The questions on this sheet are to be discussed during the two tutorials and the practical sessions; some questions are to be done "by hand", others require to use GAP. In the following, p always denotes a prime and n is a positive integer.

Question 1 (tutorial)

Let G be a nontrivial finite p-group acting on a finite set Ω. Recall that the G-orbit of $\omega \in \Omega$ is defined as the subset $\omega^{G}=\left\{\omega^{g} \mid g \in G\right\} \subseteq \Omega$; its stabiliser is the subgroup $\operatorname{Stab}_{G}(\omega)=\left\{g \in G \mid \omega^{g}=\omega\right\} \leq G$.
a) Prove the Orbit-Stabiliser-Theorem, that is, show that $|G| /\left|\operatorname{Stab}_{G}(\omega)\right|=\left|\omega^{G}\right|$.
b) Denote by $\operatorname{Fix}_{\Omega}(G)=\left\{\omega \in \Omega \mid \forall g \in G: \omega^{g}=\omega\right\}$ the set of G-fixed points in Ω. Use a) to prove that $|\Omega| \equiv\left|\operatorname{Fix}_{\Omega}(G)\right| \bmod p$; in particular, if $|\Omega|$ is a p-power, then $\left|\operatorname{Fix}_{\Omega}(G)\right|$ is divisible by p.
c) Use b) to prove that the center $Z(G)=\left\{h \in G \mid \forall g \in G: h^{g}=h\right\}$ of G is non-trivial.
d) Let $H<G$ be a proper subgroup. Consider an action of H and use b) to prove that $N_{G}(H)>H$.

Question 2 (tutorial)
Let G be a finite p-group.
a) Prove that if $N \unlhd G$ and G / N is cyclic, then $G^{\prime}=[N, G]$
b) Prove that if $G / \gamma_{2}(G)$ is cyclic, then $\gamma_{2}(G)=\{1\}$ and G is abelian.
c) Prove that $\Phi(G)=G^{\prime} G^{p}$; here $\Phi(G)$ is the Frattini subgroup of G (that is, the intersection of all maximal subgroups of G) and G^{p} is the subgroup of G generated by all p-th powers.

Question 3 (practical)
Use the SmallGroups Library of GAP to obtain a list of all p-groups G of size at most $\max \left\{p^{6}, 1000\right\}$ with the property that G admits a subgroup $A \leq G$ of size p^{2} with $C_{G}(A)=A$; note that A necessarily contains the center of G. Do the following:
a) Let G and $A \leq G$ be as in the question and suppose G is nonabelian. Determine the orders of $N_{G}(A)$ and $Z(G)$; compute a few examples to see what these orders might be.
b) For the groups in your list, compare their nilpotency class with their order; based on your observations, make a conjecture about the structure of the groups.
c) Challenge Question: Prove your conjecture (for example, use a) and induction on the group order).

Question 4 (practical)
There are several ways to store and re-construct a pc-group in GAP; consult the manual at

```
http://www.gap-system.org/Manuals/doc/ref/chap46.html
```

for the following tasks.
a) Read about and use the commands CodePcGroup and PcGroupCode.
b) Prove that, indeed, every polycyclic presentation P can be encoded by a positive integer $c=c(P)$. Observe that if P has a generating set of cardinality n, then P has n power relations and $n(n-1) / 2$ commutator relations. One (theoretical) way of encoding P as a number is to make use of the uniqueness of prime-power factorisations in \mathbb{Z}.
c) Read about and use the command GapInputPcGroup.

