
p-Group Generation Algorithm Descendants Allowable Subgroups Isomorphism Problem Algorithm Example

p-group generation

Go to p-Quotient Algorithm

Go to Classification

Heiko Dietrich (heiko.dietrich@monash.edu) Computational aspects of finite p-groups ICTS, Bangalore 2016



p-Group Generation Algorithm Descendants Allowable Subgroups Isomorphism Problem Algorithm Example

Conclusion Lecture 2

Things we have discussed in the second lecture:

the lower exponent-p series of a group G of p-class c is

G = P0(G) > P1(G) > . . . > Pc(G) = 1

where Pi+1(G) = [G,Pi(G)]Pi(G)p; in particular, P1(G) = Φ(G)

p-quotient algorithm: construct consistent wpcp of largest p-class c quotient
of a finitely presented group (if it exists)

if H has rank d and H ∼= F/R with F free of rank d, then the p-cover H∗ is
isomorphic to F/R∗ where R∗ = [F,R]Rp

application: Burnside problems

Today: the p-group generation algorithm!
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p-group generation: descendants

Idea: Constructing new p-groups from old ones!

Descendants of p-groups

Let G be a d-generator p-group of p-class c.
A descendant of G is a d-generator p-group H with H/Pc(H) ∼= G; it is an
immediate descendant if H has p-class c+ 1, that is, Pc(H) > Pc+1(H) = 1.

Example 18

The group G = C2 × C2 has 2-class c = 1.

The 2-class of D8 = 〈x1, x2, x3 | x21, x22 = x3, x
2
3, [x2, x1] = x3〉 is 2.

Since D8/P1(D8) ∼= G, the group D8 is an immediate descendant of G.

The group D16 has 2-class 3 and satisfies D16/P1(D16) ∼= C2 × C2.
Thus D16 is a descendant of G, but not an immediate descendant.

Every p-group K of p-class c > 1 is an immediate descendant of K/Pc−1(K);
if c = 1, then K ∼= Cdp is elementary abelian.
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p-group generation: p-covering

Given: a d-generator p-group G of p-class c.
Want: list of all immediate descendants H of G (up to isomorphism)
Fact: each H/Pc(H) ∼= G and Pc(H) is H-central elementary abelian.

Recall Theorem 13: If H is a d-generator p-group with H/Z ∼= G for some
central elementary abelian Z ≤ H, then H is a quotient of the p-cover G∗.

Theorem 19

Every immediate descendant of G is a quotient of the p-cover G∗.

In the following we discuss the p-group generation algorithm:

p-group generation algorithm

Input: a p-group G and description of its automorphism group
Output: wpcp’s of all immediate descendants of G, up to isomorphism,

Output:

and a description of their automorphism groups

Descriptions of the algorithm in the literature: Newman (1977), O’Brien (1999)
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p-group generation: allowable subgroups

In the following: G = F/R with p-class c, and G∗ = F/R∗ with R∗ = [R,F ]Rp.

Problem: What quotients of G∗ are immediate descendants of G?

Definition

The p-multiplicator of G is the kernel of G∗ → G, that is, R/R∗.

The nucleus of G is Pc(G
∗); note that Pc(G

∗) ≤ R/R∗.
If H is an immediate descendant, then there is an epi G∗ → H whose kernel
lies in R/R∗. An allowable subgroup is a subgroup Z < R/R∗ such that
G∗/Z is an immediate descendant of G.

The next lemma characterises allowable subgroups:

Lemma 20

A subgroup Z < R/R∗ is allowable if and only if ZPc(G
∗) = R/R∗.

Thus: Z < R/R∗ is allowable if and only if it supplements the nucleus.
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p-group generation: allowable subgroups

Recall: G = F/R with p-class c, and G∗ = F/R∗ with R∗ = [R,F ]Rp.

Lemma 20

A subgroup Z < R/R∗ is allowable if and only if ZPc(G
∗) = R/R∗.

