p-quotient algorithm

- ▶ Go to Presentations
- ▶ Go to p-Group Generation

Conclusion Lecture 1

Things we have discussed in the first lecture:

- o polycyclic groups, sequences, and series
- polycyclic generating sets (pcgs) and relative orders
- polycyclic presentations (pcp), power exponents, and consistency
- normal forms and collection
- consistency checks
- weighted polycyclic presentations (wpcp)

Conclusion Lecture 1

weighted polycyclic presentation (wpcp):

- ullet all relative orders p
- induced polycyclic series is chief series
- relations are partitioned into definitions and non-definitions

Example

Consider

$$G = \text{Pc}\langle x_1, \dots, x_5 \mid x_1^2 = x_4, x_2^2 = x_3, x_3^2 = x_5, x_4^2 = x_5, x_5^2 = 1$$

$$[x_2, x_1] = x_3, [x_3, x_1] = x_5 \rangle.$$

Here $\{x_1,x_2\}$ is a minimal generating set, and we choose $[x_2,x_1]=x_3$ and $x_1^2=x_4$ and $[x_3,x_1]=x_5$ as definitions for x_3 , x_4 , and x_5 , respectively.

Lecture 2: how to compute a wpcp?

Lower exponent-p series

Lower exponent *p*-series

The **lower exponent-**p **series** of a p-group G is

$$G = P_0(G) > P_1(G) > \dots > P_c(G) = 1$$

where each $P_{i+1}(G) = [G, P_i(G)]P_i(G)^p$; the p-class of G is c.

Important properties

- each $P_i(G)$ is characteristic in G;
- $P_1(G) = [G, G]G^p = \Phi(G)$, and $G/P_1(G) \cong C_n^d$ with $d = \operatorname{rank}(G)$;
- each section $P_i(G)/P_{i+1}(G)$ is G-central and elementary abelian;
- if G has p-class c, then its nilpotency class is at most c;
- if θ is a homomorphism, then $\theta(P_i(G)) = P_i(\theta(G))$;
- G/N has p-class c if and only if $P_c(G) \leq N$;
- weights: any wpcp on $\{a_1,\ldots,a_n\}$ satisfies $a_i\in P_{\omega(a_i)}(G)\setminus P_{\omega(a_i)+1}(G)$.

Lower exponent-p series

Example 11

Consider

$$G = D_{16} = \text{Pc}\langle a_1, a_2, a_3, a_4 \mid a_1^2 = 1, a_2^2 = a_3 a_4, a_3^2 = a_4, a_4^2 = 1, [a_2, a_1] = a_3, [a_3, a_1] = a_4 \rangle.$$

Here we can read off:

$$\circ P_0(G) = G$$

•
$$P_1(G) = [G, G]G^2 = \langle a_3, a_4 \rangle$$

•
$$P_2(G) = [G, P_1(G)]P_1(G)^2 = \langle a_4 \rangle$$

•
$$P_3(G) = [G, P_2(G)]P_2(G)^2 = 1$$

So G has 2-class 3.

p-Class

Computing a wpcp of a p-group

p-quotient algorithm³

Input: a p-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$

Output: a wpcp of G

Top-level outline:

- lacktriangledown compute wpcp of $G/P_1(G)$ and epimorphism $G o G/P_1(G)$, then iterate:
- 2 given wpcp of $G/P_k(G)$ and epimorphism $G \to G/P_k(G)$, compute wpcp of $G/P_{k+1}(G)$ and epimorphism $G \to G/P_{k+1}(G)$;

For the second step, we use the so-called p-cover of $G/P_k(G)$.

More general: a "p-quotient algorithm" computes a consistent wpcp of the largest p-class k quotient (if it exists) of any finitely presented group.

³Historically: MacDonald (1974), Havas & Newman (1980), Newman & O'Brien (1996)

Computing a wpcp of $G/P_1(G)$

Note that $G/P_1(G)$ is elementary abelian.

