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Conclusion Lecture 1

Things we have discussed in the first lecture:

polycyclic groups, sequences, and series

polycyclic generating sets (pcgs) and relative orders

polycyclic presentations (pcp), power exponents, and consistency

normal forms and collection

consistency checks

weighted polycyclic presentations (wpcp)
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Conclusion Lecture 1

weighted polycyclic presentation (wpcp):

all relative orders p

induced polycyclic series is chief series

relations are partitioned into definitions and non-definitions

Example

Consider

G = Pc〈 x1, . . . , x5 | x21 = x4, x
2
2 = x3, x

2
3 = x5, x

2
4 = x5, x

2
5 = 1

[x2, x1] = x3, [x3, x1] = x5 〉.

Here {x1, x2} is a minimal generating set, and we choose [x2, x1] = x3 and
x21 = x4 and [x3, x1] = x5 as definitions for x3, x4, and x5, respectively.

Lecture 2: how to compute a wpcp?
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Lower exponent-p series

Lower exponent p-series

The lower exponent-p series of a p-group G is

G = P0(G) > P1(G) > . . . > Pc(G) = 1

where each Pi+1(G) = [G,Pi(G)]Pi(G)p; the p-class of G is c.

Important properties

each Pi(G) is characteristic in G;

P1(G) = [G,G]Gp = Φ(G), and G/P1(G) ∼= Cdp with d = rank(G);

each section Pi(G)/Pi+1(G) is G-central and elementary abelian;

if G has p-class c, then its nilpotency class is at most c;

if θ is a homomorphism, then θ(Pi(G)) = Pi(θ(G));

G/N has p-class c if and only if Pc(G) ≤ N ;

weights: any wpcp on {a1, . . . , an} satisfies ai ∈ Pω(ai)(G) \ Pω(ai)+1(G).
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Lower exponent-p series

Example 11

Consider

G = D16 = Pc〈a1, a2, a3, a4 | a21 = 1, a22 = a3a4, a
2
3 = a4, a

2
4 = 1,

[a2, a1] = a3, [a3, a1] = a4〉.

Here we can read off:

P0(G) = G

P1(G) = [G,G]G2 = 〈a3, a4〉
P2(G) = [G,P1(G)]P1(G)2 = 〈a4〉
P3(G) = [G,P2(G)]P2(G)2 = 1

So G has 2-class 3.
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Computing a wpcp of a p-group

p-quotient algorithm3

Input: a p-group G = F/R = 〈x1, . . . , xn | R〉
Output: a wpcp of G

Top-level outline:

1 compute wpcp of G/P1(G) and epimorphism G→ G/P1(G), then iterate:

2 given wpcp of G/Pk(G) and epimorphism G→ G/Pk(G),
compute wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G);

For the second step, we use the so-called p-cover of G/Pk(G).

More general: a “p-quotient algorithm” computes a consistent wpcp of the
largest p-class k quotient (if it exists) of any finitely presented group.

3Historically: MacDonald (1974), Havas & Newman (1980), Newman & O’Brien (1996)
Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Computing a wpcp of G/P1(G)
Note that G/P1(G) is elementary abelian.

Computing wpcp of G/P1(G)

Input: a p-group G = F/R = 〈x1, . . . , xn | R〉
Output: a wpcp of G/P1(G) and epimorphism θ : G→ G/P1(G)

Approach:

1 abelianise relations, take exponents modulo p, write these in matrix M

2 compute solution space of M over GF(p)

Then:

dimension d of solution space is rank of G, that is, G/P1(G) ∼= Cdp

generating set of G/P1(G) lifts to subset of given generators;

set G/P1(G) = Pc〈a1, . . . , ad | ap1 = . . . = apd〉 and define θ by

θ(xi) = ai for i = 1, . . . , d;

images of θ(xj) with j > d are determined accordingly.
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Computing a wpcp of G/P1(G)

Example 12

G = 〈x1, . . . , x6 | x106 , x1x2x3, x2x3x4, . . . , x4x5x6, x5x6x1, x1x6x2〉 and p = 2

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix,
use row-echelonisation, and determine that solution space has dimension 2: 1 1 1 0 0 0

0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 1 1 1
1 0 0 0 1 1
1 1 0 0 0 1

  
 1 0 0 0 1 1

0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 ;

Modulo P1(G), this shows that x1 = x5x6, x2 = x5, x3 = x6, x4 = x5x6, and
Burnside’s Basis Theorem implies that G = 〈x5, x6〉. Lastly, set

G/P1(G) = Pc〈a1, a2 | a21 = a22 = 1〉,
and define θ : G→ G/P1(G) via x5 7→ a1 and x6 7→ a2.
This determines θ(x1) = a1a2, θ(x2) = a1, θ(x3) = a2, and θ(x4) = a1a2.
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Compute wpcp for G/Pk+1(G) from that of G/Pk(G)
Given:

wpcp of d-generator p-group G/Pk(G) and epimorphism θ : G→ G/Pk(G)

Want:

wpcp of G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

In the following:

H = G/Pk(G) and K = G/Pk+1(G) and Z = Pk(G)/Pk+1(G)

note that Z is elementary abelian, K-central, and K/Z ∼= H

Approach: Construct a covering H∗ of H such that every d-generator p-group L
with L/M ∼= H and M ≤ L central elementary abelian, is a quotient of H∗.

