Isomorphism testing

Conclusion Lecture 3

Things we have discussed in the third lecture:

- (immediate) descendants
- p-group generation algorithm
- p-cover, nucleus, multiplicator, allowable subgroups, extended auts
- automorphism groups of immediate descendants
- the group number gnu for group order p^{5}, p^{6}, p^{7}
- PORC conjecture

Resources

Isomorphism testing for p-groups

 E. A. O'BrienJ. Symb. Comp. 17, 133-147 (1994)

Standard Presentations

Problem: Decide whether two p-groups are isomorphic.

Standard presentation

For a p-group G use methods from the p-quotient and p-group generation algorithms to construct a standard pcp (std-pcp) for G, such that $G \cong H$ if and only if G and H have the same std-pcp.

Example: For each $j=1, \ldots, p-1$ the presentation

$$
\operatorname{Pc}\left\langle a_{1}, a_{2} \mid a_{1}^{p}=a_{2}^{j}, a_{2}^{p}=1\right\rangle
$$

is a wpcp describing $C_{p^{2}}$; as a std-pcp one could choose

$$
\operatorname{Pc}\left\langle a_{1}, a_{2} \mid a_{1}^{p}=a_{2}, a_{2}^{p}=1\right\rangle .
$$

Similarly, a std-pcp for C_{p}^{d} is $\operatorname{Pc}\left\langle a_{1}, \ldots, a_{d} \mid a_{1}^{p}=\ldots=a_{d}^{p}=1\right\rangle$.

Isomorphism test: computing std-pcp's

Let G be d-generator p-group of p-class c.
Std-pcp of $G / P_{1}(G)$ is $\operatorname{Pc}\left\langle a_{1}, \ldots, a_{d} \mid a_{1}^{p}=\ldots=a_{d}^{p}=1\right\rangle$.
Suppose $H \cong G / P_{k}(G)$ with $k<c$ is defined by std-pcp; have $\theta: G \rightarrow G / P_{k}(G)$.
Find std-pcp of $G / P_{k+1}(G)$ using p-group generation:
The p-group generation algorithm constructs immediate descendants of H.
Among these immediate descendants is $K \cong G / P_{k+1}(G)$. Proceed as follows:

- let $H \cong F / R$ (defined by std-pcp) and $H^{*} \cong F / R^{*}$;
- evaluate relations in H^{*} to get allowable M / R^{*} with $F / M \cong G / P_{k+1}(G)$;
- recall: $\alpha \in \operatorname{Aut}(H)$ acts as $\alpha^{*} \in \operatorname{Aut}\left(H^{*}\right)$ on allowable subgroups; two allowable U / R^{*} and V / R^{*} are in same Aut (H)-orbit iff $F / U \cong F / V$; the choice of orbit rep determines the pcp obtained, and two elements from the same orbit determine different pcp's for isomorphic groups;
- associate with each allowable subgroup a unique label: a positive integer which runs from one to the number of allowable subgroups;
- let \bar{M} / R^{*} be the element in the $\operatorname{Aut}(H)$-orbit of M / R^{*} with label 1 .

Now $K=F / \bar{M}$ is isomorphic to $G / P_{k+1}(G)$; the pcp defining K is "standard".

Isomorphism test: example of std-pcp

The group

$$
G=\left\langle x, y \mid(x y x)^{3}, x^{27}, y^{27},[x, y]^{3},(x y)^{27},\left[y, x^{3}\right],\left[y^{3}, x\right]\right\rangle ;
$$

has order 3^{7}, rank 2 , and 3 -class 3 ; let \mathcal{S}_{1} be the set of relators.

