Go to Presentations
Go to p-Group Generation
Things we have discussed in the first lecture:

- polycyclic groups, sequences, and series
- polycyclic generating sets (pcgs) and relative orders
- polycyclic presentations (pcp), power exponents, and consistency
- normal forms and collection
- consistency checks
- weighted polycyclic presentations (wpccp)
Conclusion Lecture 1

weighted polycyclic presentation (wpcp):
- all relative orders p
- induced polycyclic series is chief series
- relations are partitioned into definitions and non-definitions

Example
Consider

$$G = Pc\langle \ x_1, \ldots, x_5 \ \mid \ x_1^2 = x_4, \ x_2^2 = x_3, \ x_3^2 = x_5, \ x_4^2 = x_5, \ x_5^2 = 1 \ [x_2, x_1] = x_3, \ [x_3, x_1] = x_5 \rangle.$$

Here $\{x_1, x_2\}$ is a minimal generating set, and we choose $[x_2, x_1] = x_3$ and $x_1^2 = x_4$ and $[x_3, x_1] = x_5$ as definitions for $x_3, x_4, \text{ and } x_5$, respectively.

Lecture 2: how to compute a wpcp?
Lower exponent \(p \) series

The lower exponent \(p \) series of a \(p \)-group \(G \) is

\[G = P_0(G) > P_1(G) > \ldots > P_c(G) = 1 \]

where each \(P_{i+1}(G) = [G, P_i(G)]P_i(G)^p \); the \(p \)-class of \(G \) is \(c \).

Important properties

- each \(P_i(G) \) is characteristic in \(G \);
- \(P_1(G) = [G, G]G^p = \Phi(G) \), and \(G/P_1(G) \cong C_p^d \) with \(d = \text{rank}(G) \);
- each section \(P_i(G)/P_{i+1}(G) \) is \(G \)-central and elementary abelian;
- if \(G \) has \(p \)-class \(c \), then its nilpotency class is at most \(c \);
- if \(\theta \) is a homomorphism, then \(\theta(P_i(G)) = P_i(\theta(G)) \);
- \(G/N \) has \(p \)-class \(c \) if and only if \(P_c(G) \leq N \);
- weights: any \(\text{wpcp on } \{a_1, \ldots, a_n\} \) satisfies \(a_i \in P_{\omega(a_i)}(G) \setminus P_{\omega(a_i)+1}(G) \).
Lower exponent-p series

Example 11
Consider

\[G = D_{16} = Pc\langle a_1, a_2, a_3, a_4 \rangle \mid a_1^2 = 1, a_2^2 = a_3a_4, a_3^2 = a_4, a_4^2 = 1, \]
\[[a_2, a_1] = a_3, [a_3, a_1] = a_4 \rangle. \]

Here we can read off:

- \(P_0(G) = G \)
- \(P_1(G) = [G, G]G^2 = \langle a_3, a_4 \rangle \)
- \(P_2(G) = [G, P_1(G)]P_1(G)^2 = \langle a_4 \rangle \)
- \(P_3(G) = [G, P_2(G)]P_2(G)^2 = 1 \)

So \(G \) has 2-class 3.
Computing a wpcp of a p-group

p-quotient algorithm

Input: a p-group $G = F/R = \langle x_1, \ldots, x_n \mid \mathcal{R} \rangle$

Output: a wpcp of G

Top-level outline:

1. compute wpcp of $G/P_1(G)$ and epimorphism $G \rightarrow G/P_1(G)$, then iterate:
2. given wpcp of $G/P_k(G)$ and epimorphism $G \rightarrow G/P_k(G)$, compute wpcp of $G/P_{k+1}(G)$ and epimorphism $G \rightarrow G/P_{k+1}(G)$;

For the second step, we use the so-called p-cover of $G/P_k(G)$.

More general: a “p-quotient algorithm” computes a consistent wpcp of the largest p-class k quotient (if it exists) of any finitely presented group.

Computing a wpcp of $G/P_1(G)$

Note that $G/P_1(G)$ is elementary abelian.