Thus, the next steps are:

1 define p-cover H∗ and determine a pcp of H∗;
2 make this presentation consistent;

3 construct K as quotient of H∗ by enforcing defining relations of G.
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p-covering group: definition

Theorem 13: p-covering group

Let H be a d-generator p-group; there is a d-generator p-group H∗ with:

H∗/M ∼= H for some central elementary abelian M EH∗;

if L is a d-generator p-group with L/Y ∼= H for some central elementary
abelian Y ≤ L, then L is a quotient of H∗.

The group H∗ is unique up to isomorphism.

Proof.
Let H = F/S with F free of rank d. Define H∗ = F/S∗ with S∗ = [S, F ]Sp.

Now S/S∗ is elementary abelian p-group, so H∗ is (finite) d-generator p-group.

Let L be as in the theorem, and let ψ : L→ H with kernel Y .
Let θ : F → H with kernel S. Since F is free, θ factors through L, that is,

θ : F
ϕ→ L

ψ→ H, and so ϕ(S) ≤ kerψ = Y . This implies that ϕ(S∗) = 1.
In conclusion, ϕ induces surjective map from H∗ = F/S∗ onto L.

If H∗ and H̃∗ are two such covers, then each is an image of the other.
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p-covering group: presentation

Given: a wpcp Pc〈a1, . . . , am | S〉 for H = G/Pk(G) ∼= F/S

Given:

and epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

Want: a wpcp for H∗ ∼= F/S∗ where S∗ = [S, F ]Sp

Recall: each of ad+1, . . . , am occurs as right hand side of one relation in S;
write S = Sdef ∪ Snondef with Snondef = {s1, . . . , sq}.

Theorem 14

Using the previous notation, H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉, where

S∗ = Sdef ∪ {s1b1, . . . , sqbq} ∪ {bp1, . . . , bpq}.

Note: M = 〈b1, . . . , bq〉EH∗ is elementary abelian, central, and H∗/M ∼= H.

(see Newman, Nickel, Niemeyer: “Descriptions of groups of prime-power order”, 1998)

In practice: fewer new generators are introduced.
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p-covering group: example
Example 15

If H = Pc〈a1, a2 | a21 = a22 = 1〉 ∼= C2 × C2, then

H∗ = Pc〈a1, a2, b1, b2, b3 | a21 = b1, a
2
2 = b2, [a1, a2] = b3, b

2
1 = b22 = b23 = 1〉;

indeed, H∗ ∼= (C4 × C2) : C4, thus we have found a consistent wpcp!

Example 16

If H = Pc〈a1, a2, a3 | a21 = a23 = 1, a22 = a3, [a2, a1] = a3〉 ∼= D8, then

H∗ = Pc〈a1, a2, a3, b1, . . . , b5 | T ∪ {b21, . . . , b25} 〉 with

T = {a21 = b1, a
2
2 = a3b2, a

2
3 = b3, [a2, a1] = a3, [a3, a1] = b4, [a3, a2] = b5};

this pcp has power exponents [2, 2, 2, 2, 2, 2, 2, 2].

However, H∗ ∼= (C8 × C2) : C4, so presentation is not consistent!

Next step: make the presentation of H∗ consistent.
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p-covering group: consistency algorithm
By Theorem 8, the presentation H∗ = Pc〈u1, . . . , um+q | S∗〉 with
(u1, . . . , um+q) = (a1, . . . , am, b1, . . . , bq) is consistent if and only if

uk(ujui) = (ukuj)ui (1 ≤ i < j < k ≤ m+ q)

(up
j )ui = up−1

j (ujui) and uj(u
p
i ) = (ujui)u

p−1
i (1 ≤ i < j ≤ m+ q)

uj(u
p
j ) = (up

j )uj (1 ≤ j ≤ m+ q).

Consistency Algorithm4: find consistent presentation for H∗

If each pair of words in the above “consistency checks” collects to the same
normal word, then the presentation is consistent.

Otherwise, the quotient of the two different words obtained from one of these
conditions is formed and equated to the identity word: this gives a new
relation which holds in the group.

