(E =Nt Gt A S e e = iy, ai = it 0P = i, 9o = 1l

[$27:I’.1] = I3, [1'3,‘%1] =I5 >

Here {x1,z2} is a minimal generating set, and we choose [z3,21] = 3 and

2?2 = x4 and [x3,21] = x5 as definitions for w3, 74, and 5, respectively.

We now discuss: how to compute a wpcp?

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem
g T T

Lower exponent-p series

Lower exponent p-series
The lower exponent-p series of a p-group G is

G:P()(G) >P1(G) Bl >PC(G) =1

where each P11 (G) = [G, P;(G)]P;(G)?; the p-class of G is c.

Important properties
- each P;(G) is characteristic in G;
- Pi(G) = [G,G]G? = ¥(G), and G/P,(G) = C4 with d = rank(G);
- each section P;(G)/P;+1(G) is G-central and elementary abelian;
- if G has p-class ¢, then its nilpotency class is at most ¢;
< if @ is a homomorphism, then §(P;(G)) = P;(6(G));
< G/N has p-class c if and only if P.(G) < N;
- weights: any wpcp on {ai,...,a,} satisfies a; € Pyq,)-1(G) \ Poa;)(G).

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm

p-Class Algorithm Covering Example Burnside Problem

Lower exponent-p series

Example 10
Consider

D 2 2 2
G = D1 = Pclai,an,as,a0 | ai =1, a5 = azas, a5 — a4, @z — 1,

[(12,(11] = as, [as,al] = a4).

Here we can read off:

- Py(G)=G

- Pi(G) = [G,GIG? = (a3, aq)
Py(G) = [G, PI(G)|P1(G)? = (as)
P3(G) =[G, P(G)|P(G)* =11
So G has 2-class 3.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Z ille Melb Ct

p-Quotient Algorithm p-Class Algorithm Covering Group Example

urnside Problem

Computing a wpcp of a p-greup
p-quotient algorithm?

Input: apgroup G=F/R={(x1,...,2, | R)
Output: a wpcp of G

Top-level outline:
1 compute wpcp of G/P;(G) and epimorphism G — G/P;(G), then iterate:

2 given wpcp of G/ P (G) and epimorphism G — G/ P, (G),
compute wpcp of G/P11(G) and epimorphism G — G/ Py+1(G);

For the second step, we use the so-called p-cover of G/P;(G).

More general:
« A “p-quotient algorithm” computes a consistent wpcp of the largest p-class k&
quotient (if it exists) of any finitely presented group.

+ This quotient algorithm exemplifies the strategy of many other “quotient
algorithms” for finitely presented groups.

3Historically: MacDonald (1974), Havas & Newman (1980), Newman & O' Brlen (1996)

Heiko Dietrich (heiko.dietrich@nonash.edu) Computational aspects of finite p-groups Z Melb.

o

p-Quotient Algorithm p-Class

Algorithm

Computing a wpcp of G /P (&)

Note that G/P;(G) is elementary abelian.

Covering Group ide Problem

Computing wpcp of G/P;(G)
Input: a pgroup G=F/R={(z1,...,2, | R}
Output: a wpcp of G/P;i(G) and epimorphism 6: G — G/P(G)
Approach:
1 abelianise relations, take exponents modulo p, write these in matrix M
2 compute solution space of M over GF(p)
Then:
+ dimension d of solution space is rank of G, that is, G/P1(G) = CJ
« generating set of G/P;(G) lifts to subset of given generators;

set G/P1(G) =Pc(ay,...,aq | a},...,al)) and define 6 by
Nz))=a; for i=1,...,d;

images of 6(z;) with j > d are determined accordingly.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

Algorithm side Problem

p-Quotient Algorithm p-Class

Covering Group

Computing a wpcp of G/P&). =
Example 11
G = {(z1,...,26 | £0, T122T3, ToB3Tn,- -, TadsTe: ToBoll; L1k)R INciE=D