Proof.
If Z = M/R? is allowable, then F/M is an immediate descendant, and so
G ∼= (F/M)/(Pc(F )M/M). We also know that G = F/R ∼= (F/M)/(R/M) by
the isomorphism theorem. Since Pc(G) = Pc(F )R/R = 1, we have Pc(F )M ≤ R.
Together, it follows that R = Pc(F )M , and so R/R? = Pc(G

∗)Z, as claimed.

Conversely, if Z = M/R? satisfies R/R∗ = ZPc(G
∗) = MPc(F )/R∗, then

R = MPc(F ); factoring out M yields R/M = Pc(F )M/M .
This shows that H = G∗/Z = F/M satisfies Pc(H) = Pc(F )M/M = R/M , so
H/Pc(H) = F/R = G and H is immed. desc. since Pc(H) > Pc+1(H) = 1.
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p-group generation: allowable subgroups

Example 21

The group G = D16 has p-class c = 3 and 2-covering

G∗ = Pc〈 a1, . . . , a7 | a21 = a6, a
2
2 = a3a4a7, a

2
3 = a4a5, a

2
4 = a5,

[a2, a1] = a3, [a3, a1] = a4, [a4, a1] = a5,

a25 = a26 = a27 = 1〉.

The multiplicator is 〈a5, a6, a7〉 ∼= C3
2 ; the nucleus is Pc(G

∗) = 〈a5〉.
The subgroups 〈a6, a7〉, 〈a5a6, a7〉, 〈a6, a5a7〉 are allowable and the corresponding
immediate descendants have order 32.

The subgroup 〈a5a6, a5a7〉 is also allowable, but the resulting quotient is
isomorphic to the quotient of G∗ by 〈a6, a5a7〉.

Considering the factor groups of G∗ by all allowable subgroups, a complete list of
immediate descendants is obtained; this list usually contains isomorphic groups.
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p-group generation: isomorphism problem

Recall: G = F/R with p-cover G∗ = F/R∗ and multiplicator R/R∗.

Equivalence of allowable subgroups

Two allowable subgroups U/R∗ and V/R∗ are equivalent if the corresponding
immediate descendants F/U and F/V are isomorphic.

This definition of “equivalence” is useful . . .

. . . only because the equivalence relation can be given a different characterisation
by using the automorphism group of G.
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p-group generation: isomorphism problem

Extended automorphism

Let α ∈ Aut(G); suppose G = F/R is generated by a1, a2, . . . , ad.
For i = 1, . . . , d, let xi, yi ∈ F such that ai = xiR and α(ai) = yiR for all i.
Define α∗ : G∗ → G∗ by α∗(xiR

∗) = yiR
∗ for all i.

Lemma 22

If α ∈ Aut(G), then α∗ ∈ Aut(G∗) is an extended automorphism.
It is not uniquely defined by α, but its restriction to R/R∗ is.

Proof [Sketch].
First show that α∗ is a well-defined homomorphism; let g = w(x1, . . . , xd) ∈ F :
If g ∈ R, then 1R = α(gR) = w(y1, . . . , yd)R, so w(y1, . . . , yd) ∈ R.
So if g ∈ R∗, then w(y1, . . . , yd) ∈ R∗; recall R∗ = [F,R]Rp.
The hom α∗ is surjective: G∗ = 〈y1R∗, . . . , ydR∗〉 since R/R∗ ≤ Φ(G∗).

Two extensions of α differ only by elements in R/R∗, and words in R are
products of p-th powers and commutators. Since R/R∗ is elementary abelian and
central, the restriction of α∗ to R/R∗ is uniquely defined by α.
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p-group generation: isomorphism problem

Lemma 23

Let G = F/R be as before, and let U/R∗ and V/R∗ be allowable subgroups.
Then F/U ∼= F/V if and only if α∗(U/R∗) = V/R∗ for some α ∈ Aut(G).