The pcp for H is consistent, so any new relation is an equation in the
elementary abelian subgroup M generated by the new generators
{b1, . . . , bq}, which implies that one of these generators is redundant.

4Historically: Wamsley (1974), Vaughan-Lee (1984)
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p-covering group: consistency algorithm

By Theorem 8, the presentation H∗ = Pc〈u1, . . . , um+q | S∗〉 with
(u1, . . . , um+q) = (a1, . . . , am, b1, . . . , bq) is consistent if and only if

uk(ujui) = (ukuj)ui (1 ≤ i < j < k ≤ m+ q)

(up
j )ui = up−1

j (ujui) and uj(u
p
i ) = (ujui)u

p−1
i (1 ≤ i < j ≤ m+ q)

uj(u
p
j ) = (up

j )uj (1 ≤ j ≤ m+ q).

Example 17

Consider G = Pc〈u1, u2, u3 | u21 = u2, u
2
2 = u3, u

2
3 = 1, [u2, u1] = u3〉.

The last test applied to u1 yields

u31 = (u21)u1 = u2u1 = u1u2u3 and u31 = u1(u21) = u1u2,

so u3 = 1 in G, hence G = Pc〈u1, u2 | u21 = u2, u
2
2 = 1〉 ∼= C4.
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Construct K from cover H∗ of H

So what have we got so far...

p-group G = F/R = 〈x1, . . . , xn | R〉
consistent wpcp of H = G/Pk(G) = Pc〈a1, . . . , am | S〉
epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

consistent wpcp of cover H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉;
note that H∗/M ∼= H where M = 〈b1, . . . , bq〉

Want:

consistent wpcp of K = G/Pk+1(G) and epimorphism G→ G/Pk+1(G)

Know:

K/Z ∼= H where Z = Pk(G)/Pk+1(G) is elementary abelian, central

K is quotient of H∗

Idea:

construct K as quotient of H∗: add relations enforced by G to S∗
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Construct K from cover H∗ of H
So what have we got so far...

p-group G = F/R = 〈x1, . . . , xn | R〉
consistent wpcp of H = G/Pk(G) = Pc〈a1, . . . , am | S〉
epimorphism θ : G→ H with θ(xi) = ai for i = 1, . . . , d

consistent pcp of cover H∗ = Pc〈a1, . . . , am, b1, . . . , bq | S∗〉;
note that H∗/M ∼= H where M = 〈b1, . . . , bq〉

Enforcing relations of G:

know that K = G/Pk+1(G) is quotient of H∗

lift θ : G→ H to θ̂ : F → H∗ such that θ̂(xi) = ai for i = 1, . . . , d

for every relator r ∈ R compute nr = θ̂(r) ∈M ;
let L be the subgroup of M generated by all these nr

by von Dyck’s Theorem H∗/L→ K and G→ H∗/L are surjective;
since K is the largest p-class k + 1 quotient of G, we deduce K = H∗/L

Finally: find consistent wpcp of K = H∗/L and get epimorphism G→ K
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Big example: p-quotient algorithm in action
Let G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉 and p = 2.

First round:

compute G/P1(G) using abelianisation and row-echelonisation:

obtain H = G/P1(G) ∼= Pc〈a1, a2 | a21 = a22 = 1〉
and epimorphism θ : G→ H, which is defined by (x, y)→ (a1, a2).

construct covering of H by adding new generators and tails:

H∗ = Pc〈a1, . . . , a5 | a21 = a3, a
2
2 = a4, [a2, a1] = a5, a

2
3 = a24 = a25 = 1〉

the consistency algorithm shows that this presentation is consistent

evaluate relations of G in H∗:

1 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a3 forces a3 = 1

(xyx)4, x4, y4 impose no conditions

a1a3 = θ̂((yx)3y) = θ̂(x) = a1 also forces a3 = 1

construct G/P2(G) as H∗/〈a3〉; after renaming a4, a5:

G/P2(G) ∼= Pc〈a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a
2
3 = a24 = 1〉

and epimorphism G→ G/P2(G) defined by (x, y)→ (a1, a2).