- $G / P_{1}(G)$ has std-pcp $H=\operatorname{Pc}\left\langle a_{1}, a_{2} \mid a_{1}^{3}=a_{2}^{3}=1\right\rangle$, and we have an epimorphism $\theta: G \rightarrow H$ with $x, y \mapsto a_{1}, a_{2}$.
- use the p-quotient algorithm to construct covering

$$
H^{*}=\operatorname{Pc}\left\langle a_{1}, \ldots, a_{5} \mid\left[a_{2}, a_{1}\right]=a_{3}, a_{1}^{3}=a_{4}, a_{2}^{3}=a_{5}, a_{3}^{3}=a_{4}^{3}=a_{5}^{3}=1\right\rangle .
$$

- evaluate \mathcal{S}_{1} in H^{*} via $\hat{\theta}$ to determine the allowable subgroup $U / R^{*}=\left\langle a_{4}^{2} a_{5}\right\rangle$ which must be factored from H^{*} to obtain $G / P_{2}(G)$, that is, F / U is isomorphic to $G / P_{2}(G)$ with wpcp

$$
\operatorname{Pc}\left\langle a_{1}, \ldots, a_{4} \mid\left[a_{2}, a_{1}\right]=a_{3}, a_{1}^{3}=a_{2}^{3}=a_{4}, a_{3}^{3}=a_{4}^{3}=1\right\rangle .
$$

Isomorphism test: example of std-pcp

Recall:

$$
\begin{aligned}
H & =\operatorname{Pc}\left\langle a_{1}, a_{2} \mid a_{1}^{3}=a_{2}^{3}=1\right\rangle \\
H^{*} & =\operatorname{Pc}\left\langle a_{1}, \ldots, a_{5} \mid\left[a_{2}, a_{1}\right]=a_{3}, a_{1}^{3}=a_{4}, a_{2}^{3}=a_{5}, a_{3}^{3}=a_{4}^{3}=a_{5}^{3}=1\right\rangle,
\end{aligned}
$$

$$
\text { with 3-multiplicator } M=\left\langle a_{3}, a_{4}, a_{5}\right\rangle \text {. }
$$

- A generating set for the automorphism group $\operatorname{Aut}(H) \cong \mathrm{GL}_{2}(3)$ is

$$
\begin{aligned}
\alpha_{1}: & a_{1} \\
& a_{2} \\
& \longmapsto \\
a_{1} a_{2}^{2}, & a_{1}^{2} a_{2}^{2}
\end{aligned} \quad \alpha_{2}: \quad a_{1} \quad \longmapsto a_{1}, \quad \alpha_{3}: \quad a_{1} \longmapsto \longmapsto a_{1}^{2}
$$

- Note that

$$
\begin{aligned}
& \alpha_{1}^{*}\left(a_{3}\right)=\alpha_{1}^{*}\left(\left[a_{2}, a_{1}\right]\right)=\left[a_{1}^{2} a_{2}^{2}, a_{1} a_{2}^{2}\right]=\ldots=a_{3} \\
& \alpha_{1}^{*}\left(a_{4}\right)=\alpha_{1}^{*}\left(a_{1}^{3}\right)=\left(a_{1} a_{2}^{2}\right)^{3}=\ldots=a_{4} a_{5}^{2} \\
& \alpha_{1}^{*}\left(a_{5}\right)=\alpha_{1}^{*}\left(a_{2}^{3}\right)=\left(a_{1}^{2} a_{2}^{2}\right)^{3}=\ldots=a_{4}^{2} a_{5}^{2}
\end{aligned}
$$

so the matrices representing the action of α_{i}^{*} on M are

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 2 & 2
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Isomorphism test: example of std-pcp

Recall that

$$
H^{*}=\operatorname{Pc}\left\langle a_{1}, \ldots, a_{5} \mid\left[a_{2}, a_{1}\right]=a_{3}, a_{1}^{3}=a_{4}, a_{2}^{3}=a_{5}, a_{3}^{3}=a_{4}^{3}=a_{5}^{3}=1\right\rangle
$$

and $G / P_{2}(G) \cong F / U$ for the subspace $U / R^{*}=\left\langle a_{4} a_{5}^{2}\right\rangle$, which is $\langle(0,1,2)\rangle$