Proof [Sketch].
“⇒”. Let ϕ : F/U → F/V be an isomorphism. Since F/U is an immed. desc.,
(F/U)/Pc(F/U) = G, and so Pc(F/U) = R/U ; similarly, Pc(F/V ) = R/V , and
so ϕ(R/U) = R/V . Thus ϕ induces α ∈ Aut(G) with extension α∗ ∈ Aut(G∗).
Now we show that α∗(U/R∗) = V/R∗: if g = w(x1, . . . , xd) ∈ U , then

1V = ϕ(gU) = w(ϕ(x1U), . . . , ϕ(xdU)) = w(y1V, . . . , ydV ) = w(y1, . . . , yd)V,

which implies α∗(gR∗) = w(y1, . . . , yd)R
∗ ∈ V/R∗, and so α∗(U/R∗) = V/R∗.

“⇐”. If H is a group, N EH, and γ ∈ Aut(H), then H/N ∼= H/γ(N).
This shows that if α∗ ∈ Aut(G∗) maps U/R∗ to V/R∗, then F/U ∼= F/V .

Via α∗, every α ∈ Aut(G) yields a unique permutation π(α) of allowable subgrps.
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p-group generation: automorphisms
Given: G = F/R and immediate desc. H = F/M for some allowable M/R∗

Want: automorphisms of H, that is, isomorphisms F/M → F/M

Recall: every α ∈ Aut(G) yields a permutation π(α) of allowable subgrps.

Let Σ be the stabiliser of M/R∗ under the action of Aut(G), that is,

Σ = 〈ζ ∈ Aut(G) | π(ζ) stabilises M/R∗〉.
Use Σ to compute

S = 〈ζ∗|F/M | ζ ∈ Σ〉 ≤ Aut(H),

and determine a generating set for

T = 〈β ∈ Aut(H) | β|G = idG〉.

Theorem 24

Using the previous notation, Aut(H) = 〈S, T, Inn(H)〉.

(see O’Brien, 1999)
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p-group generation: the algorithm

p-group-generation(G,A, s)

Input: group G = F/R of order pn, its automorphism group A, integer s ∈ N
Output: immediate descendants of G, up to isomorphism, of order pn+s,

Output:

and their automorphism groups

1 construct consistent wpcp of covering G∗ = F/R∗

2 for each generator α of A do

3 compute extension α∗

4 compute permutation π(α) of allowable subgroups of index ps in R/R∗

5 compute orbits of these allowable subgroups under the action of all π(α)

6 for each orbit representative Z = M/R∗ do

7 compute a wpcp of the immediate descendant H = G∗/Z ∼= F/M

8 compute generators of the automorphism group of H
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p-group generation: example
Consider G = Pc〈 a1, a2 | a21 = a22 = 1〉 with 2-covering

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉.

The multiplicator and nucleus coincide: M = 〈a3, a4, a5〉 = P1(G∗).

Thus: every proper subgroup of M is allowable.

Note that Aut(G) ∼= GL2(2), with generators and extensions

α1 : (a1, a2) 7→ (a1a2, a2) α∗1 : (a1, a2, a3, a4, a5) 7→ (a1a2, a2, a3, a3a4a5, a5)

α2 : (a1, a2) 7→ (a2, a1) α∗2 : (a1, a2, a3, a4, a5) 7→ (a2, a1, a3, a5, a4).

For example, observe that

α∗1(a3) = α∗1([a1, a2]) = [a1a2, a2] = a3

α∗1(a4) = α∗1(a21) = (a1a2)2 = a21a
2
2a3 = a3a4a5

α∗1(a5) = α∗1(a22) = a22 = a5
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p-group generation: example
Consider G = Pc〈 a1, a2 | a21 = a22 = 1〉 with 2-covering

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉.

The multiplicator and nucleus coincide: M = 〈a3, a4, a5〉 = P1(G∗).

Thus: every proper subgroup of M is allowable.