Computing wpcp of $G/P_1(G')$

Input: a p-group $G = F/R = \langle x_1, \ldots, x_n \mid \mathcal{R} \rangle$

Output: a wpcp of $G/P_1(G)$ and epimorphism $\theta: G \to G/P_1(G)$

Approach:

1. abelianise relations, take exponents modulo p, write these in matrix M
2. compute solution space of M over $GF(p)$

Then:

- dimension d of solution space is rank of G, that is, $G/P_1(G) \cong C_{p}^{d}$
- generating set of $G/P_1(G)$ lifts to subset of given generators;
 set $G/P_1(G) = Pc\langle a_1, \ldots, a_d \mid a_1^p = \ldots = a_d^p \rangle$ and define θ by

 $$\theta(x_i) = a_i \quad \text{for} \quad i = 1, \ldots, d;$$

 images of $\theta(x_j)$ with $j > d$ are determined accordingly.
Computing a wpcp of $G/P_1(G)$

Example 12

$G = \langle x_1, \ldots, x_6 \mid x_6^{10}, x_1x_2x_3, x_2x_3x_4, \ldots, x_4x_5x_6, x_5x_6x_1, x_1x_6x_2 \rangle$ and $p = 2$

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix, use row-echelonisation, and determine that solution space has dimension 2:

$$
\begin{pmatrix}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
1 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix};
$$

Modulo $P_1(G)$, this shows that $x_1 = x_5x_6$, $x_2 = x_5$, $x_3 = x_6$, $x_4 = x_5x_6$, and **Burnside’s Basis Theorem** implies that $G = \langle x_5, x_6 \rangle$. Lastly, set

$$
G/P_1(G) = Pc\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle,
$$

and define $\theta: G \rightarrow G/P_1(G)$ via $x_5 \mapsto a_1$ and $x_6 \mapsto a_2$.

This determines $\theta(x_1) = a_1a_2$, $\theta(x_2) = a_1$, $\theta(x_3) = a_2$, and $\theta(x_4) = a_1a_2$.
Compute \(w_{\text{pcp}} \) for \(G/P_{k+1}(G) \) from that of \(G/P_k(G) \)

Given:
- \(w_{\text{pcp}} \) of \(d \)-generator \(p \)-group \(G/P_k(G) \) and epimorphism \(\theta : G \rightarrow G/P_k(G) \)

Want:
- \(w_{\text{pcp}} \) of \(G/P_{k+1}(G) \) and epimorphism \(G \rightarrow G/P_{k+1}(G) \)

In the following:
- \(H = G/P_k(G) \) and \(K = G/P_{k+1}(G) \) and \(Z = P_k(G)/P_{k+1}(G) \)
- note that \(Z \) is elementary abelian, \(K \)-central, and \(K/Z \cong H \)

Approach: Construct a covering \(H^* \) of \(H \) such that every \(d \)-generator \(p \)-group \(L \) with \(L/M \cong H \) and \(M \leq L \) central elementary abelian, is a quotient of \(H^* \).

Thus, the next steps are:
1. define \(p \)-cover \(H^* \) and determine a \(\text{pcp} \) of \(H^* \);
2. make this presentation consistent;
3. construct \(K \) as quotient of \(H^* \) by enforcing defining relations of \(G \).
Theorem 13: p-covering group

Let H be a d-generator p-group; there is a d-generator p-group H^* with:

- $H^*/M \cong H$ for some central elementary abelian $M \leq H^*$;
- if L is a d-generator p-group with $L/Y \cong H$ for some central elementary abelian $Y \leq L$, then L is a quotient of H^*.

The group H^* is unique up to isomorphism.

Proof.

Now S/S^* is elementary abelian p-group, so H^* is (finite) d-generator p-group.

Let L be as in the theorem, and let $\psi: L \rightarrow H$ with kernel Y.