- The Aut (H)-orbit containing U / R^{*} is

$$
\left\{\left\langle a_{5}\right\rangle,\left\langle a_{4} a_{5}\right\rangle,\left\langle a_{4}^{2} a_{5}\right\rangle,\left\langle a_{4}\right\rangle\right\} .
$$

- The orbit rep with label 1 is $\ldots \bar{U} / R^{*}=\left\langle a_{5}\right\rangle$.
- Factor H^{*} by $\left\langle a_{5}\right\rangle$ to obtain the std-pcp for $G / P_{2}(G)$ as

$$
K=\operatorname{Pc}\left\langle a_{1}, \ldots, a_{4} \mid\left[a_{2}, a_{1}\right]=a_{3}, a_{1}^{3}=a_{4}, a_{1}^{3}=\ldots=a_{4}^{3}=1\right\rangle .
$$

Recall that U / R^{*} was found by evaluating the relations \mathcal{S}_{1} of G.
But: for the std-pcp we factored out $\bar{U} / R^{*}=\delta\left(U / R^{*}\right)$ for some $\delta \in \operatorname{Aut}\left(H^{*}\right)$. For the next iteration we need to modify the set of relations \mathcal{S}_{1} accordingly.

Isomorphism test: example of std-pcp

- An extended automorphism which maps $U / R^{*}=\left\langle a_{4} a_{5}^{2}\right\rangle$ to $\bar{U} / R^{*}=\left\langle a_{5}\right\rangle$ is

$$
\begin{aligned}
& \delta: \quad a_{1} \\
& \longmapsto a_{1} a_{2} a_{3} a_{4}=a_{1} a_{2}\left[a_{2}, a_{1}\right] a_{1}^{3} \\
& a_{2} \\
& a_{1} a_{2}^{2}
\end{aligned}
$$

- Apply δ to $\mathcal{S}_{1}=\left\{(x y x)^{3}, x^{27}, y^{27},[x, y]^{3}, \ldots\right\}$ to obtain

$$
\mathcal{S}_{2}=\left\{\left(x y[y, x] x^{3} x y^{2} x y[y, x] x^{3}\right)^{3},\left(x y[y, x] x^{3}\right)^{27},\left(x y^{2}\right)^{27}, \ldots\right\}
$$

it follows that $G=\left\langle x, y \mid \mathcal{S}_{1}\right\rangle \cong\left\langle x, y \mid \mathcal{S}_{2}\right\rangle$, see O'Brien 1994.

- Now iterate with $G \cong\left\langle x, y \mid \mathcal{S}_{2}\right\rangle$ and the std-pcp of $K \cong G / P_{2}(G)$ to compute the std-pcp of $G / P_{3}(G) \cong G$.

Practical issues: need complete orbit to identify element with smallest label. One idea is to exploit the characteristic structure of the p-multiplicator (as before).

Note: The std-pcp is only "standard" because it has been computed by some deterministic rule. Std-pcps are a very efficient tool to partition sets of groups into isomorphism classes.

Automorphism groups

- Go to Isomorphisms

- Go to Coclass

Resources

Constructing automorphism groups of p-groups
B. Eick, C. R. Leedham-Green, E. A. O'Brien

Comm. Algebra 30, 2271-2295 (2002)

Computing automorphism groups

Let G be a d-generator p-group with lower p-central series

$$
G=P_{0}(G)>P_{1}(G)>\ldots>P_{c}(G)=1 .
$$

In the following write $G_{i}=G / P_{i}(G)$.
We want to construct Aut (G).

Approach

Compute $\operatorname{Aut}(G)=\operatorname{Aut}\left(G_{c}\right)$ by induction on that series:

- $\operatorname{Aut}\left(G_{1}\right)=\operatorname{Aut}\left(C_{p}^{d}\right) \cong \mathrm{GL}_{d}(q)$
- construct $\operatorname{Aut}\left(G_{k+1}\right)$ from $\operatorname{Aut}\left(G_{k}\right)$.