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix,
use row-echelonisation, and determine that solution space has dimension 2:

=H=EOOOM
=HOOOM =
OO0 M-
OO =O
(=) =]
HeEEOOO
$
[elelelelalog
[elelelel o]
[elelel ol
[elal el
OOHOM =
OOHFOM

Modulo P;(G), this shows that z; = z5x, T2 = ©5, 3 = X, T4 = T5xe, and
Burnside’s Basis Theorem implies that G = (x5, z6). Lastly, set

G/BI@) ="Be ai, a> e =g =8l

and define 0: G — G/P;(G) via x5 — ay and z — as.
This determines 9(%‘1) = aiasz, 9(1‘2) = @i, 6(1‘3) = as, and 9(374) = a10a3.

Heiko Dietrich (heiko.dietrich@nonash.edu) Computational aspects of finite p-groups Z

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Compute wpcp for G/P.i1(Gfrom that of G/PA<G>

Given:

- wpcp of d-generator p-group G/P;(G) and epimorphism 6: G — G/Py(G)
Want:

« wpep of G/Py41(G) and epimorphism G — G/P;11(G)
In the following:

- H=G/Py(G) and K = G/P;11(G) and Z = Px(G)/Pr+1(G)

- note that Z is elementary abelian, K-central, and K/Z =< H

Approach: Construct a covering H* of H such that every d-generator p-group L
with L/M = H and M < L central elementary abelian, is a quotient of H*.

Thus, the next steps are:

1 define p-cover H* and determine a pcp of H*;
2 make this presentation consistent;

s construct K as quotient of H* by enforcing defining relations of G.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Algorithm Covering Group Example urnside Problem

p-covering group: definitionss

Theorem 12: p-covering group
Let H be a d-generator p-group; there is a d-generator p-group H* with:
« H*/M = H for some central elementary abelian M < H*;

- if L is a d-generator p-group with L/Y = H for some central elementary
abelian Y < L, then L is a quotient of H*.

The group H* is unique up to isomorphism.

Let H = F/S with F free of rank d. Define H* = F'/S* with S* = [S, F]SP.
Now M = S/S* is central elem.-ab. p-group, so H* is (finite) d-gen. p-group.

Let L be as in the theorem, and let ¢: L — H with kernel Y.
Let : FF — H with kernel S. By Gaschiitz, 6 factors through L, that is,

9: F % L% H, and so ¢(S) < kert) = Y. This implies that (S*) = 1.
In conclusion, ¢ induces surjective map from H* = F'/S* onto L.

If H* and H* are two such covers, then each is an image of the other.

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

p-covering group: presentation

Given: a wpcp Pclay,...,an | S) for H = G/P,(G) = F/S
and epimorphism 6: G — H with 0(z;) = a; fori=1,...,d

Want: a wpcp for H* = F//S* where S* = [S, F|SP
Recall: each of ag441,...,a, occurs as right hand side of one relation in S;
write S = Sgef U Snondef With Spondef = {81, A Sq}.

Theorem 13
Using the previous notation, H* = Pc(as, ..., am,b1,...,b, | S*), where

ST = Suer U511, s byi U O eyl
Note: M = (b1,...,by) < H* is elementary abelian, central, and H*/M = H.
(see Newman, Nickel, Niemeyer: “Descriptions of groups of prime-power order”, 1998)

In practice: fewer new generators are introduced.

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Problem

Algorithm Covering Group Example

p-covering group: example

Example 14
iF /87 = PC<(L1,(L2 ‘ a% - a% - 1> =~ Cy x (5, then

H* = Pcla1,as,by,ba,b3 | a2 = by, a5 — boyt [0] 020 G- =h(E

indeed, H* = (C4 x C3): Cy, thus we have found a consistent wpcp!