Let $\theta: F \rightarrow H$ with kernel S. Since F is free, θ factors through L, that is,

$\theta: F \xrightarrow{\varphi} L \xrightarrow{\psi} H$, and so $\varphi(S) \leq \ker \psi = Y$. This implies that $\varphi(S^*) = 1$.

In conclusion, φ induces surjective map from $H^* = F/S^*$ onto L.

If H^* and \tilde{H}^* are two such covers, then each is an image of the other.
p-covering group: presentation

Given: a wpcp $\text{Pc} \langle a_1, \ldots, a_m \mid S \rangle$ for $H = G/P_k(G) \cong F/S$ and epimorphism $\theta: G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \ldots, d$

Want: a wpcp for $H^* \cong F/S^*$ where $S^* = [S, F]S^p$.

Recall: each of a_{d+1}, \ldots, a_m occurs as right hand side of one relation in S; write $S = S_{\text{def}} \cup S_{\text{nondef}}$ with $S_{\text{nondef}} = \{s_1, \ldots, s_q\}$.

Theorem 14

Using the previous notation, $H^* = \text{Pc} \langle a_1, \ldots, a_m, b_1, \ldots, b_q \mid S^* \rangle$, where

$$S^* = S_{\text{def}} \cup \{s_1 b_1, \ldots, s_q b_q\} \cup \{b_1^p, \ldots, b_q^p\}.$$

Note: $M = \langle b_1, \ldots, b_q \rangle \leq H^*$ is elementary abelian, central, and $H^*/M \cong H$.

In practice: fewer new generators are introduced.
Example 15

If $H = \text{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle \cong C_2 \times C_2$, then

$$H^* = \text{Pc}\langle a_1, a_2, b_1, b_2, b_3 \mid a_1^2 = b_1, a_2^2 = b_2, [a_1, a_2] = b_3, b_1^2 = b_2^2 = b_3^2 = 1 \rangle;$$

indeed, $H^* \cong (C_4 \times C_2) : C_4$, thus we have found a consistent wpcp!

Example 16

If $H = \text{Pc}\langle a_1, a_2, a_3 \mid a_1^2 = a_3^2 = 1, a_2^2 = a_3, [a_2, a_1] = a_3 \rangle \cong D_8$, then

$$H^* = \text{Pc}\langle a_1, a_2, a_3, b_1, \ldots, b_5 \mid \mathcal{T} \cup \{b_1^2, \ldots, b_5^2\} \rangle$$

with

$$\mathcal{T} = \{a_1^2 = b_1, a_2^2 = a_3 b_2, a_3^2 = b_3, [a_2, a_1] = a_3, [a_3, a_1] = b_4, [a_3, a_2] = b_5\};$$

this pcp has power exponents $[2, 2, 2, 2, 2, 2, 2]$. However, $H^* \cong (C_8 \times C_2) : C_4$, so presentation is **not consistent**!

Next step: make the presentation of H^* consistent.
p-covering group: consistency algorithm

By Theorem 8, the presentation $H^* = PC\langle u_1, \ldots, u_{m+q} \mid S^* \rangle$ with $(u_1, \ldots, u_{m+q}) = (a_1, \ldots, a_m, b_1, \ldots, b_q)$ is consistent if and only if

$$u_k(u_j u_i) = (u_k u_j) u_i$$

$$u_j^p u_i = u_j^{p-1} (u_j u_i)$$ and $$u_j (u_i^p) = (u_j u_i) u_i^{p-1}$$

$$(1 \leq i < j < k \leq m + q)$$

$$(1 \leq i < j \leq m + q)$$

$$(1 \leq j \leq m + q).$$

Consistency Algorithm

4: find consistent presentation for H^*

- If each pair of words in the above “consistency checks” collects to the same normal word, then the presentation is consistent.

- Otherwise, the quotient of the two different words obtained from one of these conditions is formed and equated to the identity word: this gives a new relation which holds in the group.

- The pcp for H is consistent, so any new relation is an equation in the elementary abelian subgroup M generated by the new generators $\{b_1, \ldots, b_q\}$, which implies that one of these generators is redundant.