Note that Aut(G) ∼= GL2(2), with generators and extensions

α1 : (a1, a2) 7→ (a1a2, a2) α∗1 : (a1, a2, a3, a4, a5) 7→ (a1a2, a2, a3, a3a4a5, a5)

α2 : (a1, a2) 7→ (a2, a1) α∗2 : (a1, a2, a3, a4, a5) 7→ (a2, a1, a3, a5, a4).

Immediate descendants of G = C2 × C2 of order 8:

There are 7 allowable subgroups of index 2 in M (that is, of rank 2), namely

〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉, 〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉, 〈a3a4, a3a5〉

There are 3 orbits of allowable subgroups induced by α∗1 and α∗2:

{〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉}, {〈a3a4, a3a5〉}, {〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉}
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p-group generation: example

Immediate descendants of G = C2 × C2 of order 8

Recall that

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉

and allowable subgroups of rank 2 are

{〈a4, a5〉, 〈a4, a3a5〉, 〈a3a4, a5〉}, {〈a3a4, a3a5〉}, {〈a3, a5〉, 〈a3, a4a5〉, 〈a3, a4〉}.

Choose one rep from each orbit and factor it from G∗ to obtain immediate
descendants:

Pc〈 a1, a2, a3 | a21 = a22 = a23, [a2, a1] = a3 〉 ∼= D8

Pc〈 a1, a2, a3 | a21 = a3, a
2
2 = a3, a

2
3 = 1, [a2, a1] = a3 〉 ∼= Q8

Pc〈 a1, a2, a4 | a21 = a4, a
2
2 = a24 = 1〉 ∼= C2 × C4
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p-group generation: example

Immediate descendants of G = C2 × C2 of order 16

Recall that

G∗ = Pc〈a1, . . . , a5 | a21 = a4, a
2
2 = a5, [a1, a2] = a3, a

2
3 = a24 = a25 = 1〉.

Allowable subgroups of index 4 are 〈a3〉, 〈aδ3a
γ
4a5〉, 〈a

ζ
3a4〉, with δ, γ, ζ ∈ {0, 1}.

The orbits induced by α∗1 and α∗2 are

{〈a3〉}, {〈a5〉, 〈a3a4a5〉, 〈a4〉}, {〈a4a5〉, 〈a3a5〉, 〈a3a4〉}.

Choose one rep from each orbit to obtain 3 immediate descendants of order 16.
Get C4 × C4 and C2 n (C2 × C4) and C4 n C4, for example,

G∗/〈a3〉 = Pc〈 a1, a2, a4, a5 | a21 = a4, a
2
2 = a5, a

2
4 = a25 = 1〉 ∼= C4 × C4.

Immediate descendants of G = C2 × C2 of order 32

There is one immediate descendant of order 25, namely G∗.
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p-group generation: practical issues

Central problem: number of allowable subspaces (and size of orbits)

Example: The immediate descendants of G = Cdp of order pd+s have p-class 2.
For this group, M = R/R∗ = P1(G∗) has rank m = d(d+ 1)/2;
and each of the O(p(m−s)s) subspaces of dim m− s is allowable.

Approach: exploit characteristic structure.
Each α ∈ Aut(G) acts on M ≤ G∗ via α∗ ∈ Aut(G∗); so M is Aut(G)-module.
In the example, M = P1(G∗) = (G∗)2(G∗)′ is a characteristic decomposition.
In general, identify characteristic submodules, then process chain of submodules.

More comments on practical issues: see O’Brien (1999)
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Classifying p-groups

Go to p-Group Generation

Go to Isomorphisms
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GNU: group number

How many groups of order pn exist?

The number gnu(n) of groups of order n (up to isomorphism) has been
studied in detail5; we recall a few bounds:

Pyber (1993): gnu(n) ≤ n(2/27+o(1))µ(n)2 ,
where µ(n) is largest exponent in the prime-power factorisation of n.
Idea: count choices for Sylow subgroups, Fitting subgroup, quotients, extensions,. . .