Computing wpcp of $G/P_1(G)$

Input: a p-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$

Output: a wpcp of $G/P_1(G)$ and epimorphism $\theta \colon G \to G/P_1(G)$

Approach:

- lacksquare abelianise relations, take exponents modulo p, write these in matrix M
- 2 compute solution space of M over $\mathsf{GF}(p)$

Then:

- dimension d of solution space is rank of G, that is, $G/P_1(G)\cong C_p^d$
- generating set of $G/P_1(G)$ lifts to subset of given generators;

set
$$G/P_1(G)=\operatorname{Pc}\langle a_1,\ldots,a_d\mid a_1^p=\ldots=a_d^p
angle$$
 and define $heta$ by

$$\theta(x_i) = a_i$$
 for $i = 1, \dots, d;$

images of $\theta(x_j)$ with j > d are determined accordingly.

Computing a wpcp of $G/P_1(G)$

p-Class

Example 12

$$G = \langle x_1, \dots, x_6 \mid x_6^{10}, \ x_1 x_2 x_3, \ x_2 x_3 x_4, \dots, x_4 x_5 x_6, \ x_5 x_6 x_1, \ x_1 x_6 x_2 \rangle \text{ and } p = 2$$

Write coefficients of abelianised and mod-2 reduced equations as rows of matrix, use row-echelonisation, and determine that solution space has dimension 2:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix} \rightsquigarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix};$$

Modulo $P_1(G)$, this shows that $x_1=x_5x_6$, $x_2=\overline{x_5}$, $x_3=x_6$, $x_4=\overline{x_5x_6}$, and **Burnside's Basis Theorem** implies that $\overline{G} = \langle x_5, x_6 \rangle$. Lastly, set

$$G/P_1(G) = Pc\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle,$$

and define $\theta \colon \overline{G \to G/P_1(G)}$ via $x_5 \mapsto a_1$ and $x_6 \mapsto a_2$.

This determines $\theta(x_1) = a_1 a_2$, $\theta(x_2) = a_1$, $\theta(x_3) = a_2$, and $\theta(x_4) = a_1 a_2$.

Example

Compute wpcp for $G/P_{k+1}(G)$ from that of $G/P_k(G)$

Given:

ullet wpcp of d-generator p-group $G/P_k(G)$ and epimorphism $\theta\colon G o G/P_k(G)$

Want:

• wpcp of $G/P_{k+1}(G)$ and epimorphism $G \to G/P_{k+1}(G)$

p-Class

In the following:

- $H = G/P_k(G)$ and $K = G/P_{k+1}(G)$ and $Z = P_k(G)/P_{k+1}(G)$
- note that Z is elementary abelian, K-central, and $K/Z \cong H$

Approach: Construct a covering H^* of H such that every d-generator p-group Lwith $L/M \cong H$ and $M \leq L$ central elementary abelian, is a quotient of H^* .

Thus, the next steps are:

- define p-cover H^* and determine a pcp of H^* ;
- make this presentation consistent;
- s construct K as quotient of H^* by enforcing defining relations of G.

p-covering group: definition

Theorem 13: p-covering group

Let H be a d-generator p-group; there is a d-generator p-group H^* with:

• $H^*/M \cong H$ for some central elementary abelian $M \triangleleft H^*$;

p-Class

• if L is a d-generator p-group with $L/Y \cong H$ for some central elementary abelian $Y \leq L$, then L is a quotient of H^* .

The group H^* is unique up to isomorphism.

Proof.

Let H = F/S with \overline{F} free of rank d. Define $H^* = F/S^*$ with $S^* = [S, F]S^p$.

Now S/S^* is elementary abelian p-group, so H^* is (finite) d-generator p-group.

Let L be as in the theorem, and let $\psi \colon L \to H$ with kernel Y.

Let $\theta \colon F \to H$ with kernel S. Since F is free, θ factors through L, that is,

 $\theta \colon F \stackrel{\varphi}{\to} L \stackrel{\psi}{\to} H$, and so $\varphi(S) < \ker \psi = Y$. This implies that $\varphi(S^*) = 1$.

In conclusion, φ induces surjective map from $H^* = F/S^*$ onto L.