By Theorem 8, the presentation $H^* = \text{Pc}\langle u_1, \ldots, u_{m+q} \mid S^* \rangle$ with $(u_1, \ldots, u_{m+q}) = (a_1, \ldots, a_m, b_1, \ldots, b_q)$ is consistent if and only if

$$u_k(u_j u_i) = (u_k u_j) u_i \quad (1 \leq i < j < k \leq m + q)$$

$$(u_j^p) u_i = u_j^{p-1} (u_j u_i) \quad \text{and} \quad u_j (u_i^p) = (u_j u_i) u_i^{p-1} \quad (1 \leq i < j \leq m + q)$$

$$u_j (u_j^p) = (u_j^p) u_j \quad (1 \leq j \leq m + q).$$

Example 17

Consider $G = \text{Pc}\langle u_1, u_2, u_3 \mid u_1^2 = u_2, u_2^2 = u_3, u_3^2 = 1, [u_2, u_1] = u_3 \rangle$. The last test applied to u_1 yields

$$u_1^3 = (u_1^2) u_1 = u_2 u_1 = u_1 u_2 u_3 \quad \text{and} \quad u_1^3 = u_1 (u_1^2) = u_1 u_2,$$

so $u_3 = 1$ in G, hence $G = \text{Pc}\langle u_1, u_2 \mid u_1^2 = u_2, u_2^2 = 1 \rangle \cong C_4$.
Construct K from cover H^* of H

So what have we got so far...

- p-group $G = F/R = \langle x_1, \ldots, x_n \mid \mathcal{R} \rangle$
- consistent wpcf of $H = G/P_k(G) = \langle a_1, \ldots, a_m \mid S \rangle$
- epimorphism $\theta: G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \ldots, d$
- consistent wpcf of cover $H^* = \langle a_1, \ldots, a_m, b_1, \ldots, b_q \mid S^* \rangle$; note that $H^*/M \cong H$ where $M = \langle b_1, \ldots, b_q \rangle$

Want:
- consistent wpcf of $K = G/P_{k+1}(G)$ and epimorphism $G \to G/P_{k+1}(G)$

Know:
- $K/Z \cong H$ where $Z = P_k(G)/P_{k+1}(G)$ is elementary abelian, central
- K is quotient of H^*

Idea:
- construct K as quotient of H^*: add relations enforced by G to S^*

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016
Construct K from cover H^* of H

So what have we got so far...

- p-group $G = F/R = \langle x_1, \ldots, x_n \mid R \rangle$
- consistent wpcp of $H = G/P_k(G) = \Pc \langle a_1, \ldots, a_m \mid S \rangle$
- epimorphism $\theta: G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \ldots, d$
- consistent pcp of cover $H^* = \Pc \langle a_1, \ldots, a_m, b_1, \ldots, b_q \mid S^* \rangle$; note that $H^*/M \cong H$ where $M = \langle b_1, \ldots, b_q \rangle$

Enforcing relations of G:

- know that $K = G/P_{k+1}(G)$ is quotient of H^*
- lift $\theta: G \to H$ to $\hat{\theta}: F \to H^*$ such that $\hat{\theta}(x_i) = a_i$ for $i = 1, \ldots, d$
- for every relator $r \in R$ compute $n_r = \hat{\theta}(r) \in M$; let L be the subgroup of M generated by all these n_r
- by von Dyck’s Theorem $H^*/L \to K$ and $G \to H^*/L$ are surjective; since K is the largest p-class $k + 1$ quotient of G, we deduce $K = H^*/L$

Finally: find consistent wpcp of $K = H^*/L$ and get epimorphism $G \to K$
Big example: p-quotient algorithm in action

Let $G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$ and $p = 2$.

First round:

- compute $G/P_1(G)$ using abelianisation and row-echelonisation:

 obtain $H = G/P_1(G) \cong P\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$

 and epimorphism $\theta: G \rightarrow H$, which is defined by $(x, y) \rightarrow (a_1, a_2)$.