For the induction step use ideas from p-group generation.

Computing automorphism groups

Let $H=G_{k}$ and $K=G_{k+1} ;$ given $\operatorname{Aut}(H)$, compute $\operatorname{Aut}(K)$.

Recall from p-group generation:

- compute $H^{*}=F / R^{*}$ and the multiplicator $M=R / R^{*}$;
- determine allowable subgroup $U / R^{*} \leq M$ defining K, that is, $K \cong F / U$;
- each $\alpha \in \operatorname{Aut}(H)$ extends to $\alpha^{*} \in \operatorname{Aut}\left(H^{*}\right)$ which leaves M invariant; via this construction, Aut (H) acts on the set of allowable subgroups;
- let Σ be the stabiliser of U / R^{*} in $\operatorname{Aut}(H)$ under this action;
- every $\alpha \in \Sigma$ defines an automorphism of $F / U \cong K$; let $S \leq$ Aut (K) be the subgroup induced by Σ;
- let $T \leq \operatorname{Aut}(K)$ be the kernel of $\operatorname{Aut}(K) \rightarrow \operatorname{Aut}(H)$.

Theorem

With the previous notation, $\operatorname{Aut}(K)=\langle S, T, \operatorname{Inn}(K)\rangle$.
For a proof see O'Brien (1999).

Computing automorphism groups

Recall from p-group generation:

- $H=G / P_{k}(G)$ and $K=G / P_{k+1}(G)$; we have $K / P_{k}(K) \cong H$;
- K is quotient of H^{*} by allowable subgroup U / R^{*};
- $S \leq \operatorname{Aut}(K)$ induced by stabiliser Σ of U / R^{*} in $\operatorname{Aut}(H)$
- $T \leq \operatorname{Aut}(K)$ is kernel of $\operatorname{Aut}(K) \rightarrow \operatorname{Aut}(H)$;
- $\operatorname{Aut}(K)=\langle S, T, \operatorname{Inn}(K)\rangle$.

Problem: how to determine S and T efficiently?

Lemma

Let $\left\{g_{1}, \ldots, g_{d}\right\}$ and $\left\{x_{1}, \ldots, x_{l}\right\}$ be minimal generating sets for K and $P_{k}(K)$, respectively. Define

$$
\beta_{i, j}: K \rightarrow K, \quad\left\{\begin{array}{l}
g_{i} \mapsto g_{i} x_{j} \\
g_{n} \mapsto g_{n}
\end{array} \quad(n \neq i) .\right.
$$

Then $T=\left\langle\left\{\beta_{i, j}: 1 \leq i \leq d, 1 \leq j \leq l\right\}\right\rangle$, an elementary abelian p-group.

Main problem: Compute S, that is, the stabiliser Σ of U / R^{*} in $\operatorname{Aut}(H)$.

Induction step: example

Consider $G=\operatorname{Pc}\left\langle a_{1}, \ldots, a_{4} \mid\left[a_{2}, a_{1}\right]=a_{3}, a_{1}^{5}=a_{4}, a_{2}^{5}=a_{3}^{5}=a_{4}^{5}=1\right\rangle$; this group has 5 -class 2 with $P_{1}(G)=\left\langle a_{3}, a_{4}\right\rangle$.

Clearly, $H=G / P_{1}(G)=\operatorname{Pc}\left\langle a_{1}, a_{2} \mid a_{1}^{5}=a_{2}^{5}=1\right\rangle$ with $\operatorname{Aut}(H) \cong \mathrm{GL}_{2}(5)$.