Question 5 (tutorial/practical)
Let $G=\operatorname{Sym}(9)$ be the symmetric group of rank 9 .
a) By hand, determine a polycyclic series and a polycyclic presentation for the Sylow 3-subgroup of G.
b) Now do the same calculation with GAP; compare with your results for a). The following commands might be useful:

```
gap> G := SymmetricGroup(9);;
gap> S := SylowSubgroup (G,3);;
gap> iso := IsomorphismPcGroup(S);;
gap> Spc := Image(iso);;
gap> mypcgs := List(Pcgs(Spc), x->PreImagesRepresentative(iso,x));;
```

Question 6 (tutorial/practical)
Let $G=\left\langle g_{1}, g_{2}, g_{3} \mid g_{1}^{4}=g_{3}, g_{2}^{4}=g_{3}, g_{3}^{4}=1, g_{2}^{g_{1}}=g_{2}, g_{3}^{g_{1}}=g_{3}^{2}, g_{3}^{g_{2}}=g_{3}\right\rangle$.
a) By hand, show that this polycyclic presentation is not consistent.
b) By hand, find a consistent polycyclic presentation of G.
c) Construct G in GAP using the following commands:

```
gap> F:=FreeGroup(["g1","g2","g3"]); ;
gap> AssignGeneratorVariables(F);
#I Assigned the global variables [ g1, g2, g3 ]
gap> R:=[g1^4/g3, g2^4/g3, g3^4, Comm(g1,g2), g3^g1/g3^-2,g3^g2/g3];;
gap> G:=F/R;
```

Do IsomorphismPcGroup, StructureDescription, and PcGroupFpGroup. The last command will yield an error message; re-define G by using the consistent pc-presentation you have obtained in b).

Question 7 (tutorial)
For a positive integer n let $G(n)=\left\langle a, b \mid a^{n}, b^{n},[a, b]=a\right\rangle$.
a) Prove by hand that if $n=p$ is a prime, then $G(p) \cong C_{p}$.
b) Does the same hold when n is not prime? (Maybe compute some examples with GAP.)

Question 8 (tutorial/practical)
Consider the dihedral group $G=\left\langle r, m \mid r^{2^{n-1}}, m^{2}, r^{m}=r^{2^{n-1}-1}\right\rangle$.
a) Find the normal form of the element $w=r m r^{2} m^{2} r^{3} m^{3}$.
b) Find a polycyclic series of G whose associated PCGS has relative orders $[2, \ldots, 2]$.
c) Find a polycyclic presentation of G, associated to the PCGS you have found in b).
d) Write a GAP function get $\mathrm{Dn}(\mathrm{n})$ which constructs this group using the presentation you have found in c), via PcGroupFpGroup.

Question 9 (tutorial)
By hand, compute a wpep of the group

$$
G=\left\langle a, b, c \mid a^{9}, b^{9}, c^{9},[[b, a], a]=a^{3},(a b a)^{9},(b a)^{5} a=b,[a, c]\right\rangle ;
$$

you can use that G has order 3^{3}.

Question 10 (tutorial)
By hand, show that the nucleus of

$$
Q_{8}=\operatorname{Pc}\left\langle a, b, c \mid a^{2}=c, b^{2}=c, c^{2}=1,[b, a]=c\right\rangle
$$

in Q_{8}^{*} is trivial, and deduce that Q_{8} has no immediate 2-descendants.

Question 11 (practical)
Make sure the GAP package Anupq is installed and running; you might have to do . / configure and make in pkg/anupq before you can load it in gap with LoadPackage ('`anupq''). Look up the manual and use ...
a) ... the command Pq to compute a wpcp of G,
b) ...the command PqPCover to compute the 2 -covering group G^{*} of G
c) ...the command PqDescendants to compute all immediate descendants of G,
for each group G in the questions above, and for

$$
G=\left\langle x, y \mid[[y, x], x]=x^{2},(x y x)^{4}, x^{4}, y^{4},(y x)^{3} y=x\right\rangle \quad \text { with } p=2 .
$$

Question 12 (tutorial)
For $n \in \mathbb{N}$ consider the cyclic group $G=C_{p^{n}}=\operatorname{Pc}\left\langle r \mid r^{\left(p^{n}\right)}\right\rangle$; compute G^{*} and show that G has immediate descendants.