- construct covering of H by adding new generators and tails:

 $H^* = P\langle a_1, \ldots, a_5 \mid a_1^2 = a_3, a_2^2 = a_4, [a_2, a_1] = a_5, a_3^2 = a_4^2 = a_5^2 = 1 \rangle$

- the consistency algorithm shows that this presentation is consistent

- evaluate relations of G in H^*:

 \begin{itemize}
 \item $1 = [[a_2, a_1], a_1] = \hat{\theta}([[y, x], x]) = \hat{\theta}(x^2) = a_1^2 = a_3$ forces $a_3 = 1$
 \item $(xyx)^4, x^4, y^4$ impose no conditions
 \item $a_1a_3 = \hat{\theta}((yx)^3y) = \hat{\theta}(x) = a_1$ also forces $a_3 = 1$
 \end{itemize}

- construct $G/P_2(G)$ as $H^*/\langle a_3 \rangle$; after renaming a_4, a_5:

 $G/P_2(G) \cong P\langle a_1, \ldots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, a_3^2 = a_4^2 = 1 \rangle$

 and epimorphism $G \rightarrow G/P_2(G)$ defined by $(x, y) \rightarrow (a_1, a_2)$.
Big example: p-quotient algorithm in action

\[G/P_2(G) = \text{Pc}\langle a_1, \ldots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, a_3^2 = a_4^2 = 1 \rangle \]

Second round:

- construct covering of \(H = G/P_2(G) \) by adding new generators and tails:

 \[H^* = \text{Pc}\langle a_1, \ldots, a_12 \mid a_1^2 = a_{12}, a_2^2 = a_4, a_3^2 = a_{11}, a_4^2 = a_{10}, [a_2, a_1] = a_3, [a_3, a_1] = a_5, [a_3, a_2] = a_6, [a_4, a_1] = a_7, [a_4, a_2] = a_8, [a_4, a_3] = a_9, a_5^2 = \ldots = a_{12}^2 = 1 \rangle \]

- the consistency algorithm shows only the following inconsistencies:

 - \(a_2(a_2a_2) = a_2a_4 \) and \((a_2a_2) a_2 = a_4 a_2 = a_2a_4a_8 \) \(\implies a_8 = 1 \)
 - \(a_2(a_1a_1) = a_2a_{12} \) and \((a_2a_1) a_1 = a_1a_2a_3a_1 = \ldots = a_2a_5a_{11}a_{12} \) \(\implies a_5a_{11} = 1 \)
 - \(a_2(a_2a_1) = a_1a_2^2a_3^2a_6 = a_1a_4a_6a_{11} \) and \((a_2a_2) a_1 = a_1a_4a_7 \) \(\implies a_6a_7a_{11} = 1 \)
 - \(a_3(a_2a_2) = a_3a_4 \) and \((a_3a_2) a_2 = a_2a_3a_6a_2 = a_2^2a_3a_6a_2 = a_3a_4a_9 \) \(\implies a_9 = 1 \)

- removing redundant gens (and renaming), we obtain the consistent wpcp

\[H^* = \text{Pc}\langle a_1, \ldots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, a_5^2 = \ldots = a_8^2 = 1 \]

\[[a_2, a_1] = a_3, [a_3, a_1] = a_7, [a_3, a_2] = a_5a_7, [a_4, a_1] = a_5 \]
Big example: \(p \)-quotient algorithm in action

Still second round:

\[G = \langle x, y \mid [y, x], x \rangle = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle \text{ and } p = 2; \]

epimorphism \(\theta : G \rightarrow H \) onto \(H = G/P_2(H) \) defined by \((x, y) \rightarrow (a_1, a_2) \)

\[H^* = Pc\langle a_1, \ldots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, a_5^2 = \ldots = a_8^2 = 1 \]

\[[a_2, a_1] = a_3, [a_3, a_1] = a_7, [a_3, a_2] = a_5a_7, [a_4, a_1] = a_5 \]