Now compute:

- $H^{*}=\operatorname{Pc}\left\langle a_{1}, \ldots, a_{5} \mid\left[a_{2}, a_{1}\right]=a_{3}, a_{1}^{5}=a_{4}, a_{2}^{5}=a_{5}, a_{3}^{5}=a_{4}^{5}=a_{5}^{5}=1\right\rangle$
- the allowable subgroup $U / R^{*}=\left\langle a_{5}\right\rangle$ yields G as a quotient of H^{*}
- $\alpha_{1}:\left(a_{1}, a_{2}\right) \mapsto\left(a_{1}^{2}, a_{2}\right)$ and $\alpha_{2}:\left(a_{1}, a_{2}\right) \mapsto\left(a_{1}^{4} a_{2}, a_{1}^{4}\right)$ generate Aut (H); their extensions act on the multiplicator $\left\langle a_{3}, a_{4}, a_{5}\right\rangle$ as

$$
\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 1 \\
0 & 4 & 0
\end{array}\right)
$$

- the stabiliser Σ of U / R^{*} is generated by the extensions of α_{1} and $\alpha_{2} \alpha_{1} \alpha_{2}^{2}$
- a generating set for T is $\left\{\beta_{1,4}, \beta_{2,4}, \beta_{1,3}, \beta_{2,3}\right\}$

This yields indeed $\operatorname{Aut}(G)=\langle T, S, \operatorname{Inn}(G)\rangle$, where S is induced by Σ

Stabiliser problem

To do: Compute stabiliser of allowable subgroup U / R^{*} under action of Aut (H).

Our set-up is:

- consider $M=R / R^{*}$ as $\operatorname{GF}(p)$-vectorspace and $V=U / R^{*}$ as subspace;
- represent the action of $\operatorname{Aut}(H)$ on M as a subgroup $A \leq \mathrm{GL}_{m}(p)$;
- compute the stabiliser of V in A.

Simple Approach: Orbit-Stabiliser Algorithm - constructs the whole orbit!
We'll briefly discuss the following ideas:
(1) exploiting structure of M
(2) exploiting structure of A
(3) exploiting structure of K (and G)

Stabiliser problem: exploiting structure of M

Task: compute stabiliser of allowable subspace $V \leq M$ under A.
Idea: exploit the fact that $N=P_{k+1}\left(H^{*}\right) \leq M$ is characteristic in H^{*}, and that $M=N V$ (since V is allowable)

Use this to split stabiliser computation in two steps:

- compute the stabiliser of $V \cap N$ as subspace of N :
use MeatAxe to compute composition series of N as A-module; then compute orbit and stabiliser of $V \cap N$ stepwise ${ }^{7}$
- compute orbit of $V /(V \cap N)$ as subspace of $M /(V \cap N)$:
$V /(V \cap N)$ is complement to $N /(V \cap N)$ in $M /(V \cap N)$, and $N /(V \cap N)$ is A-invariant; compute A-module composition series of M / N and $N /(V \cap N)$ and break computation up in smaller steps

[^0]
Stabiliser problem: exploiting structure of A

Task: compute stabiliser of allowable subspace $V \leq M$ under A.
Idea: Consider series $A \unrhd S \unrhd P \unrhd 1$, where

- P induced by $\operatorname{ker}\left(H \rightarrow \operatorname{Aut}\left(H / P_{1}(H)\right)\right)$, a normal p-subgroup
- S solvable radical, with $S=S_{1} \triangleright \ldots \triangleright S_{n} \triangleright P$, each section prime order.

Schwingel Algorithm for stabiliser under p-group P

One can compute a "canonical" representative of V^{P} and generators for $\operatorname{Stab}_{P}(V)$ without enumerating the orbit; see E-LG-O'B (2002).

Next, compute $\operatorname{Stab}_{A}(V)$ along $S=S_{1} \triangleright \ldots \triangleright S_{n} \triangleright P$, using the next lemma:

Lemma

Let L be a group acting on Ω; let $T \unlhd L$ and let $\omega \in \Omega$. Then ω^{T} is an L-block in Ω, and $\operatorname{Stab}_{L}\left(\omega^{T}\right)=T \operatorname{Stab}_{L}(\omega)$.

If $l \in \operatorname{Stab}_{L}\left(\omega^{T}\right)$, then $\omega^{l}=\omega^{t}$ for some $t \in T$, hence $l t^{-1} \in \operatorname{Stab}_{L}(\omega)$.