If H^* and \tilde{H}^* are two such covers, then each is an image of the other.

p-covering group: presentation

Given: a wpcp $Pc\langle a_1,\ldots,a_m \mid S \rangle$ for $H = G/P_k(G) \cong F/S$ and epimorphism $\theta \colon G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \ldots, d$

η-Class

Want: a wpcp for $H^* \cong F/S^*$ where $S^* = [S, F]S^p$

Recall: each of a_{d+1}, \ldots, a_m occurs as right hand side of one relation in S; write $S = S_{\text{def}} \cup S_{\text{nondef}}$ with $S_{\text{nondef}} = \{s_1, \dots, s_n\}$.

Theorem 14

Using the previous notation, $H^* = Pc(a_1, \ldots, a_m, b_1, \ldots, b_a \mid S^*)$, where

$$\mathcal{S}^* = \mathcal{S}_{\mathsf{def}} \cup \{s_1b_1, \dots, s_qb_q\} \cup \{b_1^p, \dots, b_q^p\}.$$

Note: $M = \langle b_1, \dots, b_q \rangle \subseteq H^*$ is elementary abelian, central, and $H^*/M \cong H$.

(see Newman, Nickel, Niemeyer: "Descriptions of groups of prime-power order", 1998)

In practice: fewer new generators are introduced.

p-covering group: example

Example 15

If $H = \operatorname{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle \cong C_2 \times C_2$, then

$$H^* = \operatorname{Pc}\langle a_1, a_2, b_1, b_2, b_3 \mid a_1^2 = b_1, \ a_2^2 = b_2, \ [a_1, a_2] = b_3, \ b_1^2 = b_2^2 = b_3^2 = 1 \rangle;$$

indeed, $H^* \cong (C_4 \times C_2)$: C_4 , thus we have found a consistent wpcp!

Example 16

If $H=\operatorname{Pc}\langle a_1,a_2,a_3 \mid a_1^2=a_3^2=1, a_2^2=a_3, [a_2,a_1]=a_3 \rangle \cong D_8$, then

$$H^* = \text{Pc}\langle a_1, a_2, a_3, b_1, \dots, b_5 \mid \mathcal{T} \cup \{b_1^2, \dots, b_5^2\} \rangle$$
 with

$$\mathcal{T} = \{a_1^2 = b_1, a_2^2 = a_3b_2, a_3^2 = b_3, [a_2, a_1] = a_3, [a_3, a_1] = b_4, [a_3, a_2] = b_5\};$$

this pcp has power exponents
$$[2, 2, 2, 2, 2, 2, 2, 2]$$
.

However, $H^* \cong (C_8 \times C_2) \colon C_4$, so presentation is **not consistent!**

Next step: make the presentation of H^* consistent.

p-covering group: consistency algorithm

By Theorem 8, the presentation $H^* = Pc\langle u_1, \dots, u_{m+q} \mid \mathcal{S}^* \rangle$ with $(u_1,\ldots,u_{m+q})=(a_1,\ldots,a_m,b_1,\ldots,b_q)$ is consistent if and only if

$$\begin{aligned} u_k(u_j u_i) &= (u_k u_j) u_i & (1 \le i < j < k \le m + q) \\ (u_j^p) u_i &= u_j^{p-1} (u_j u_i) \text{ and } u_j (u_i^p) &= (u_j u_i) u_i^{p-1} & (1 \le i < j \le m + q) \\ u_j (u_j^p) &= (u_j^p) u_j & (1 \le j \le m + q). \end{aligned}$$

Consistency Algorithm⁴: find consistent presentation for H^*

- If each pair of words in the above "consistency checks" collects to the same normal word, then the presentation is consistent.
- Otherwise, the quotient of the two different words obtained from one of these conditions is formed and equated to the identity word: this gives a new relation which holds in the group.
- The pcp for H is consistent, so any new relation is an equation in the elementary abelian subgroup M generated by the new generators $\{b_1,\ldots,b_q\}$, which implies that one of these generators is redundant.