Example 15
If H = Pclay,as,as | a2 = a2 = 1,02 = a3, [a2,a1] = as) = Ds, then

[= PC<a1,a2,a3,b1,...,b5 |TU{b?,,b§}> with
T = {a} = b1,a3 = agby,a3 = bs, [az, a1] = a3, [as, a1] = by, [a3, as] = bs};
this pcp has power exponents [2,2,2,2,2,2,2,2].

However, H* = (Cs x Cq): Cy, so presentation is not consistent!

Next step: make the presentation of H* consistent.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups 4

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

p-covering group: consisteneéyalgorithim
By Theorem 7, the presentation H* = Pc(uq, ..., Um+q | S*) with

(U1, ...y Umtq) = (@1,...,Qm,b1,...,by) is consistent if and only if
uk(ujus) = (ukt;)u (1<i<j<k<m+q)
(uf)u; = u?'l(ujui) and uj(uf) = (ujus)ul™! (1< < -+ q)
uj(uf) = (uf)u; (B gen L).

Consistency Algorithm*: find consistent presentation for H*

If each pair of words in the above “consistency checks” collects to the same
normal word, then the presentation is consistent.

Otherwise, the quotient of the two different words obtained from one of these
conditions is formed and equated to the identity word: this gives a new
relation which holds in the group.

The pcp for H is consistent, so any new relation is an equation in the
elementary abelian subgroup M generated by the new generators
{b1,...,by}, which implies that one of these generators is redundant.

“Historically: Wamsley (1974), Vaughan-Lee (1984)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Problem

Algorithm

p-Quotient Algorithm p-Class Covering Group Example

p-covering group: consisteney algorith_m; -

By Theorem 7, the presentation H* = Pc(u1, ..., Un+q | S*) with
(w1y. .o, Umtq) = (@1, ..+, Qm,b1,...,by) is consistent if and only if

up(u;us) = (upu;)u; (1<i<j<k<m+q)

(ufYuis = uf " (uyus) and (S = (aiuEEEEE (1<i<j<m+gq)

uj(uf) = (uf)u; 1<j<m+q).
Example 16

Consider G = Pc(u1, uz, ug | u? = ug, u3 = uz, u3 =1, [ug, u1] = us).
The last test applied to u; yields
3 3 3 DN
uy = (uf)ur = uguy = uqugus and uy = ug(uy) = urue,

souz = 1in G, hence G = Pc{uy,us | u2 = ug, u3 = 1) =2 Cy.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups

p-Quotient Algorithm

p-Class Algorithm Covering Group

Construct K from cover FH et [l

Example urnside Problem

So what have we got so far...

s pgroup G = F/R = (@1, -, %pn | R)
« consistent wpcp of H = G/ P, (G) = Pclay,...,am | S)
« epimorphism 6: G — H with 6(z;) =a; fori=1,...,d

« consistent wpcp of cover H* = Pc(a, ..., am,b1,...,bq | S*);
note that H*/M = H where M = (by,...,by)

Want:

- consistent wpcp of K = G/Pj;4+1(G) and epimorphism G — G/Py11(G)
Know:

< K/Z = H where Z = P,(G)/Pi+1(G) is elementary abelian, central
- K is quotient of H*
Idea:

+ construct K as quotient of H*: add relations enforced by G to §*

Heiko Dietrich (heiko.dietrich@nonash.edu) Computational aspects of finite p-groups

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem
7 o

Construct K from cover H et [l

So what have we got so far...
« pgroup G=F/R={x1,...,2, | R)
- consistent wpcp of H = G/ P, (G) = Pclay,...,am | S)
« epimorphism 6: G — H with 6(z;) =a; fori=1,...,d

- consistent pcp of cover H* = Pc(ai,...,am,b1,...,bq | S);
note that H*/M = H where M = (by,...,by)