Higman (1960): gnu(pn) ≥ p2/27(n3−6n2)

Idea: count groups of p-class 2

Sims (1965), Newman & Seeley (2007): gnu(pn) ≤ p2n3/27+O(n5/3)

Idea: enumerate presentations which define groups of order pn

Trivial bound: gnu(pn) ≤ p(n
3−n)/6

In conclusion: p(2/27)n
3−O(n2) ≤ gnu(pn) ≤ p(2/27)n3+O(n5/3) as n→∞.

5Blackburn, Neuman, Venkataraman “Enumeration of finite groups”, 2007
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GNU: some 2-groups

Besche, Eick & O’Brien (2001) used 2-group generation:

order #

1 1

2 1

4 2

8 5

16 14

32 51

64 267

order #

128 2,328

256 56,092

512 10,494,213

1024 49,487,365,422

2048 >1,774,274,116,992,170

Number of groups of order ≤ 2000: 49,910,529,484
Number of groups of order 210: 49,487,365,422
Number of groups of order 210 and class 2: 48,803,495,722

Folklore Conjecture

Almost all groups are 2-groups of 2-class 2.
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GNU: p-groups of small order
Number of groups of order pk, for k = 1, 2, . . . , 6:

# \ p# \ p# \ p 2 3 ≥ 5≥ 5≥ 5

p 1 1 1

p2 2 2 2

p3 5 5 5

p4 14 15 15

p5 51 67 X

p6 267 504 Y

where

X = 2p+ 61 + 2 gcd(p− 1, 3) + gcd(p− 1, 4)

Y = 3p2 + 39p+ 344 + 24 gcd(p− 1, 3) + 11 gcd(p− 1, 4) + 2 gcd(p− 1, 5)

Order dividing p4: Cole, Glover, Hölder, Young (all ∼ 1893)

Order p5: Bagnera, Miller, de Séguier, James (1898-1980)

Order p6: many faulty classifications;

Order p6:

eventually Newman, O’Brien, Vaughan-Lee (2004)
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GNU: p-groups of small order

Number of groups of order p7: O’Brien & Vaughan-Lee (2005) computed

# \ p# \ p# \ p 2 3 5 ≥ 7≥ 7≥ 7

p7 2, 328 9, 310 34, 297 Z

where

Z = 3p5 + 12p4 + 44p3 + 170p2 + 707p+ 2455

+(4p2 + 44p+ 291) gcd(p− 1, 3) + (p2 + 19p+ 135) gcd(p− 1, 4)

+(3p+ 31) gcd(p− 1, 5) + 4 gcd(p− 1, 7) + 5 gcd(p− 1, 8) + gcd(p− 1, 9)

Approach for n = 5, 6, 7:

For p < n use p-group generation.

For p ≥ n use Baker-Campbell-Hausdorff formula and Lazard correspondence
between category of nilpotent Lie rings of order pn and category of p-groups of
order pn. Use analogue of p-group generation algorithm to classify the Lie rings.
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GNU: PORC conjecture6

PORC Conjecture (Higman 1960)

For n fixed, gnu(pn) is Polynomial On Residue Classes.

That is, there exists m ∈ N and polynomials f0, f1, . . . , fm−1 such that

gnu(pn) = fp mod m(n).

Higman (1960): # groups of order pn and p-class 2 is PORC.

Evseev (2008): # groups of order pn whose Frattini subgroup is central is PORC.

Vaughan-Lee (2015): # groups of order p8 and exponent p is PORC.

6For a survey see Vaughan-Lee “Graham Higman’s PORC Conjecture” (2012)
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Conclusion Lecture 3

Things we have discussed in the third lecture:

(immediate) descendants

p-group generation algorithm

p-cover, nucleus, multiplicator, allowable subgroups, extended auts

automorphism groups of immediate descendants

the group number gnu for group order p5, p6, p7

PORC conjecture
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