⁴Historically: Wamsley (1974), Vaughan-Lee (1984)

p-covering group: consistency algorithm

By Theorem 8, the presentation $H^*=\operatorname{Pc}\langle u_1,\ldots,u_{m+q}\mid \mathcal{S}^*\rangle$ with $(u_1,\ldots,u_{m+q})=(a_1,\ldots,a_m,b_1,\ldots,b_q)$ is consistent if and only if

$$\begin{aligned} u_k(u_j u_i) &= (u_k u_j) u_i & (1 \le i < j < k \le m + q) \\ (u_j^p) u_i &= u_j^{p-1} (u_j u_i) \text{ and } & u_j (u_i^p) &= (u_j u_i) u_i^{p-1} \\ u_j (u_j^p) &= (u_j^p) u_j & (1 \le j \le m + q). \end{aligned}$$

Example 17

Consider $G = Pc\langle u_1, u_2, u_3 \mid u_1^2 = u_2, u_2^2 = u_3, u_3^2 = 1, [u_2, u_1] = u_3 \rangle$. The last test applied to u_1 yields

$$u_1^3 = (u_1^2)u_1 = u_2u_1 = u_1u_2u_3 \quad \text{and} \quad u_1^3 = u_1(u_1^2) = u_1u_2,$$

so $u_3 = 1$ in G, hence $G = Pc\langle u_1, u_2 | u_1^2 = u_2, u_2^2 = 1 \rangle \cong C_4$.

Construct K from cover H^* of H

So what have we got so far...

- p-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$
- consistent wpcp of $H = G/P_k(G) = \operatorname{Pc}\langle a_1, \dots, a_m \mid \mathcal{S} \rangle$
- epimorphism $\theta \colon G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \dots, d$
- consistent wpcp of cover $H^*=\operatorname{Pc}\langle a_1,\ldots,a_m,b_1,\ldots,b_q\mid \mathcal{S}^*
 angle;$ note that $H^*/M\cong H$ where $M=\langle b_1,\ldots,b_q
 angle$

Want:

ullet consistent wpcp of $K=G/P_{k+1}(G)$ and epimorphism $G o G/P_{k+1}(G)$

Know:

- ullet $K/Z\cong H$ where $Z=P_k(G)/P_{k+1}(G)$ is elementary abelian, central
- ullet K is quotient of H^*

Idea:

ullet construct K as quotient of H^* : add relations enforced by G to \mathcal{S}^*

Construct K from cover H^* of H

So what have we got so far...

- p-group $G = F/R = \langle x_1, \dots, x_n \mid \mathcal{R} \rangle$
- consistent wpcp of $H = G/P_k(G) = Pc\langle a_1, \dots, a_m \mid S \rangle$
- epimorphism $\theta \colon G \to H$ with $\theta(x_i) = a_i$ for $i = 1, \dots, d$
- consistent pcp of cover $H^* = \operatorname{Pc}\langle a_1, \dots, a_m, b_1, \dots, b_q \mid \mathcal{S}^* \rangle$; note that $H^*/M \cong H$ where $M = \langle b_1, \dots, b_q \rangle$

Enforcing relations of *G*:

- ullet know that $K=G/P_{k+1}(G)$ is quotient of H^*
- $\overline{~ullet}$ lift $heta\colon G o H$ to $\hat{ heta}\colon F o H^*$ such that $\hat{ heta}(x_i)=a_i$ for $i=1,\ldots,d$
- for every relator $r \in \mathcal{R}$ compute $n_r = \hat{\theta}(r) \in M$; let L be the subgroup of M generated by all these n_r
- by von Dyck's Theorem $H^*/L \to K$ and $G \to H^*/L$ are surjective; since K is the largest p-class k+1 quotient of G, we deduce $K=H^*/L$

Finally: find consistent wpcp of $K=H^*/L$ and get epimorphism $G\to K$

Big example: p-quotient algorithm in action

Let $G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$ and p = 2.