Enforcing relations of G:
< know that K = G/Py4+1(G) is quotient of H*
- lift 8: G — H to §: F — H* such that f(z;) = a; fori=1,...,d
- for every relator r € R compute n, = (r) € M;
let L be the subgroup of M generated by all these n,
 then H*/L — K and G — H*/L (von Dyck!) are surjective;
since K is the largest p-class k + 1 quotient of G, we deduce K = H*/L
Finally: find consistent wpcp of K = H*/L and get epimorphism G — K

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Big example: p-quotient algerithm infaction
Let G = {(z,y | [y, 2], 2] = 22, (zyz)?, =5, ¥, (g)Py — = ENcES 2
First round:
+ compute G/P;(QG) using abelianisation and row-echelonisation:
obtain H = G/P,(G) = Pclay, a3 | af = a5 = 1) ,
and epimorphism §: G — H, which is defined by (z,y) — (a1, a2).
+ construct covering of H by adding new generators and tails:
H* = Pclay,...,as | a7 = a3, 05 — a4, |69, Gl 05 G — SRS
- the consistency algorithm shows that this presentation is consistent
- evaluate relations of G in H*:
- 1= [[az,a1],a1] = 8([[y, z], z]) = §(z?) = a? = a3 forces az = 1
- (zyx)*,z*, y* impose no conditions
- aras = O((yz)®y) = 6(z) = a, also forces as = 1

- construct G/P>(G) as H*/{a3); after renaming a4, as:
EUE(G) = Pclaysm.. ;aq | 62 = 1,02 = ay, [02, Qoo s I

and epimorphism G — G/P»(G) defined by (z,y) — (a1, az).

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Big example: p-quotient algerithm infaction
G/Py(G) = Pcay,...,a4 | a3 =1,a5 = a4, a5, a1 — @3, @5 = e

Second round:
construct covering of H = G/P»(G) by adding new generators and tails:

e — PC<CL1,. 5o 0y | a% = a12,09 = Q4,03 = 0,11,0,421 = qlo,
laz, a1] = a3, [as, a1] = as, (a3, ag) = as, [a4, a1] = a7,
[aq, as] = as, a4, a3] = ag, a% = =

the consistency algorithm shows only the following inconsistencies:

az(agaz) = a20a4 and ((120,2)(12 = Q402 = a2a408 —> ag = 1
az(alal) = a2a12 and (agal)m = a1a20301 = ... = 0205011012 — A5Q11 = 1
= 2a3a6 = d = =1l
az(aza1) = a1a3a3a6 = a1asasaq1 and (aza2)ar = arasa7 — agarai1 =
faita b A 25 e
as(aza2) = azas and (azaz)as = aza3acaz = a3a3a5 = A3a4a9 N = 1

removing redundant gens (and renaming), we obtain the consistent wpcp
* 2 2 2 2 2 2
JERE"PC(a),...,05 | a] = ag, 05 = Q4,05 — Q75 Gl e NG TIEN

lag, a1] = as, [as, a1] = az, (a3, as] = asaz, (a4, a1] = as)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Big example: p-quotient algerithm in action
Still second round: :

- G = {2,y ly, 2], 2] = 22, (ayx)*, 2, v, (y2)’y = z) and p=2;

- epimorphism 0: G — H onto H = G/P»(H) defined by (z,y) — (a1, a2)

: H* =Pclay,...;as | 02 = ag,05 = a4, 05 aGr,t; ool S i)

lag, a1] = a3, [a3,a1] = a7, [a3, az] = asaz, [a4, 1] = as)

Evaluate relations of G in H*:

< a7 = [lag,a1],a1] = é([[y,:v],:v]) — é(x2) = a? = ag forces a7 = ag

(zyx)* forces ag = 1; 2* and y* impose no condition

- 0((yx)3y) = O(x) forces azag = 1
Now construct G/P5;(G) as H*/{azas, ag); after renaming:
G/ E(C) = Pclay,...,as | a2 = as,02 = 04,02 = ag,0- = 1, NN

[az,aﬂ = as, [a3,a1] = GQs, [a3,a2] = Q50g, [a4, al] = a5>

and the epimorphism G — G/P5(G) is defined by (z,y) — (a1, as).