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Big example: p-quotient algorithm in action
G/P2(G) = Pc〈a1, . . . , a4 | a21 = 1, a22 = a4, [a2, a1] = a3, a

2
3 = a24 = 1〉

Second round:
construct covering of H = G/P2(G) by adding new generators and tails:
H∗ = Pc〈a1, . . . , a12 | a21 = a12, a

2
2 = a4, a

2
3 = a11, a

2
4 = a10,

[a2, a1] = a3, [a3, a1] = a5, [a3, a2] = a6, [a4, a1] = a7,

[a4, a2] = a8, [a4, a3] = a9, a
2
5 = . . . = a212 = 1〉

the consistency algorithm shows only the following inconsistencies:

a2(a2a2) = a2a4 and (a2a2)a2 = a4a2 = a2a4a8 =⇒ a8 = 1a8 = 1a8 = 1

a2(a1a1) = a2a12 and (a2a1)a1 = a1a2a3a1 = . . . = a2a5a11a12 =⇒ a5a11 = 1a5a11 = 1a5a11 = 1

a2(a2a1) = a1a
2
2a

2
3a6 = a1a4a6a11 and (a2a2)a1 = a1a4a7 =⇒ a6a7a11 = 1a6a7a11 = 1a6a7a11 = 1

a3(a2a2) = a3a4 and (a3a2)a2 = a2a3a6a2 = a22a3a
2
6 = a3a4a9 =⇒ a9 = 1a9 = 1a9 = 1

removing redundant gens (and renaming), we obtain the consistent wpcp

H∗ = Pc〈a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5〉

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Quotient Algorithm p-Class Algorithm Covering Group Example Burnside Problem

Big example: p-quotient algorithm in action

Still second round:

G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉 and p = 2;

epimorphism θ : G→ H onto H = G/P2(H) defined by (x, y)→ (a1, a2)

H∗ = Pc〈a1, . . . , a8 | a21 = a8, a
2
2 = a4, a

2
3 = a7, a

2
4 = a6, a

2
5 = . . . = a28 = 1

[a2, a1] = a3, [a3, a1] = a7, [a3, a2] = a5a7, [a4, a1] = a5〉
Evaluate relations of G in H∗:

a7 = [[a2, a1], a1] = θ̂([[y, x], x]) = θ̂(x2) = a21 = a8 forces a7 = a8

(xyx)4 forces a6 = 1; x4 and y4 impose no condition

θ̂((yx)3y) = θ̂(x) forces a7a8 = 1

Now construct G/P3(G) as H∗/〈a7a8, a6〉; after renaming:

G/P3(G) = Pc〈a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = 1, a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5〉

and the epimorphism G→ G/P3(G) is defined by (x, y)→ (a1, a2).
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Big example: p-quotient algorithm in action

In conclusion:

We started with

G = 〈x, y | [[y, x], x] = x2, (xyx)4, x4, y4, (yx)3y = x〉

and computed G/P3(G) as

Pc〈a1, . . . , a6 | a21 = a6, a
2
2 = a4, a

2
3 = a6, a

2
4 = a25 = a26 = 1,

[a2, a1] = a3, [a3, a1] = a6, [a3, a2] = a5a6, [a4, a1] = a5〉

with epimorphism G→ G/P3(G) defined by (x, y)→ (a1, a2).

One can check that |G| = |G/P3(G)| = 26, hence G ∼= G/P3(G).

In particular, we have found a consistent wpcp for G.

In general: if our input group is a finite p-group, then the p-quotient algorithm
constructs a consistent wpcp of that group.
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Motivation and Application: Burnside problem

Burnside Problems

Generalised Burnside Problem (GBP), 1902:
Is every finitely generated torsion group finite?

Burnside Problem (BP), 1902:
Let B(d, n) be the largest d-generator group with gn = 1 for all g ∈ G.
Is this group finite? If so, what is its order?

Restricted Burnside Problem (RBP), ∼1940:
What is order of largest finite quotient R(d, n) of B(d, n), if it exists?

Golod-Šafarevič (1964): answer to GBP is “no”;
(cf. Ol’shanskii’s Tarski monster)

Various authors: B(d, n) is finite for n = 2, 3, 4, 6, but in no other cases with
d > 1 is it known to be finite; is B(2, 5) finite?

Higman-Hall (1956): reduced (RBP) to prime-power n.

Zel’manov (1990-91): R(d, n) always exists! (Fields medal 1994)
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Motivation and Application: Burnside problem

Burnside groups:

B(d, n) = 〈x1, . . . , xd | gn = 1 for all words g in x1, . . . , xn〉
R(d, n) largest finite quotient of B(d, n); exists by Zel’manov

Recall: the p-quotient algorithm computes a consistent wpcp of the largest
p-class k quotient (if it exists) of any finitely presented group.

Implementations of the p-quotient algorithm have been used to determine the
order and compute pcp’s for various of these groups.

Group Order Authors

B(3, 4) 269 Bayes, Kautsky & Wamsley (1974)

R(2, 5) 534 Havas, Wall & Wamsley (1974)

B(4, 4) 2422 Alford, Havas & Newman (1975)

R(3, 5) 52282 Vaughan-Lee (1988); Newman & O’Brien (1996)

B(5, 4) 22728 Newman & O’Brien (1996)

R(2, 7) 720416 O’Brien & Vaughan-Lee (2002)
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