First round:

- compute $G/P_1(G)$ using abelianisation and row-echelonisation:
 - obtain $H = G/P_1(G) \cong \operatorname{Pc}\langle a_1, a_2 \mid a_1^2 = a_2^2 = 1 \rangle$ and epimorphism $\theta \colon G \to H$, which is defined by $(x, y) \to (a_1, a_2)$.
- ullet construct covering of H by adding new generators and tails:

$$H^* = \text{Pc}\langle a_1, \dots, a_5 \mid a_1^2 = a_3, a_2^2 = a_4, [a_2, a_1] = a_5, \ a_3^2 = a_4^2 = a_5^2 = 1 \rangle$$

- the consistency algorithm shows that this presentation is consistent
- evaluate relations of G in H^* :

$$ullet \ 1 = [[a_2,a_1],a_1] = \hat{ heta}([[y,x],x]) = \hat{ heta}(x^2) = a_1^2 = a_3 \ ext{forces} \ a_3 = 1$$

- $(xyx)^4, x^4, y^4$ impose no conditions
 - $a_1a_3 = \hat{\theta}((yx)^3y) = \hat{\theta}(x) = a_1$ also forces $a_3 = 1$
- construct $G/P_2(G)$ as $H^*/\langle a_3 \rangle$; after renaming a_4, a_5 :

$$G/P_2(G) \cong Pc\langle a_1, \dots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, \ a_3^2 = a_4^2 = 1 \rangle$$

and epimorphism $G \to G/P_2(G)$ defined by $(x,y) \to (a_1,a_2)$.

Big example: p-quotient algorithm in action

$$G/P_2(G) = Pc\langle a_1, \dots, a_4 \mid a_1^2 = 1, a_2^2 = a_4, [a_2, a_1] = a_3, \ a_3^2 = a_4^2 = 1 \rangle$$

Second round:

• construct covering of $H = G/P_2(G)$ by adding new generators and tails:

$$H^* = \operatorname{Pc}\langle a_1, \dots, a_{12} \mid a_1^2 = a_{12}, a_2^2 = a_4, a_3^2 = a_{11}, a_4^2 = a_{10},$$

$$[a_2, a_1] = a_3, [a_3, a_1] = a_5, [a_3, a_2] = a_6, [a_4, a_1] = a_7,$$

$$[a_4, a_2] = a_8, [a_4, a_3] = a_9, \ a_5^2 = \dots = a_{12}^2 = 1 \rangle$$

• the consistency algorithm shows only the following inconsistencies:

$$a_2(a_2a_2)=a_2a_4$$
 and $a_2a_2)a_2=a_4a_2=a_2a_4a_8$ $\Longrightarrow a_8=1$

•
$$a_2(a_1a_1) = a_2a_{12}$$
 and $(a_2a_1)a_1 = a_1a_2a_3a_1 = \ldots = a_2a_5a_{11}a_{12} \implies a_5a_{11} = 1$

•
$$a_2(a_2a_1) = a_1a_2^2a_3^2a_6 = a_1a_4a_6a_{11}$$
 and $(a_2a_2)a_1 = a_1a_4a_7$ $\Longrightarrow a_6a_7a_{11} = 1$

•
$$a_3(a_2a_2) = a_3a_4$$
 and $(a_3a_2)a_2 = a_2a_3a_6a_2 = a_2^2a_3a_6^2 = a_3a_4a_9$ $\Longrightarrow a_9 = 1$

• removing redundant gens (and renaming), we obtain the consistent wpcp $H^* = \operatorname{Pc}\langle a_1, \dots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, \ a_5^2 = \dots = a_8^2 = 1$ $[a_2, a_1] = a_3, [a_3, a_1] = a_7, [a_3, a_2] = a_5 a_7, [a_4, a_1] = a_5 \rangle$

Big example: *p*-quotient algorithm in action

Still second round:

- $G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3y = x \rangle$ and p = 2;
- epimorphism $\theta \colon G \to H$ onto $H = G/P_2(H)$ defined by $(x,y) \to (a_1,a_2)$ • $H^* = \operatorname{Pc}\langle a_1, \dots, a_8 \mid a_1^2 = a_8, a_2^2 = a_4, a_3^2 = a_7, a_4^2 = a_6, a_5^2 = \dots = a_8^2 = 1$
- $[a_2,a_1]=a_3, [a_3,a_1]=a_7, [a_3,a_2]=a_5a_7, [a_4,a_1]=a_5
 angle$