Evaluate relations of \(G \) in \(H^* \):

\[a_7 = [[a_2, a_1], a_1] = \hat{\theta}([[y, x], x]) = \hat{\theta}(x^2) = a_1^2 = a_8 \text{ forces } a_7 = a_8 \]

\((xyx)^4 \text{ forces } a_6 = 1; \) \(x^4 \) and \(y^4 \) impose no condition

\(\hat{\theta}((yx)^3y) = \hat{\theta}(x) \text{ forces } a_7a_8 = 1 \)

Now construct \(G/P_3(G) \) as \(H^*/\langle a_7a_8, a_6 \rangle \); after renaming:

\[G/P_3(G) = Pc\langle a_1, \ldots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = 1, a_5^2 = a_6^2 = 1, \]

\[[a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5a_6, [a_4, a_1] = a_5 \]

and the epimorphism \(G \rightarrow G/P_3(G) \) is defined by \((x, y) \rightarrow (a_1, a_2) \).
Big example: \(p \)-quotient algorithm in action

In conclusion:
We started with

\[
G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3 y = x \rangle
\]

and computed \(G/P_3(G) \) as

\[
Pc\langle a_1, \ldots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = a_5^2 = a_6^2 = 1, \\
[a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5 a_6, [a_4, a_1] = a_5 \rangle
\]

with epimorphism \(G \to G/P_3(G) \) defined by \((x, y) \to (a_1, a_2)\).

One can check that \(|G| = |G/P_3(G)| = 2^6\), hence \(G \cong G/P_3(G) \).

In particular, we have found a consistent wpcp for \(G \).

In general: if our input group is a finite \(p \)-group, then the \(p \)-quotient algorithm constructs a consistent wpcp of that group.
Motivation and Application: Burnside problem

Burnside Problems

- **Generalised Burnside Problem (GBP), 1902:**
 Is every finitely generated torsion group finite?

- **Burnside Problem (BP), 1902:**
 Let $B(d, n)$ be the largest d-generator group with $g^n = 1$ for all $g \in G$.
 Is this group finite? If so, what is its order?

- **Restricted Burnside Problem (RBP), ~1940:**
 What is order of largest finite quotient $R(d, n)$ of $B(d, n)$, if it exists?

- Golod-Šafarevič (1964): answer to GBP is “no”; (cf. Ol’shanskii’s Tarski monster)

- Various authors: $B(d, n)$ is finite for $n = 2, 3, 4, 6$, but in no other cases with $d > 1$ is it known to be finite; is $B(2, 5)$ finite?

- Higman-Hall (1956): reduced (RBP) to prime-power n.

- Zel’manov (1990-91): $R(d, n)$ always exists! (Fields medal 1994)
Motivation and Application: Burnside problem

Burnside groups:
- $B(d, n) = \langle x_1, \ldots, x_d \mid g^n = 1 \text{ for all words } g \text{ in } x_1, \ldots, x_n \rangle$
- $R(d, n)$ largest finite quotient of $B(d, n)$; exists by Zel’manov

Recall: the p-quotient algorithm computes a consistent wpcp of the largest p-class k quotient (if it exists) of any finitely presented group.

Implementations of the p-quotient algorithm have been used to determine the order and compute pcp's for various of these groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Order</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B(3, 4)$</td>
<td>2^{69}</td>
<td>Bayes, Kautsky & Wamsley (1974)</td>
</tr>
<tr>
<td>$R(2, 5)$</td>
<td>5^{34}</td>
<td>Havas, Wall & Wamsley (1974)</td>
</tr>
<tr>
<td>$B(4, 4)$</td>
<td>2^{422}</td>
<td>Alford, Havas & Newman (1975)</td>
</tr>
<tr>
<td>$B(5, 4)$</td>
<td>2^{2728}</td>
<td>Newman & O’Brien (1996)</td>
</tr>
<tr>
<td>$R(2, 7)$</td>
<td>7^{20416}</td>
<td>O’Brien & Vaughan-Lee (2002)</td>
</tr>
</tbody>
</table>