Heiko Dietrich (heiko.dietrichemonash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class

Algorithm Covering Grou <am| side Problem
Big example: p-quotient algerithm i
In conclusion:

We started with

G = (z,y]| [y], 2] = 2*, (myz)i e N,

and computed G/P;(G) as
Pclay, ..., a6 | a% = @G, a§=a47 a% = ag, ai:ag :a%zl,
[az, a1] = a3, [a3,a1] = ae, [a3, az] = asas, [as, a1] = as)
with epimorphism G — G/ P3(G) defined by (z,y) — (a1, az).
One can check that |G| = |G/P3(G)| = 2%, hence G = G/P53(G).

In particular, we have found a consistent wpcp for G.

In general: if our input group is a finite p-group, then the p-quotient algorithm
constructs a consistent wpcp of that group.

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melb Ch

p-Quotient Algorithm p-Class Algorithm Covering Group Example rnside Problem

Motivation and Application®Burnside problem
Burnside Problems
- Generalised Burnside Problem (GBP), 1902:

Is every finitely generated torsion group finite?

+ Burnside Problem (BP), 1902:
Let B(d,n) be the largest d-generator group with g” = 1 for all g € G.
Is this group finite? If so, what is its order?

« Restricted Burnside Problem (RBP), ~1940:
What is order of largest finite quotient R(d,n) of B(d,n), if it exists?

- Golod-Safarevit (1964): answer to GBP is “no”;
(cf. Ol'shanskii's Tarski monster)

- Various authors: B(d,n) is finite for n = 2,3, 4,6, but in no other cases with
d > 1 is it known to be finite; is B(2,5) finite?

- Higman-Hall (1956): reduced (RBP) to prime-power n.
- Zel'manov (1990-91): R(d,n) always exists! (Fields medal 1994)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Motivation and Application: Burnside problém

Burnside groups:

< B(d,n) = (x1,...,24 | g7 =1 for all werds ghilia =N

« R(d,n) largest finite quotient of B(d, n); exists by Zel'manov
Recall: the p-quotient algorithm computes a consistent wpcp of the largest
p-class k quotient (if it exists) of any finitely presented group.

Implementations of the p-quotient algorithm have been used to determine the
order and compute pcps for various of these groups.

Group | Order | Authors

B(3,4) 269 Bayes, Kautsky & Wamsley (1974)

R(2,5) B Havas, Wall & Wamsley (1974)

B(4,4) 2422 | Alford, Havas & Newman (1975)

R(3,5) | 5%%% | Vaughan-Lee (1988); Newman & O’Brien (1996)
B(5,4) | 22" | Newman & O'Brien (1996)

R(2,7) | 7%°*'5 | O'Brien & Vaughan-Lee (2002)

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

Example Burnside Problem

Covering Group

p-Class Algorithm

p-Quotient Algorithm

Conclusion Part Il

Things we have discussed in the second lecture:

lower exponent-p series, p-class

p-quotient algorithm

p-cover H* (definition, pcp, consistent pcp)
application: Burnside problems

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

...... looking back:

1 motivation: how to compute with groups, fp-groups, p-groups
2 pc presentations: consistency, wpcps
3 p-quotient algorithm: p-cover, Burnside problems

Slides and recording (online soon):
users.monash.edu/~heikod/cpg2020

Please send me typos, errors, comments, or questions via e-mail:
heiko.dietrich@monash.edu

Thank you! s

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups Zoomville Melbourne-Chongging

users.monash.edu/~heikod/cpg2020
heiko.dietrich@monash.edu

	Motivation
	Hello!
	Why p-groups?
	Outline
	Resources

	Polycyclic Presentations
	Presentations
	Central Series
	Polycyclic Groups
	Collection
	WPCP's

	p-Quotient Algorithm
	p-Class
	Algorithm
	Covering Group
	Example
	Burnside Problem