Stabiliser problem: exploiting structure of A

Compute $\operatorname{Stab}_{A}(V)$ along $S=S_{1} \triangleright \ldots \triangleright S_{n} \triangleright P$, using the next lemma:

Lemma

Let L be a group acting on Ω; let $T \unlhd L$ and $\omega \in \Omega$.
Then ω^{T} is an L-block in Ω, and $\operatorname{Stab}_{L}\left(\omega^{T}\right)=T \operatorname{Stab}_{L}(\omega)$.

If orbit $V^{S_{i}}$ and stabiliser $\operatorname{Stab}_{S_{i}}(V)$ are known, compute $\operatorname{Stab}_{S_{i-1}}\left(V^{S_{i}}\right)$, and extend each generator to an element in $\operatorname{Stab}_{S_{i-1}}(V)$.

Advantage: Reduce the number of generators of $\operatorname{Stab}_{S}(V)$ substantially

Stabiliser problem: exploiting structure of K (and G)

Recall: we aim to construct $\operatorname{Aut}(G)$ by induction on lower p-central series with terms $G_{i}=G / P_{i}(G)$; initial step is $\operatorname{Aut}\left(G_{1}\right) \cong \mathrm{GL}_{d}(p)$

Idea: Aut (G) induces a subgroup $R \leq$ Aut $\left(G_{1}\right)$; instead of starting with Aut $\left(G_{1}\right)$, start with $L \leq \mathrm{GL}_{d}(p)$ such that $R \leq L$ and $[L: R]$ is small.

Approach:

- construct a collection of characteristic subgroups of G, such as: centre, derived group, $\Omega, 2$-step centralisers,..
- restrict this collection to $G_{1}=G / P_{1}(G)$
- Schwingel has developed an algorithm to construct the subgroup $R \leq \operatorname{Aut}\left(G_{1}\right) \cong \mathrm{GL}_{d}(p)$ stabilising this lattice of subspaces of G_{1}

This aproach frequently reduces to small subgroups of $\mathrm{GL}_{d}(p)$ as initial group.

Conclusion Lecture 4

Things we have discussed in the forth lecture:

- std-pcp, isomorphism test for p-groups
- automorphism group computation

Lecture 4 is also the last lecture on the ANUPQ algorithms:

ANUPQ (ANU- p-Quotient program), 22,000 lines of C code developed by O'Brien; providing implementations of

- p-quotient algorithm
- p-group generation algorithm
- isomorphism test for p-groups
- automorphisms of p-groups

Implementations are also available in GAP and Magma; various papers discuss the theory and efficiency of these algorithms.

What's the Greek letter for " p " ... ?

π

"Theorem"

We have $\pi=4$.

Proof.

We take a unit circle with diameter 1 and approximate its circumference (which is defined to be π) by computing its arc-length. Remember how arc-length is defined? Use a polygonal approximation!

In every iteration: cirumference is π, arc lenght of red curve is 4 . So in the limit: $\pi=4$, as claimed.

Well ... obviously that is wrong!

Everyone knows that the following is true

"Theorem"

We have $\pi=0$.

Proof.

We start with Euler's Identity $1=e^{2 \pi \imath}$, which yields $e=e^{2 \pi \imath+1}$. Now observe:

$$
e=e^{2 \pi \imath+1}=\left(e^{2 \pi \imath+1}\right)^{2 \pi \imath+1}=e^{(2 \pi \imath+1)^{2}}=e^{-4 \pi^{2}} e e^{4 \pi \imath} .
$$

Since $e^{4 \pi \imath}=1$, this yields $1=e^{-4 \pi^{2}}$. Since $-4 \pi^{2} \in \mathbb{R}$, this forces $0=-4 \pi^{2}$.
Since $-4 \neq 0$, we must have $\pi=0$, as claimed.

[^0]: ${ }^{7}$ see Eick, Leedham-Green, O'Brien (2002) for details