Evaluate relations of G in H^* :

- $a_7 = [[a_2, a_1], a_1] = \hat{\theta}([[y, x], x]) = \hat{\theta}(x^2) = a_1^2 = a_8$ forces $a_7 = a_8$
- $(xyx)^4$ forces $a_6=1$; x^4 and y^4 impose no condition
- $\hat{\theta}((yx)^3y) = \hat{\theta}(x)$ forces $a_7a_8 = 1$

Now construct $G/P_3(G)$ as $H^*/\langle a_7a_8, a_6 \rangle$; after renaming:

$$G/P_3(G) = \text{Pc}\langle a_1, \dots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = 1, \ a_5^2 = a_6^2 = 1,$$
$$[a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5 a_6, [a_4, a_1] = a_5 \rangle$$

and the epimorphism $G \to G/P_3(G)$ is defined by $(x,y) \to (a_1,a_2)$.

Big example: p-quotient algorithm in action

In conclusion:

We started with

$$G = \langle x, y \mid [[y, x], x] = x^2, (xyx)^4, x^4, y^4, (yx)^3 y = x \rangle$$

and computed $G/P_3(G)$ as

$$Pc\langle a_1, \dots, a_6 \mid a_1^2 = a_6, a_2^2 = a_4, a_3^2 = a_6, a_4^2 = a_5^2 = a_6^2 = 1,$$

 $[a_2, a_1] = a_3, [a_3, a_1] = a_6, [a_3, a_2] = a_5 a_6, [a_4, a_1] = a_5 \rangle$

with epimorphism $G \to G/P_3(G)$ defined by $(x,y) \to (a_1,a_2)$.

One can check that $|G| = |G/P_3(G)| = 2^6$, hence $G \cong G/P_3(G)$.

In particular, we have found a consistent wpcp for G.

In general: if our input group is a finite p-group, then the p-quotient algorithm constructs a consistent wpcp of that group.

Motivation and Application: Burnside problem

Burnside Problems

• **Generalised Burnside Problem** (GBP), 1902: Is every finitely generated torsion group finite?

p-Class

- Burnside Problem (BP), 1902: Let B(d,n) be the largest d-generator group with $q^n=1$ for all $q\in G$. Is this group finite? If so, what is its order?
- Restricted Burnside Problem (RBP), ~1940: What is order of largest finite quotient R(d, n) of B(d, n), if it exists?
- Golod-Šafarevič (1964): answer to GBP is "no"; (cf. Ol'shanskii's Tarski monster)
- $\overline{\circ}$ Various authors: $\overline{B(d,n)}$ is finite for n=2,3,4,6, but in no other cases with d > 1 is it known to be finite; is B(2,5) finite?
- Higman-Hall (1956): reduced (RBP) to prime-power n.
- Zel'manov (1990-91): R(d,n) always exists! (**Fields medal 1994**)

Motivation and Application: Burnside problem

Burnside groups:

- \bullet $B(d,n) = \langle x_1, \dots, x_d \mid g^n = 1$ for all words g in $x_1, \dots, x_n \rangle$
- R(d,n) largest finite quotient of B(d,n); exists by Zel'manov

p-Class

Recall: the p-quotient algorithm computes a consistent wpcp of the largest p-class k quotient (if it exists) of any finitely presented group.

Implementations of the p-quotient algorithm have been used to determine the order and compute pcp's for various of these groups.

Group	Order	Authors
B(3,4)	2^{69}	Bayes, Kautsky & Wamsley (1974)
R(2, 5)	5^{34}	Havas, Wall & Wamsley (1974)
B(4,4)	2^{422}	Alford, Havas & Newman (1975)
R(3,5)	5^{2282}	Vaughan-Lee (1988); Newman & O'Brien (1996)
B(5,4)	2^{2728}	Newman & O'Brien (1996)
R(2,7)	7^{20416}	O'Brien & Vaughan-Lee (2002)